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This paper examines various aspects of black-hole evaporation. A two-dimensional model is investigated where

it is shown that using fermion-boson cancellation on the stress-energy tensor reduces the energy outflow to
zero, while other noncovariant techniques give the Hawking result. A technique for replacing the collapse by

boundary conditions on the past horizon is developed which retains the essential features of the collapse while

eliminating some of the difficulties. This set of boundary conditions is also suggested as the most natural set

for a preexistent black hole, The behavior of particle detectors under acceleration is investigated where it is

shown that an accelerated detector even in flat spacetime will detect particles in the vacuum. The similarity of
this case with the behavior of a detector near the black hole is brought out, and it is shown that a geodesic

detector near the horizon will not see the Hawking flux of particles. Finally, the work of Berger, Chitre,

Nutku, and Moncrief on scalar geons is corrected, and the spherically symmetric coupled scalar-gravitation

Hamiltonian is presented in the hope that someone can apply it to the problem of black-hole evaporation.

INTRODUCTION

Hawking'' has recently advanced arguments to
suggest that black holes evaporate, due to quan-
tum particle creation, and behave as though they
had an effective temperature of (8vM) ', with M
the mass of the black hole.

This paper is an attempt to investigate the as-
sumptions which lead to this result, and so dis-
cover whether such an evaporation is physically
reasonable or is the result of difficulty in defining
physical particles on a non-flat-background space-
time.

Section I will examine the collapse of a spherical
shell of matter to a black hole in a two-dimension-
al model. Here the field equations for massless
fields are exactly solvable. Following the proce-
dure used by Hawking gives a constant particle
production rate long after collapse in this two-
dimensional example, just as in the four-dimen-
sional problem.

This particle production is associated with an

energy flow out to infinity only if the energy-mo-
mentum tensor is regularized in a particular,
noncovariant fashion at infinity.

A variety of other renormalization methods are
suggested. The only one which is actually investi-
gated gives no energy flow out of the black hole,
no black-hole evaporation.

This technique used for regularization in two di-
mensions is to cancel the infinities in the boson
energy-momentum tensor (taken as a massless
scalar field) with those in the fermion energy-mo-
mentum tensor (taken as that of a massless spin- —,

'

field). Such a cancellation could be extended to
four dimensions where the worst divergences in

the energy-momentum tensor would be canceled
(i.e., the ~' divergences). The two-dimensional
result suggests that black-hole evaporation may
be linked to these divergent parts of the energy-
momentum tensor.

Section II of the paper discusses an attempt to
replace the difficult collapse problem with an
equivalent formulation in full empty Schwarzschild
spacetime. Here the collapsing body is replaced
by boundary conditions on the past horizon of the
black hole. In particular, the definition of posi-
tive frequency for normal modes which come out
of the past horizon of the black hole is changed
from the naive formulation. Instead of defining
positive frequency for these modes via the time-
like Killing vector, it is defined for the initial
data on the past horizon via a null vector field
which is of Killing type on the horizon (only).

The Feynman propagator is briefly investigated
in the two methods of defining positive frequencies.
It is suggested that the usual definition of positive
frequencies leads to a propagator divergent on the
future horizon, which the alternative method does not.

Replacing the collapsing star with these boundary
conditions on the past horizon gets rid of the diffi-
culty of solving the scalar, neutrino, etc. field
equations in the time-dependent metric of a col-
lapsing star. Analyzing this problem by the same
method used by Hawking leads to exactly the re-
sult obtained by him a long time after the collapse
of the star, i.e., a constant outward flux of par-
ticles as if the black hole had a temperature (8vM) '.

Section III discusses the problem of particle de-
tection by model particle detectors. It is shown
that an accelerated detector in flat spacetime will
detect quanta even in the vacuum. A discussion of
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the applicability to the black-hole evaporation pro-
cess is given.

Section IV is a digression to a completely differ-
ent possible attack on the black-hole evaporation
problem. Essentially it is a revision of the work
of Berger, Chitre, Moncrief, and Nutku' (BCMN).
The Hamiltonian for a spherically symmetric
scalar field coupled via Einstein's equations to a
spherically symmetric gravitational field is de-
rived which corrects the results of BCMN. Un-
fortunately, the Hamiltonian is highly nonlinear
and nonpolynomial as well as having a nonlocal
Hamiltonian density. As a result, no definite re-
sults have been obtained, nor has any real line of
attack been found as yet. It is presented only in
the hope that a solution of this problem would clar-
ify the black-hole evaporation problem.

Units are chosen throughout such that G =8 = c
=k (Boltzmann's const) =1. All quantities are
therefore dimensionless and are measured in
terms of Planck units (Lv-10 "cm, tp 10~'
sec, Mv-10 '

g, Tv-10+" 'K). In order to mini-
mize use of strange letters, note that the coordi-
nates U, V, u, v are defined independently and dif-
ferently in Secs. I and II. Note further that in Sec.
I the use of a caret designates the symbol as a
specified function rather than a variable.

I. TWO-DIMENSIONAL COLLAPSE

R , , ~&0
R(T) =

Rp —VT, '7& 0 .
(1.2)

I assume v= 1 andRp&2M. I also assume the shell
is rapidly collapsing with v& 1 —[4M/(R, +2M)].
This ensures that an inward-going light ray emit-
ted just as collapse begins cannot bounce off r =0
and escape before the shell has passed through its
Schwarzschild radius. These restrictions on the
speed of infall of the shell are made for conveni-
ence of later mathematics only, and do not affect
the conclusions.

The time coordinates v. and t inside and outside
the shell, respectively, are related by demanding

The two-dimensional metric which I will be in-
vestigating in this section is the restriction to two
dimensions of a collapsing-shell metric:

dT' —dr', r &R(T)
ds (1.1)

1 —2 —dt' —,r &R(T') .r 1 —2M/r '

The shell radius is given by the equation r =R(T),
with R(T) given, for example, by the equation

(1 —2M/RQ) 't', T&0

RQ —vT 1./2

, (R, —2M —vT+2Mv')—2M —vT }'
Q

7&0.
(1.3)

Also define the advanced and retarded null co-
ordinates

V=v+r -Rp U=T r+Rp, (1.4a)

u =t -r*+R,*, v =t+r*-R,*. (1.4b)

Here the asterisk indicates a function of the form

r*=r+2M ln(r —2M) . (1.4c)

The coordinates u, U and v, V have been chosen
so that the shell begins to collapse at retarded
time u = U =0 and at advanced time v = V = 0.

In these coordinates the metric (1.1) is given by

ds
d U dV inside the shell,

(1 6)
(1 —2M/r)du dv outside the shell,

where r is interpreted as an implicit function of

u, v via (1.4b) and (1.4c).
These coordinates are related by the equations

(1 —2M/R, )
' ', U, u&0

R 2M(1 —v')
l (1+v)(R —2M) R

U, Q&0

(1.6)
R =R(U/(I + v)),

(1 —2M/R, ) 't', V, v&0

([I —2M(1 —v')/R]'t' —v),
(1 —v) (R —2M)

V, v&0

R =R(V/(I —v}) . (1.7)

To differentiate between the coordinates v, u and
the functions of V, U defined by these equations,
the latter are designated by v, u and the (functional,
not algebraic) inverses of the functions by

U = (u -'), V = (v -') .
From equations (1.6) and (1.7) one obtains

that the path length along the shell be the same in
both coordinate systems. This gives the relation

dt R(T) - dR
dT [R(T) —2M]' dT

(1 —2M/R, ) 't'U, U&0
u(U) =

. -4M In(1 —v U/[(1+ v) (R, —2M)]}+U +0(1 —v), U & 0
(1.8}
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(1 —2M/R )
't' V, V&0

v(V} =
V+O(1- v), V&0

(1.9)

Now consider the massless scalar and Dirac
equations restricted to two dimensions:

0 ", = (-g )
"' g""(-g)"8 8

8x~ 8g"

y"&„&=0, (1+ty'))=0
(1.10)

8 8 8 8

8U 8V 8u 8v
(1.12)

with solutions

P = F (V) +G(U)

=f"(v)+g(u),

where

(1.13a)

f(v) = F(V(v}), g(u) =G(U(u)) . (1.13b)

In two dimensions, the centrifugal barrier which
prevents any particle flow through r = 0 is absent.
In order to mimic the effect of such a barrier, I
demand that there be no net radial flux at r = 0.
As the flux is proportional to (Q*SQ/Sr —complex
conjugate), this may be accomplished by demand-
ing that some linear combination go+pep/sr be
zero at r =0. (o, P must be fixed real constants
so that this property will be valid for all linear
combinations of solutions. ) I have chosen to take

p = 0 (i.e. , p = 0) as the appropriate condition at
r =0. Any other choice would lead to the same
conclusions as does this particular choice. At
most they would introduce a phase shift in the out-
going wave when compared to this case.

The line r =0 corresponds to U = V+2A, . The
requirement that the modes vanish on this line
leads to the relation

G(U) = F(U —2RQ) . - (1.14)

The full solution outside the shell will then be

The scalar field equation is straightforward. In
(1.11), P is assumed to be a 4-spinor, and the y"
are the restriction to two dimensions of the four-
dimensional Dirac matrices. The operators ~„
=S/Sx" —I'„are defined so that the Dirac matrices
have zero derivatives, as in four dimensions.

Both (1.10) and (1.11) are conformally invariant
with P-(t) and g-0' 'g when we conformally
transform the metric g""-0'g"". As all two-di-
mensional metrics are conformally flat, this
greatly simplifies the solution of Eqs. (1.10) and
(1.11). Using U, V or u, v coordinates, the scalar
equation simply becomes

The energy-momentum tensor for a solution (II)

is given by
1

&I U
= V,*t,l 4,U)

—2gPU4,*ad"' (1.16)

T„„=If '(v) I', T„„=T„„=0.
(The prime denotes the derivative of the function
with respect to its argument. )

In particular, if one selects f(v) to be a normal
mode,

f(v) = e '""/(2v(u)'t',

one obtains

T„„=I co I/»,
T„„=I m I [ v'(U(u) —2RQ)U'(u)]'/2w

(1.18)

I(uI/2w, u &0

IcuI IU'(u) I'/[2w(1 —2M/R, )], u &0.

The metric (1.1) has a timelike Killing vector
outside of the shell where the Killing vector q is
given by S/St. The energy current4 can be defined
as

JU ~fly U (1.19)

Expressing g" in u, v coordinates we find that T„"
represents the inward flowing energy current
across a u = constant surface, whereas T„"repre-
sents the outward-flowing energy current across
a v =constant surface. The normal modes there-
fore have a constant energy flow inward with an
equal outward flow before the onset of collapse
(u & 0). After the onset of collapse (u &0), the in-
ward flow is still constant but the outward flow of
energy decays rapidly, U'(u) going to zero expo-
nentially as u -~. [This can be seen from Eq.
(1.8) for U-(R, —2M)(1+ v)/v. ]

The solution of the neutrino equations is more
complicated. One must first choose a representa-
tion for the Dirac matrices. We define the ma-
trices y„, y„, yU, y„as follows:

(1 —2M/r)"y„r &R

[U'(u )V'( )]v' 'yt, , r &R

(1 —2M/r)'t'y, , r &R

[U'(u)V'(v)]' 't,
y, r&R

(1.20)

y, =[u'(U}v'(v)l' 'y. , yv =[u'(U)v'(v)l'"y„,

where the asterisk indicates complex conjugation,
and the parentheses around indices indicate sym-
metrization. For the general solution, the various
components of T„, are

P(u, v) =f(v ) +f(v[U(u ) —2 R,]) . (1.15) (1.21)
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with The reflection condition at r =0 is satisfied by
demanding

0 j. 0 1
Xa 2 I 0 -1 0

OI'

g(U -2ft, ) =f(U)

(1.28)

(1.22)

f(u) =[U'(u}8'(U(u) —2R,)]'r'g(u(U(u} —2R,)).
The energy-momentum tensor for a solution g

ls given by

T„„(g)= $y—&„W„&g+complex conjugate, (1.29)

The matrix y' is given by

0 0 -a 0

0 0 0

0 0 0

0 -i 0 0

The y and y are two different representations in

the two coordinate systems and are related by

y„= i'(i)Sy„S-', y„=U'(u)Sy.e-', (1.22)

where $ is the Dirac adjoint of g.
As for the scalar field, T„„is conformally in-

VRl 1Rnt, tx'Rce fx"88, Rnd dlvex'genc8 free, with
components

T„„=2 Re[ig*(u) g'(e)],
2Re[f iU (u)v (U(u) 2R )p

&&g*(i (U(u) —2ff,))g'(i (U(u) —2R,))],

If we define the behavior of g(e) on au =const
(e.g. , u = -~) surface as a normal-mode solution
g(v) = (4v}-'r'e ' " we find

r„„=&u/2r,

2'„„=&u i U'(u )e'(U(u ) —28,) P/2v,
S = cosh8+ sinh8(y, y, —y,y, ),
8=in{[V'(u)u'(U)] 'r'j.

The solution to the neutx'lno equRtlons

y"&„g =0, (I+fy')/=0

in 'the i'epi'eselita'tioil of Eg. (1.20) is

(1 —2'/y) 'r',
/=ax

[U (u)) '(i)]

f (u)

(1.24)

(1.26a)

For jg & 0 this is ldentlcRl to the previous result
for scalar fields [e.g. , (1.18)] and is of opposite
sign for & & 0.

Having solved the classical wave equations, one
can quantize these fields in a straightforward
mannex. 4 and 4 are now regarded as operator
fields which we can expand in the previously de-
fined normal modes [i.e., modes which go as
e ' '/(2s(u)'r' near u =-~]:

/=ax [(1-2~/~)u'(U)~ (V)]-'r4, ~&ft

1, t'&8 (1.26b)

with f(U), g()r) the appropriate components of g.
From the relation g =9 'g we obtain

f(U) =f(u(U))[u'(U}]' '

g(I') =g(i (y'))[ ~'(l')]"' .

g(i )

f (u)

g(i )

In the representation of Eq. (1.21) the solutions are

4f&0
(1.32)

~= P(c.4 +d.'{I
(i}&0

The operators a, b and their Hermitian conjugates
a, ~, bt obey the usual commutation relations while

c, d and theix Hermitian conjugates obey the usual
anticommutation relations. The operators a, 5,
c,d are intexpreted as the annihilation opera-
tors for the modes of energy }&u} whereas their
Hermitian conjugates are the creation operators.

This particular choice of creation and annihila-
tion operatox s corresponds to the physical demand
that no particles be impinging on the star from
infinity. The incoming particle states ax'e, in
othex' wox'ds, identified with positive-frequency
states near infinity. This identification is
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strengthened by the analysis in Sec. III of the re-
sponse of a model particle detector to the field.

The vacuum state ( 0& is now defined by re(luiring
that it be annihilated by all of the annihilation op-
erators:

To continue, the energy-momentum operator for
scalar fields is given by

(1.34)

and for neutrino fields by

o=u„lo&=f „Io&=c„lo&=d.I0&. (1.33) „2„„=—[4,y(„ iT„)(I'] + H. c. (1.35)

Note that we have not defined the vacuum by min-
imizing some positive-definite-operator expecta-
tion value (e.g. , the Hamiltonian), but have de
fined the vacuum as the state with no incoming
particles.

f, ) denotes the anticommutator while [,] denotes
the commutator. Using the expansion of 4 and 4
in normal modes (1.32) and the definition of the
vacuum IO&, the vacuum expectation value of,&,„
for scalars becomes

&0I.~..I0&=-'Z [&0I '.n. ".u'. 1»T..(e. (t. & &0lh.b". h'. I.I0»..(e.* (t'. &

+ &Olf „s„,+u„,h„lO&r. „((t*„,(t., & &ol&„h., +I „.o„lo&T.„((t „,@„'.)]

Similarly, the neutrino vacuum expectation value
ls

&0l„&..l0&=-l Q T.„(C„) l QT„„(C„)
td&0 a&0

From E(ls. (1.18) and (1.31), the neutrino and
scalar vacuum expectation values are equal but
of opposite sign term by term. Furthermore,
(0 I K,„IO) is infinite for both neutrinos and scalar
particles, the divergence going as &'. One pos-
sible method of regularizing the vacuum expecta-
tion values is to sum the contributions due to the
scalar field and due to the neutrinos. This gives
a vacuum expectation for the sum of scalar and
neutrino energy-momentum tensors of exactly
zero evexywhere. The zero-point oscillation en-
ergy for the normal modes of the boson field ex-
actly cancel the energy of the filled negative-en-
ergy sea of the fermions.

In the four-dimensional black-hole formation
proble, this procedure would be expected to can-
cel only the worst divergences of T„„. However,
the Hawking energy flow would be largely elimi-
nated. This suggests that the Hawking energy
flow may be a result of the worst divergences in
T„„which may disappear when the proper renor-
malization procedure ls found.

The above renormalization procedure is cer-
tainly not the only possibility. One could, for
example, normal-oxder X„„according to the "in"
operators giving an expectation value of exactly

zero everywhere. Such a procedure, however,
amounts to little more than assuming the answer
one is trying to calculate. A gravitational field
could surely lead to vacuum polarization effects
ln g@„.

One could also attempt to apply methods such as
dimensional 1egulax'lzatlon, which, how'eve 1,
seems to me to be applicable only to the case of
almost flat spacetimes or highly symmetrical
spacetimes. Black-hole evaporation exists only
because of the formation of a horizon, a decidedly
nonflat spacetime phenomenon.

Another renormalization technique is the sub-
traction of geometrical counterterms (OIY. „IO).
Such subtraction terms occur in the Lagrangian
density of the form

~g(X, +X,R+ X,R»R "+X~R ) . (1.36)

In an empty background spacetime, however, only
the first of these leads to a nonzero subtraction
term (i.e. , X,g, „). It is, furthermore, capable of
renormalizing only the trace T of the stress-en-
ergy tensor. That this is insufficient to renormal-
ize T„„canbe seen by noticing that for a confor-
mally invariant field (e.g. , electromagnetic neu-
trino) the trace is already zero, whereas the
divergences in T00 for example, are as bad as
those for massive fields. The attempt by Parker
and Fulling' to use these subtraction terms in
cosmological spacetimes led to manifestly non-
covariant expressions for their renormalized T„„.
They achieved covariance by using the subtraction
technique to renormalize only T, and then using
T"".„=0 to find the spatial terms.
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DeW'itt' has suggested a formal procedure for
regularizing Z~" by associating its divergences
with the divergences in the Feynman propagator
G(x, x'), or rather in the difference between the
Feynman propagator and the time-symmetric (-,

'

advanced plus retarded) Green's function. By a
technique suggested by Schwinger' for background
electromagnetic fields, DeWitt obtains the Feyr. .-
man propagator as a formal integral solution to
the equation

(v, v" +m'+is)G{x, x') = —~(x, x')

ln the llmlt as 6 0. He obtains

(1.37)

O(x, x') = —det— (1.39)

and 0 is a function which satisfies

-i O'/'(x, x)(x, six', 0)=( ),

&&exp i 2' —im's+n(x, x', s). a(x, x')
28

(1.38b)

Here o(x, x') is —,
' the squa. re of the geodesic dis-

tance separating x, x',

e=,e(v}+ 4(u). (1.42}

This split is exact in two dimensions, and applies
only near infinity in four dimensions. Even in two
dimensions, however, one would expect the fol-
lowing results to apply only near infinity.

We expand /4(v) near infinity in terms of the
ingoing modes /y„= e '"'((27r ~(d ~)'/', with (d&0
so that

eedures on a divergent expression. This technique
is to evaluate X„. „by separating the points at which
the two field operators in g„„are evaluated, and
then discarding any terms which depend on the
magnitude of the separation for small separations.
He has related this also to the adiabatic regulariza-
tion scheme of Parker and Fulling. ' Application to
the full four-dimensional black-hole evaporation
process has not yet been made. (See, however,
Davies, Fulling, and Unruh" for an application to
the two-dimensional collapse. )

A more naive prescription for regularizing the
expression for the energy flow out through infinity
is given by the following procedure.

%'e will be concerned here with the flow of ener-
gy through a surface near infinity. A conserved-
energy-flow vector operator may be defined by

(1.41)

The field operator 4 can be split near infinity
into an ingoing and an outgoing part respectively,

8
i—+o-'(on"), + n,.„n'+is-'o" n.„

14)v bt e't 4&vIce + I
(2v 1(uI)"' (2vIu) I)"' ~'

(1.43)

Ol/2{O1/2 iu) (140)

The solution obtained for A is, however, purely
local. For example, if x, x' are both within a flat
region of spacetime (e.g. , within a spherical dust
shell) a valid solution for n is n = 0. This would
then imply that the Feynman propagator is defined
purely locally by Eq. (1.38), no matter what has
occurred in the spacetime outside of the dust shell,
and independent of the motion of the dust shell. The
Feynman propagator is, however, a, nonloeal
Green's function which cannot be defined by a pure-
ly local technique, i.e. , by examining the behavior
only for x and x' near each other.

ft seems that Eq. (1.37} must be augmented by
global boundary conditions in order to obtain the
Feynman propagator as a solution. These global
boundary conditions will also imply global condi-
tions on Q which would also be expected to alter
the behavior of 0 for small values of s. Further
research on this problem is being done. "

Dewitt has also suggested an alternative to the
above method, which is not a priori equivalent,
due to the interchange of integration and limit pro-

Similarly, 04 is expanded in terms of the modes
which behave near &' as

't QlQ

(2v I(uI)"'
with operators oa„and ob'„. As will be shown

[Eq. (1.50)] the wave equation implies that these
operators are linear combinations of the "in"
operators Ia, Ib

ou" = Q [tx{(d, &d )/Q"i+P((d, (d )/5~i],
(d &0

(1.44)
ob~ = Q [y((d, (d )/h~i+V(Q3, 4) )/0~i].

%e assume that the 4 field is in the "in" vacuum
state I0) defined by, a„IO) =, h IO) =0 for all ~.

In defining the operator 3", we expand 4' into 14
and o4 and then expand each of these with respect
to their associated operators. Furthermore, we
normal-order each term of 4' such that each I a
stands to the right of an operator I a, and we pro-
ceed similarly for (Ib, rb ), (&a~, aa ), and

(~b, ~b ). A term such as Oa Oa~ therefore be-
comes oa oa . In any expression which is am-
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biguous (e.g, ,o oa ) we order the operators
symmetrically. Then in the vacuum expectation
value, (OI3" I0), all terms quadratic in z(f) will
be zero, leaving only terms of the form ~C 04
or of the form 04 04.

Let us examine the energy flow out through 8'."
The total energy flow between two retarded times
u„u, will be given by

42

E(u„u, ) = v'-g(OIQ" I0)du
41

4-I g"" 0 Q„0 du
41

gg~(0 Ig-„„+g„„I 0)du . (1.45)
4~ ~

~ ~
44 ~4 ~ ~ I

41

In two dimensions, the second term is zero by the
trace-free property of „,, and near infinity g""
=2 and v'-g=-,', leaving

o(o„,)= f &oI)o„„lo)o

0:04~04 „:0 du,
4y

(1.46)

where:: indicates normal-ordering with respect
to the out operators. Expanding o4 into out
modes gives

o( „,)=f o Q(&oil, o', - llo)o(, „O„O)~ &ol, oJ I o )ro„„(, ",O, "O )-
QJ oQ)

+&0 1[....5;)l0»„„(.y. ..y;) &0 I[. :,.f.'-)l0»„„(.y. ..y.*-)] (1.47)

Using the definition of I0) and the expansion of the "out" operators in terms of "in" operators, one
obtains

&0 I oo' oo- I o &
= g P(&o, (o')*P((o, (o'),

(d I

(0loi& ot&„- I0) = Q o'((o, &o')o(o), (d')*, (1.48)
~ I

&oI[oo oh-)Io& =&ol[oo', oh-)I0&*

= g [P((d (o'b(~, (o')*+o(&d, &o')*&r((d, (o')].

Also note that

(~g)&/o -((o)-&L))o

2;.(o0 o4-) = (1.49)

u2» 0, the last two terms of equation 1.47 will be proportional to g~'~~+~ ~4~+"2)i", which is rapidly
oscillating as a function of (o, (d and will not contribute to E(u„u ). The first two terms, however will
contribute, and for u„u, & 0, their contribution per unit time will be constant. To show this we need an
estimate for P(&o, &u') and o(&d, &u')."

By the reality of the scalar equation one finds that o((o, &o') =P(&o, &o')*. From Eq. (1.15) we obtain

o4 (u ) = I 4(v (U(u ) —2 R,)) .

Therefore one readily finds that

CQJ4 8 k(d ti(p(4) 2BO)
rh

2 „(2w j(o I
)' ' 8u (2» I

(o'
I
)' '

Ctd4(V(tP)+2BO) g ltd ti

(l&ol)'" sv (l(d'I)'"

Substituting from (1.8) and (1.9) gives

i "&& ' '"i"o exp[i(d(v+2R, )/(1 —2M/Ro)' ']
4n'

I (o)(d I sv

(1.50)

(1.51)

+ dv, ,~, exp{i (o&[ 4M ln(v, —-v) + (1 —2M/R, )'~'(v —v, ) +O(1 —v)]j
spies osys )&)'



(1 —v)R, —(1 + v)2M

(1 -2M/ft )"'
~ $4hf(d 1/P

A((u) = f,at2g + {1-2N/8 ) v j
(1+ v)[R,(R, —2M)]'~'

(note that v, &0 because of the conditions on v). For the purposes of calculating (0}g„,}0) a long time
after the onset of collapse (i.e., large u) it is sufficient to approximate P(&o, &o ) by (see the Appendix)

A(~) &0 ~f 1/2

P(~, ~') = — dv — exp[-i &o4M ln(v, —v) je'
2x ~ (gp

Then we have

f(1-f4M )(f2' (1.53)

r 1„,( g.„„.s( -) I'(1+4M(c&i)f'(1 —4M+i)A( ~)*A(&i)
2I - xl/2

(d ~&o 47t (coco) 0

e ""}r(1+f4M~)['
5((u —u))

8mM&

MK4lN

2 sinh(4Mm&u)

Ther'efore one obtains

Mncu N

o 2 slnl1

(1.54)

This is exactly the Hawking result if one remem-
bex s that in two dimensions the absorption ampli-
tude of the black hole is unity. %6 have neglected
terms in our approximation for P(&u, &u') which will
produce terms in Z(u„u, ) which die off at large
Q1) Q2.

This normal-ordering prescription for deter-
mining the energy flow out through 9+ also has
some justification in that the "out" vacuum state
}0)odefined by oa }0)o=oh }0)o is a state of min-
imum-enex'gy flow out, thx'ough lnflnlty —1.6., any
n-particle "out" state has a higher energy flow
through 8'. The normal-ordering procedure
therefore just subtracts off the expectation value
of energy outflow in this state.

Furthermore, if one is interested in the energy
flow out through an r =const surface near infinity
rather than through 8', one does not need to
normal-order X"". The net radial flow" of energy
through a surface of constant radius is given by
3"which may be rewritten as

(1.56)

As O4 depends on u and I 4 only on e, this may be
%'l'ltten as

(1.57)

Expanding 4 in the out modes 4 and 4 in

the in modes I 4„, we find that this operator dif-
fex s from the operatox in which we normal-order
the various terms of g„, with respect to the ap-
propriate operators by the c-number field:

+ d&o'T„„(1p, Ip .) . (1.58)
~ tyo

gegrouplng terms we obtain

2 ~+ ~gg Qp(dp 0 (d ~vv I (d& I
QJ&0

(1.59)

These two terms exactly cancel and one is left
with the same expression for the energy flow to
infinity as when one normal-ordex ed the various
components of g~p with I'espect to their I'espec-
tive creation and annihilation operators.

As the above process applies to both scalar and
neutrino fields we appear to have a contradiction.
%hen the neutrino and scalar energy-momentum
tensors were summed mode by mode, one ob-
tained zero energy flow in two dimensions into or
out of the black hole. Now, however, when one
sums neutrino and scalar contributions by this
technique, one obtains a net energy flow out
through infinity. This contradiction comes about
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because the expressions with which me are work-
ing are not absolutely convergent expressions. By
an appropriate grouping of terms in a conditional-
ly convergent series, any result desired may be
obtained. In the first case, the neutrino and scala. r
terms were summed first mode by mode, and then
the total expectation value of the energy-momen-
tum tensor was calculated. That order of summa-
tion guarantees that the energy-momentum tensor
will be covariant.

In the latter method the procedure is inherently
noneovariant. The time development of the mode

z l)l„ is a linear combination of out modes op . We
are therefore performing the mode summation for
(0 IX„„I0) in two different ways for the ingoing and
outgoing portions of X„,. Although both orders
seem natural for their respective parts of g», I
mould suggest that such a smitch is invalid. Qnce
an order of mode summation in calculating X„, is
used in one part of spacetime, I would suggest it
must be used everywhere. Qtherwise, by an ap-
propriate choice of order of summation of 'he
modes, one could arrive at any answer one
wanted. ~3

If this is eorreet, then the procedure of Fermi-
Bose cancellation, in which the mode sum is de-
fined so as to result in no inflow of energy into the
black hole„suggests that there is also no outflow
of energy from the black hole and that the quantum
evaporation does not take place.

II. HAWKING PROCESS FOR ETERNAL BLACK HOLES

The procedure in this section mas inspired by a
study begun by Fulling' *"on alternative quantiza-
tions of flat spacetime ~ In particular, the natural
quantization in Rindler coordinates leads to a
quantization inequivalent to the normal Minkowski
quantization. The resolution of the problem there
leads directly to a quantization of the full
Schwarzschild spacetime which has all of the fea-
tures that Hawking found for a black hole formed
by collapse of a star. As the collapse is replaced
by certain natural boundary conditions on the past
horizon of the black hole, this problem is mathe-
matically much simpler than the collapse prob-
le m.

I will first discuss the Rindler-Minkowski situa-
tion for a, massive scalar field before going on to
the Schwarzsehild case. Writing flat spacetimes
in Rindler" coordinates leads to the metric

Qs = p6f 7 — —6' —+' (2.1)
P

an obviously static metric. By the coordinate
transf ormation

I, = 2Wpsinh(- 7), z = 2' cosh(-,'7)

one obtains the Minkowski metric

—6z

Let us examine the sca.lar wave equation

.„—p'P =O.

(2.3)

(2.4)

The nor mal-mode solutions to this equation in
Minkowski coordinates are

ctLJ 0

X

like«[(2 P ) )
]l/2 (2.5)

P (Rn~l RA~l& + R~~ll R4 ~%) ~

(d &0

k;

(2.6)

with a Minkowski vacuum ~0)„defined by

„a(0)„=0. (2.7)

Qn the other hand, one ean define normal modes
in the Hindler system

Rkg« —
[(2 )3

~

-
)
]«/2g(P)

where g(p) satisfies the equation

These modes are complete in the region of that
spacetime covered by the Rindler coordinate sys-
tem (i.e., p&0and z& ~f ~). We can expand 4 in
terms of this basis in this half of spacetime:

P (Rug«RA&a«+ Ro&u«R'tier«) ' (2.10)
k;(d &0

The Fulling-Rindler vacuum is defined by

(2.11)

What is the relationship between these two sys-
tems of quantization T To begin with, me also de-
fine a complete set of functions in the other half
Rindler space (p&0 and z& —~t~). Designating this
side by A and the other half by g' we can write

c' = g (R+a««+P„-R«+g R ll4«„R-+Hl.«c. ) .-

(2.12)

„+Q is defined to be zero in the region g, where-
as R p is zero in the region A'. l.e., R Q «(v, p,

l«l =(}l,'+k k)'~'.

Qne can define a second quantization by forming
the wave operator 4(x} in the usual way and ex-
panding in these normal modes:
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foru, v inR
By a suitable choice of phase, the Rindler mode

Rp „goes to
igu -iGv) -i(k&x+it2y)

[(»)' I ~ I
]'" (2.14)

near p =0. n is a constant of unit modulus.
Along the surface v = -~, V = 0, the past horizon

of the Rindler coordinates, we obtain
-&tz)u -i(»+& V)

4~0 [(2v)s
~

-
~

]i/2

( i U i
)+ IRTJ -l(kg*+ 2vi

[(2m)' ) id )
]'~' (2.15)

FIG. 1. The various regions of Minkowski spacetime
in Rindler accelerated coordinates.

(I have dropped the e ' " term, a procedure which
can be justified by constructing wave packets. )

A positive-frequency Minkowski mode on this
surface becomes

U=t-z, V =t+z,
u = 7 —ln p, v = 7+ ln p .

Then we find

U =+2e "~' V =+2e"~'

(2.13)

with the top sign for u, v in R' and the lower sign

x, y) is functionally equal to z+p ~(7, p, x, y), where

p, 7 are taken as lying in their respective half
spaces. The choice of which operators to treat as
creation operators and which as annihilation oper-
ators is forced on us by the commutation relations
obeyed by these operators.

The functions „+P-~ and ~-P ~ can be analytical-
ly extended across the future and past horizons
(t =+z) into the regions F (i.e., t &

~ z ) ) and P
(t& -~z) ) of Minkowski spacetime (see Fig. 1),
such that ~+/ are zero only in the region R and
„(II) are zero only in R'. The expansion of Eq.
(2.12) is then valid in the full Minkowski space-
time. (This follows from the fact that the union
of the two spacelike hypersurfaces given by 7 =0
in both R' and R is a Cauchy surface for the full
Minkowski spacetime. )

I will now show that the second quantization de-
fined by this expansion of 4 is not equivalent to
the usual Minkowski second quantization, and will
find a linear combination of the ~+a and ~ a oper-
ators which are annihilation operators of the usual
Minkowski second quantization.

Finding the relationship between this expansion
and the more normal Minkowski expansion of 4 is
equivalent to finding the relationship between the
positive-frequency spaces defined by w &0 and
(d &0. This is most easily found by going to the
null hypersurface p =0 or t = —z. Define the null
coordinates

-f(++43)U/2 i(a g+k 3l)

[(2 )'I I]'"

An important point to note is that for» 0,

(2.16)

id+k, =(p. '+k, '+k, '+k, ')'~'+k, & 0 (2.17)

for all values of k„positive or negative, and
vice versa for id&0, i.e. , sign(++0, ) =sign(e).

The positive-frequency (d Minkowski modes are
therefore characterized by the condition that they
are analytic and bounded in the lower half complex
U plane [Im(U)&0] on V =0.

Similarly, note that the combination

e Tl'4)

~
2 sinh(2v8))' '

e —1)'M

) 2 sinh(2vg) P'

becomes, on the V=O surface,
a(a, a+a, y)

) (2z)') i' ) 2 sinh(2wi3) P~'

X
rlTI

i U i+i2tT/ U & 07

-~td
) U t+i2w U& 0

(2.18)

which is the restriction to real U of a function
analytic in the entire lower half complex U plane.
~P- is therefore a positive-frequency function in
the Minkowski sense for all values of (d, positive
and negative. The expression

~
(2w)'id2 sinh(2w 2)) '~'

has been chosen to normalize „P- under the usual
scalar inner product.

Note that for positive 9, the function ~P- is al-
most entirely concentrated in the R' region,
whereas for u&0 it is concentrated in the R
region. This is understandable, as the Rindler
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time 7 is a function which increases with time t in
R' but decreases with t in A . The positive-fre-
quency Rindler mode would be expected to be an
almost positive-frequency Minkowski mode in R'
but almost negative-frequency Minkowski mode in

A, as is actually found to be the case.
Also note in passing that the probability that a

positive-frequency Rindler function „+P- is in a
negative-frequency Minkowski state is just

~
- fT(d

2 sinh(2vu) '

which is exactly the Boltzmann factor for a Bose
gas with temperature 1/4w. From this, the analy-
sis of Davies" on the Hawking process in flat
spacetime can be obtained.

The Minkowski vacuum state can be reexpressed
as a many-particle Fulling-Rindler (FR) state.
By comparing the expansion of 4 in terms of the
Minkowski positive-frequency basis of Eq. (2.17),
and comparing the resultant creation and annihila-
tion operator with the FR set of (2.12) one obtains

(e" s+a-a+e ' s a-a) lo&e = 0
(2.19 j2.19a)

(e ' s+a„-~+e' s-a-~) I 0 &e = 0 .

With the FR vacuum defined by

„+alo)r =s-alo)~=0

one obtains

lo)„=z IIexp(e" +a-„-a- ) lo&„
QJ, A

(2.19b)

where Z is a normalization constant.
In the next section we shall find that an acceler-

ated detector will respond to the presence of these
FR particles in the Minkowski vacuum.

But what has this digression to do with black
holes? A similar analysis is possible for an
Schwarzschild black hole. For the virtual states
of a quantum field which emanate from the past
horizon of a black hole, two possible Foch quanti-
zation are also possible, corresponding exactly
to the FR-Minkowski possibilities in flat space-
time. I will take the Schwarzschild metric as the
example, but any other black-hole metric would
also do as well. By going through the analysis I
shall describe, one readily obtains the Hawking-
Gibbons" results for charged- rotating-black- hole
evaporation. In fact, this technique was noticed
by me before I was aware of the original published
Hawking result. It was only after becoming aware
of Hawking's result, however, that I realized that
this mathematical procedure had physical signifi-
cance and was related to the question of black-
hole evaporation.

The Schwarzschild metric is given by

ds' = (1 —2M/r)dt' (-1 —2M/r) 'dr'

—r '(d t}' —sin't} d P') . (2.20)

The massless scalar wave equation is given by

(-g) '"l0 g""(-tf)'"1.=0 (2.21)

The normal-mode solutions to this may be written
as

where f, obeys the equation

1 d 2 d, 2M l(1+1)
+ uP — 1 — f„,(r) =0,

f (r)-e" "*+A e '~" .
td l Col

(2.24)

The standard naive prescription for defining the
positive-frequency states in this case is to define
the e) 0 states as the positive-frequency states.
This prescription I shall call the g definition, as
it is related to the timelike Killing vector q = S/St.
I.e. , one defines positive frequency via the modes
which are eigenfunctions of the Lie derivative of
the scalar field in the g direction.

On the other hand, the Schwarzschild metric
(and all the black-hole metrics) has another vector
field $ which is of Killing type on the past horizon,
H (i.e. , R,g„=o on H ). Going to Kruskal co-
ordinates

~-y /2N
ds'=2M dUdV-r'(dtP+sin'ed/'),r
U ~ -g/4M y ~ y/4M

v = t + r + 2M ln(r/2M —1),

u = t —r —2M ln(r/2M —1),

(2.25)

the vector ] = 8/BU defines this Killing vector on
H . Furthermore, the integral curves of (, unlike
those of g, are geodesics on H .

If we define normal modes such that on H they
are eigenfunctions of the Lie derivative with re-
spect to (,

k, (Q„-)= —iep-, (2.26)

we obtain a complete set of modes which go as

(2.27)

(2.23)

and where dr*= (1 —2M/r) 'dr.
This has two solutions, one representing waves

incoming from infinity, and one representing
waves coming out of the past horizon of the black
hole. These solutions are designated by 'f and

f, respectively. The latter, near the horizon,
behaves as
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on 0. The usual g modes on H become

~ U ]+ 44!ltd

=(2m~(u~) '~'
4 Y, (H, bt). (2.28)

As in the flat-spacetime Rindler case, the hori-
zon divides the spacetime into two separate ex-
terior spacetimes. Outgoing q modes can again
be defined in both halves of the spacetime. These
will be designated by + or —presubscripts. I.e. ,

is positive frequency in the $ sense for all values
of e. I.e. , either this set, or the set of Eq. (2.27)
for e & 0 are a complete set of $ positive-fre-
quency waves.

There are a number of reasons why I favor the

$ definition over the q definition for positive fre-
quency for modes emanating from the past hori-
zon of the Schwarzschild black hole.

Firstly, the next section will indicate that a
particle detector freely falling near the future ho-
rizon will respond to the presence of f, not g,
positive-frequency modes —i.e. , these $ frequency
modes are, to my mind, the best definition of what
one would mean in saying a particle is coming out
of the past horizon of the black hole.

Secondly, if one examines the stellar collapse
situation, a mode which starts off as e ' "/(2mur)'~'

at infinity goes as

exp[ —ie(1 —2m/R, )'~'e "~' (1 —v)(R, —2M)/v]

e-i, con U

when it exits from the collapsing star (n is a posi-
tive constant depending on the details of the col-
lapse). This equation is obtained from Eqs. (1.8)
and (1.15). I.e. , a mode which emerges from the
inside of the star just as it is about to cross its
horizon, and which was a positive-frequency mode
when it came toward the star from infinity, will be
a $ positive-frequency mode as it leaves the star.
In this sense, the ( definition of positive frequency
does correspond to replacing the collapse process
by boundary conditions on H .

Thirdly, as I shall soon indicate, the Feynman
propagator obtained from the q-definition of posi-
tive frequency has singular physical (i.e. , not re-
lated to coordinate singularities) derivatives on the
future horizon whereas that using the $ definition

= e '"' f,(r') Y, (8, y}/(2v(o)'~'

for t, r located in the right exterior spacetime and
zero in the left exterior region, and similarly for
p„which is zero in the right exterior region.

Then the outgoing mode

j =(e"",dtb„+e "e y„)[2 sinh(4vM&u}] "'
(2.29)

does not. As most physical properties of the
scalar field (e.g. , charge density, energy, etc.)
involve derivatives, this suggests that the physics
under the q definition becomes singular there,
even if the propagator itself does not increase
without bound.

Fourthly, the (definition of positive frequency is
invariant under ordinary time translation, as can
be seen from Eq. (1.29). Furthermore, it is also
invariant under the additional symmetry of U

translation along the past horizon. Under the con-
dition that the vacuum state should be invariant
under the largest symmetry group available, the

( definition for modes leaving H would be the
preferred definition. (In flat spacetime it is the

property that the Minkowski definition of positive
frequency is invariant under the full Poincare
group, whereas the Rindler definition is not, that
singles it out as the preferred quantization. )

To summarize, positive frequency for those
states which enter the exterior Schwarzschild
spacetime through H, the past horizon of the
black hole, is defined via, the Killing vector ( on
H . For those states which originate at infinity,
however, the usual q definition will be used. On

8, the q definition ha, s all of the advantages that
the $ definition has on H .

In second-quantizing the field 4 in the exterior
of the Schwarzschild black hole we expand it as
follows (neglecting terms equal to zero there):

lm

The vacuum state is defined by

0='a
&

~0)=a-, ~0) (=a, ~0)).

The alternative q definition of positive frequency
leads to the expansion for 4 in terms of the modes

in both halves of the full Kruskal extension:

b= Q f d t:b, :d,„b'.
lm 0

+ colm+~colm colm %colm~

+ H. c. (2.31)

The (d &0 modes are associated with creation oper-
ators in the left exterior region because coordinate

+ d(d 0 l Q~l +8 l Q "l . 2 30a
0

Alternately, the second part could have been ex-
panded in terms of the g, modes of Eq. (2.29).
In the exterior region of the Schwarzschild space-
time this becomes

OQ 2ff M coe / A t
r bb / 2 Gb lbbb 4 l +tdbtdblbbb 4 b&b J
[2 sinh(4vM+ j

(2.30b)
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time t runs backward there. The vacuum state
~0)„associated with this expansion is given by

;b„,.~O&„=O.

We can relate the two vacuum states ~0) and

~
0)„by noticing that

unambiguous G(x, x') for incomplete spacetimes.
We go to Rindler spacetime for the example.

For two points x,x' both within one half of the
Rindler spacetime, we can solve Eq. (2.34) by

p(Id) = 8 """/[2sinh(«Mo)]"'.
(2.32)

This then gives

~
0& = s II exp(e """p'„,„b'„, )

~
0&„, (2.33)

LOS l v m

where Z is again an (infinite) normalization con-
stant.

In terms of the ri vacuum, the state ~0) has an
infinite number of pairs of particles. As has been
suggested by Hawking, these particles occur in

pairs, one particle in the right-hand exterior
region and the other on the other side of the hori-
zon. (In the context of the collapse situation,
Wald' has come to a similar conclusion. )

By inserting the metric

ds2 = —(2M)2(d &2+ sin'8 d@') (2.34)

between the two past horizons of the Kruskal exten-
sion of the Schwarzschild metric, one finds that
the $ definition of positive frequency is exactly
the definition one would naturally use for this in-
terior metric. By this trick one can also see that
the $ definition of positive frequency can be made
symmetric for both exterior regions of the Kruskal
extension of spacetime. In the previous definition,
I defined positive frequency along the V= 0 hyper-
surface, which is the past horizon for the one
exterior region but becomes the future horizon
for the other. The above trick shows that pro-
cedure is not the only possible one, and that posi-
tive frequency could equally well have been defined
over the past horizon of both extensions. In the
one exterior region of concern to us, the change
will make no difference.

Let us now briefly examine the Feynman prop-
agator G(x, x'). One could try to define it using
De&itt's suggestions of writing the equation

G(x, x ) =(O
~

r(4(x)C(x ) ~O&, (2.36)

where T(. . . ) designates the time-ordered product
This equation immediately leads to an alternative
method of finding the Feynman propagator. Regard
x' as fixed. Let G„(x,x') be the advanced Green's
function for the field (which is invariantly defined).
Take the point x back to the hypersurface on which
one has defined what one means by positive fre-
quencies. (E.g. , 8 or the past horizon. ) Subtract
from G„(x,x') a free positive-frequency wave ex-
actly equal to the positive-frequency component
of G„(x,x') on the hypersurface. This sum is then
the Feynman propagator.

I would like to briefly compare the behavior of
the Feynman propagators obtained by using the E

definition and the q definition of positive frequency.
Take the point x of the advanced Green's function
G„(x,x') to lie on either 8 or H, the pa.st horizon.
As positive frequency for a wave on 8 is defined
in the same way for both g and $ definitions, only
the behavior on H, the past horizon, will cause
any difference. The projection kernel K(x, x) for
positive q frequencies on H can be given by

K„(x,x) =( .
0) Q I'I (8, $)I',* (e, @),

Performing the (d integration first one obtains not
the usual Minkowski Feynman propagator, but the
Rllldlel plopRgRtol. (l.e. , tile plopagatol. takes
Rindler, not Minkowski positive frequencies for-
ward in time). This again demonstrates that in

addition to Eq. (2.34) one needs boundary conditions
on G(x, x') as the two points become widely sepa-
rated and on the horizon at p= 0, t = + ~ to obtain
the correct propagator. [As Boulware'0 has shown,
if one does supply the correct boundary conditions
in the fully extended Rindler metric (i.e. , full
Minkowski spacetime), the usual propagator is
obtained. ]

The Feynman propagator may be defined as

(& & —il'+i&)G(x, x', e) =ib(x, x'), (2.35)
(2.37)

solvlflg fol' G,(x,x', I), taklllg the llllllt Rs e 0.
This prescription, however, does not lead to an

where both I, u lie on the lower half (U&0) of H .
The I) positive-frequency component of G„(x,x')
on H is then given by
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P, (G„(x,x') )=
2

v'- g g'"G„(x,x') —K„(x,x)du d8 d @
H

= —i4M —G„(x,x') ' .0 dudcos8dp
8 , «(8y, 8y)

8u ~ ' u- u+s08, «(8$, 8$)=- G„(x,x') ~ ( ~-) . dUdcos8dg, (2.38)

«(84, 87) = g l', (84)l'; (4 )

On the other hand, the projection kernel for (
positive frequency is given by

K,(x,x)= . «(8y, 8y), (2.39)

which gives a projection of

P, (G„(x,x')) = —f4M'

8 (,)3 «(8$, 8$)
sU " ' f U-U+z0

& dUd cos8d(t). (2.40)

Note that P„(G(x,x')) will have a cusp at U= 0.
Although P,(G(x, x'})goes to zero as U-0 (i.e. ,
as x approaches the future horizon), the first de-
rivative of P„(G„(x,x')) diverges as [U(lnU)'] ' as
U~ 0. Since U ls a well-deflQed null cool dlQate
near the horizon, this implies that the gradient of
G„(x,x'}, the Feynman propagator in the q system,
will diverge as the future horizon U=0 is ap-
proached.

Boulware'0 has also examined the Feynman prop-
agator in the full extended Kruskal metric. He ar-
rived at the q definition for his propagator. This
result was, however, obtained because his defini-
tion of particles coming out of the past horizon
depended on an implicit use of the q definition of
positive frequency.

The singularity in the Feynman propagator on the
future horizon when the g definition is used is non-
physical. Such a singularity would locally single
out the horizon, whereas the spacetime structure
and casual structure of the future horizon gives
no reason why it should be singled out.

III. PARTICLE DETECTORS

This section wiQ examine the behavior of parti-
cle detectors under accelerated states of motion
of the detector. The main conclusions I will draw
will be the following:

(a) A particle detector will react to states which
have positive frequency with respect to the detec-
tors proper time, not with respect to any universal
time.

(b} The process of detection of a field quanta by
a detector, defined as the exciting of the detector
by the field, may correspond to either the absorp-
tion or the emission of a field quanta when the
de~ec~or is a accelerated one.

Both of these results, although surprising at
first glance, are, using hindsight, very reason-
able, but they make the generalization of what is
meant by a vacuum state to a nonflat spacetime
extremely difficult.

The model detectors I will investigate are of two

types. One is a box, containing a Schrodinger
particle in its ground state. The detector is said
to have detected a quanta of the massless scalax
field 4, if the detector is found in a state other
than its ground state at some time.

The other model is a fully relativistic one. Here
I assume that the detector, described by the scalar
field 4' with mass p. is coupled via the field 4 to
an "excited" state described by the scalar field
cp with mass M & p, . Both 4' and y are assumed to
be complex fields, but for simplicity 4 is taken
to be a real field. The detector is said to have
detected a 4 quanta if the detector is found in the
excited state p at some time. This detector could
be further complicated by coupling y back to 4' via
some "dial" fields (representing states of a com-
puter memory, or readings on an instrument dial}
but we shall leave it in its most primitive form.

I et us examine a box detector being uniformly
accelerated. The simplest way to treat this sys-
tem is to go to a Rindler coordinate system, in
which the box is at rest at p coordinate p„and at
x =y =0. The equation of the particle in the box is
given by

. 84'

2m ~p,

8 8 8x p —+p —+—+m(p —p)0 sg 0 sx2 sy2 0

8$ 1 8 8 82 m2$—2+ + 2+ 4~ (3 lb)
&(Mp, T) 2m sg' sx' ey' ~p,
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where g = (p- p0)/V p, is the proper length coordi-
nate in the p direction, and Mp, 7. is the proper
time. I have assumed that g is small everywhere
within the box.

This equation is just the Schrodinger equation
for a particle in a potential mf/2v/10 A. s V p0
=1/213, with a the acceleration of the box, this is
exactly the expected result.

The eigenfunctions of the right-hand side of
(3.1b) will be denoted by t}t,. with eigenvalue E,
The lowest state will have j=O. The r dependence
of /twill therefore be exp(-iE, .Tvp, ) = exp(- iE/T/2a)

One now introduces a coupling to the field 4 by
introducing an interaction of the form. $4$ into the
equation.

The field is assumed to be in the ordinary

Minkowski vacuum state ~0)„. The lowest-order
probability that the detector now goes from the
state g, to an excited state g~ per unit proper time
ls21

CP. = Iim-i p gpT

where {~p)) is a complete set of states of the free
4 field. The factor (po)

'~' is introduced to make
P,. the transition rate per unit proper time of the
detector. Performing the integral over the time
first and remembering that P,. has a time depen-
dence of the form e '~~'~" we obtain

p, =3 g. J 0-yd *
PO ~~~ bOX

dre "s/-x0&"-"(p
~

C
~
0) IA*IA.

Ng j 0 (3.2)

where h, , IA0 are the spatial eigenfunctions of the right-hand side of EAI. (3.1). If we now expand 4 in terms
of the Bindler modes of Eels. (2.8) and (2.12), we obtain

o T
p = Iim g p dr&'(H&/-AA0t/2 1- } (f, ~, ti

~

0) y & I p*& (&)&-t(3,3+3,yii Ai+ Gtt At [(2~)3g]1/2 i »3
~P) byte& ' boX

r 3 2
0 ' } (p~, ti ~0) 3' g IA hing*(p)st&313 2y&

[(23t)310]1/2

(3.3)

Evaluating the time integrals, using the relation-
ship that

4[sin(o T/2) ]'
)

oc Q 2

and letting 10/= (E/ E0)/2a one ob-tains

P,. =2.. g g (p~,.s„,,~0&.

As f0)„ is the Minkowski vacuum, we have

(p [~,a„, (0) = [2 sinh(2ttZ)] '/2(P (at-„)0)8 '"
or (3.6)

and annihilation operators 3„-„a~-~corresponding
to the Minkowski modes P„- of (2.17):

s.a-, = [2sinh(2tt10)] '/2(e'"a„-, +e '"a'„-,).

X

[(2 }3~ ]1/2 0 /

xgk (/A)s-i(313+323) (3 4)4)yk

The first factor represents the destruction of one
of the Rindler particles which exist in the state
~0)~ by the detector in the detection process. The
second factor represents the sensitivity of the
detector to a FR mode of frequency ~, Note that
if (}'3,2+)'322) & (E, —E,)', g,„(p) falls to zero rapid-
ly, as can be seen from Eq. (2.9).

One can evaluate the term (p ~
z, a„-3 ~0) by re-

writing ~,a„-~ in terms of the Minkowski creation

%e finally obtain

2m@

yt p0 2 sinh(2tt (At/)

[(2 )310 ]1 /2 / 0

xg ( p)s-Qty~y) (3 l7)

To evaluate this expression one needs an estimate
for g„, Although an exact solution may be found
in terms of Hankel functions, it is sufficient (and



14 NOTES ON BLACK-HOLE EVAPORATION 885

more transparent} to use a WKB approximation in

solving Eq. (2.9) for p near p, .
For o/, '&(k, '+k, ')p„ the solution will be essen-

tially zero owing to the boundary conditions as p
goes to infinity. For o//') (k, '+k, ')po, we obtain

E./, (P) = [1—(kl'+k2')Po/&'] '"
exp (Q k y

+ k2 p / pp

with

+ complex conj ugate

~ ik3C+6

z /t 2 + COmplex COnjugate,
V3

k = [o/ '/p —(k '+ k ')]' '

vo ko Mpp /~/ ~

(3.8)

v3 is the velocity in the p direction of the wave as
measured by physical coordinates, and 5 is a phase
depending on a&.

Defining the detector cross section for a plane
wave with wave numbers ky k2 k3 ln flat spacetime
by

a/(k„ko, k, ) =2m
h +A+ f (k&x&2y+03 g) 2

Qxlg Gz
box v V

(3.9}

where v=(k, '+k, '+k, ')' ', one finds

1 dk, dk, dk, 5(v —(E/ —Eo))v/
(&2r&E/ Eo&/a 1) (2v)&gp

(3.10)

I have assumed a sufficient line width for the de-
tector so that the detector will average over the
phase 5 of Eq. (3.8). This result is exactly what
one would expect of a detector immersed in a
thermal bath of scalar photons of temperature
a/2x.

The essential reason for this result is that the
detector measures frequencies with respect to its
own proper time. For an accelerated observer,
this definition of positive frequency is not equi-
valant to that of a nonaccelerated observer.

In flat spacetime, positive frequency defined with
respect to any geodesic detector is equivalent to
that of any other geodesic detector. One can there-
fore demand that any flat spacetime detector be a
geodesic detector, and no contradictions will
arise. However, the generalization of this to a
nonflat spacetime results in the possibility that
two equally valid geodesic detectors will disagree
on whether there are field quanta present. What
to one is a vacuum state, to the other will be a
many-particle state, and vice versa. The general-
ization of the concept of particles in a nonflat

d'xv'-g [@*„q'"-p, 'q'*@+ y* y "—M'y*p

+ 4 p "+g(4 */+ /*4)4]. (3.11)

The mass of the detector, p, , can be taken to be
very large (e.g. , kilograms for a bubble chamber)
and (M —p) may be very small. Note that in the
absence of the coupling with the 4 field (i.e. , e
=0) a q particle will never spontaneously become a

p particle
Similarly, in flat spacetime, where 4' does not

interact with any external field (i.e. , is unacceler-
ated) and where 4 is in its vacuum state, no
transition from 4 to y ever occurs. The presence
of a 4 quantum could however produce such a
transition which one would regard as the detection
of that quantum.

If we now accelerate the detector field 4', for
example by an external electromagnetic field,
one can have a transition to a y state, even when
the C field is initially in the vacuum state.

Regarding 4, y, 4 as quantum operators, we
have the equation

'k(x) =@'o(x)+e Gq, (x, x')y(x')C&(x')d x', (3.12)

spacetime therefore becomes very difficult.
Before going on to this problem, however, let

us continue examining the accelerated detector in
flat spacetime. We note that the state (p I

in which
the C field is left by the detection process is a
state with fewer FR particles than the

I
0)„state.

On the other hand, the (p I
state is a one-particle

state as far as the usual Minkowski observer is
concerned. He sees the detector jumping up to its
excited state g, by emission of a C quantum, not
by absorption. What the detector regards as the
detection (and thus absorption) of a 4 quantum,
the Minkowski observer sees as the emission by
the detector of such a quantum. The energy for
this emission, as far as the Minkowski observer
is concerned, comes from the external field ac-
celerating the detector. However, it is not this
external field which couples the ground state g,
to the excited state g&. If & =0, the detector stays
forever in the state P, . These results are inde-
pendent of the means used to accelerate the de-
tector, but depend only on the acceleration itself.
It is the field C which is producing the excitation
of the accelerated detector.

This process is not simply the result of our
semiclassical model for the detector. The fully
relativistic model for a detector mentioned at the
beginning of this section displays the same phe-
nomena.

The detector 4, its excited state y, and the
field 4 are assumed to obey equations of motion
derived from an action of the form
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and similar equations for the y and 4 states.
Here G~(x, x') is the retarded Green's function

for the free 4 field, and 4', is the free (e =0) field
operator.

s +0~ ~0~ @0 a b xpanded ~n ma
modes of the free field equations as

(3.13)

C o
= p (a,Q, + a~ p,*).

Defining the vacuum state IO) such that

O=a„IO) =a„l0)=a, IO)

we a,re interested in the initial state a„l 0) (i.e. , a.

single detector in its ground state). The prob-
ability that this state will be transformed to the
final state

tromagnetic interactions. Although we are used
to saying that the proton has emitted a positron
and a neutrino, one could also say that the acceler-
ated proton has detected one of the many high-
energy neutrinos which are present in the Minkow-
ski vacuum in the proton's accelerated frame of
ref erenee.

I would now like to return to the question of
particle detectors in a curved spacetime. In flat
spacetime one could say that the only valid detec-
tors are geodesic detectors, detectors unacceler-
ated by any external forces. One would nom like
to apply the same reasoning to a curved spacetime.
However, one immediately runs into trouble. As
mentioned before, not all geodesics are equivalent
in a curved spacetime. The simplest example of
this problem is to consider three detectors near a
massive body. One detector is fixed at constant
radius r, the other two detectors are orbiting the
mass in a circular orbit of radius y', but in opposite
directions.

Consider the modes of the 4 field. They may be
written as

mith the detector in its excited state cp„will be
given by the standard reduction formulas":

l«OI ...)...(",IO»,.l'

= e' d 'x({0
I a,a„),„,y(x) 4 (x) I 0)g„(x)

d'x 0 a,a„qo x 4, x 0 P, x)

d'xy~x)&~x) „x) (3.14)

The third line on the right-hand side comes from
keeping only the lowest-order terra in e for 4 and y,

If all three of p, P, P are free field modes, this
integral will be zero {the conservation of both en-
ergy and momentum prevent the decay of a lower-
mass 4 particle into a higher-mass rp particle
plus a 4 quantum).

However, if the modes g, and y„are modes under
the influence of some background field, this inte-
gral need no longer be equal to zero. Although a
Minkowski observer will say that the accelerated
4 particle has emitted a 4 quantum and gone to the
excited state cp, with the external field supplying
the necessary energy and momentum, one could
equally interpret this as the detection of a 4
quantum by the accelerated 4 detector.

A well-known example of such a process is the
formation of a neutron by the inverse beta decay
of a proton under the influence of strong or elec-

—e ftate frndly(r)P (g) (3.15)

For the fixed detector at constant r, a positive
frequency mode is one for which e&0. For the
orbiting detectors, however, their geodesics are
defined by Q =+ a,f with ~„=(M/r')'~' Their de. fi-
nition of positive frequency will be that co+m~„&0,
not »0. Therefore the state of the 4 field which
the first regards as the vacuum, neither of the
other two detectors mill regard as the vacuum.
Furthermore, they will never be able to agree
with each other as to what they mean by the no-
particle state. As x- ~, the three definitions mill
become identical, but not for any finite r.

This also throws into confusion the association
me make in flat spacetime between the presence
of a particle and the carrying of energy and mo-
mentum by that particle. %hich of the possible
definitions of particle in a curved spacetime is the
one that corresponds to the real world, and in
particular, which are the particles mhose stress-
energy tensor contributes to the gravitational field?
Answering this question is, of course, the key
problem in understanding the effects of matter
quantization on the gravitational field.

Applying these results on particle detectors to
the black-hole evaporation problem, one finds that
for a detector stationed near the horizon of the
black hole, the transition probability of the detector
per unit time can be calculated in a similar may to
that for a static detector in Rindler coordinates.

Assume that the detector is placed at a radius
x=R very near the horizon of the black hole. The
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accelera, tion experienced by the detector is then
given by

c = M/[R'(1 —2M/R)'i')

Using the technique of Sec. II of replacing the
collapse by boundary conditions on the past hori-
zon, and proceeding exactly as for the flat-space-
time accelerated detector, one finally obtains a
transition rate per unit proper time:

276
(1 —2M/R)' i'(e """i 1)—
&& Q 4- gh,*hp f„,(r)F, (8, Q)

lm

where

f (y(g)) &
- il 2(&it(si EP)u-rr+V]

ti)~l

v„=(1 —[l(l + 1) + 1]/[R'(E, —E,)']] i'.

z„ is the proper velocity in the ra,dial direction of
the wave, while A„., is approximately unity for

J
ip,. (1(1+1)/9M and falls rapidly to zero for larger

This approximation for f„,holds as long as
(Ei —Ep)' al(l+1)/R'. For smaller energies (or
large angular momenta), f„,is approximately
zel o.

Furthex more, define the cross section for detec-
tion of a wave with energy v and angular momen-
tum l, m in flat spacetime as

~,= (E, —E,)(1 —2M/R)'i'

= M (E, —E,)/(«')
= (E, —Ep)/(4M. a)

and f„,(r) is the outgoing radial function defined
in (2.2 ) and (2.24).

Again we use a %KB approximation to solve Eq.
(2.23). Definiting a proper radius coordinate by

c,(v, l, m)

cavu rr Y g y)= 2 m t' &'d cos & d P
(2w v)' "v„

where the + refers to outgoing or ingoing waves,
respectively. I have used the WEB approximation
to the Bessel function with

dg =dr/(1 —2M/r)'i' (3.17) [1 1(l + 1)/& P 2]1/P

such that )=0 at the center of the detector, we ob-
tain

This leads to a black-hole transition amplitude
for the detector of

, drdcos0df h,*h,

1=
( „„,i, ) Q [cr,(v, , l, m)+ fA„, f'c (v, , l, m)].

lm

with

a.nd where I have aga, in a.ssumed the line width of
the detector is broad enough to average over the
phase (p.

This expression is again the detector transition
rate for a detector immersed in a thermal scalar
photon bath of temperature a/2' in flat spacetime.
Note that the temperature and number of detectable
particles diverge as R -2M in precisely the same
way as for an accelerating detector in flat space-
time. In both cases the temperature diverges as
a/2w.

The number of particles seen by a freely falling

detector is much more difficult to calculate. If
the detector is far from the horizon, its motion
toward the black hole would be expected to lead to
particle detection. Furthermore, near the hori-
zon, the detector has a lifetime of only of the
order of M and cannot, therefore, measure parti-
cles less energetic than that. However, the par-
ticles seen by the static detector have energies
of the order of a=(R —2M) '. Furthermore, if
they were real particles, the Doppler shift from
the static frame to the freely falling frame would
increase this energy for those particles which
seem to be coming out of the black hole from the
viewpoint of the static observer. If they were
real, these particles should present no difficulty
in observation to the freely falling observer.

Near the horizon, the Schwarzschild metric can
be approximated by
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r- 2m 2M
dt2 dr 2r- 2M

—(2M)2(d 8 '+ sin'8 d P'), (3.18)

which can be transformed into the cylindrical
metric

ds =dr' —dp' —(2M)'(d8'+ sin'8dg ). (3.19)

The geodesics near the horizon are essentially
the geodesics of this cylindrical metric, and the
positive frequencies seen by the geodesic detectors
are essentially the positive frequencies with re-
spect to 7. of this metric.

We can attach this metric to the inside of the
black hole at the horizon, in order to eliminate the
singularities within the black hole. As the Hawking
process is insensitive to what goes on within the
black hole, this procedure should not alter the
Hawking process. The main purpose in doing so
is to ease the analysis of the response of a geodesic
detector near the black hole.

On the past horizon of the black hole we have
already decided that the $ definition of positive
frequency is the most appropriate. Similarly,
near the future horizon, the definition using the
vector field 8/BV= $', which is of Killing type, on
the future horizon will correspond to positive
frequency in the sense naturally associated with
the cylindrical metric (3.19' and thus also with a
geodesic particle detector near the horizon.

The definition of positive frequency for staces
coming out of the past horizon makes them also of
positive frequency in the metric of (3.19), and a
geodesic detector will therefore see no particles
coming out of the black hole. However, when these
states reflect off the curvature of the Schwarz-
schild exterior the positive-frequency states will
pick up negative-frequency components in the sense
of this cylindrical metric (the $' sense) and,
similarly, the states coming in from infinity which
are positive frequency at infinity will have nega-
tive-frequency components in the $' sense. This
implies that a geodesic detector near the horizon
will see particles flowing into the black hole (i.e.,
will be excited by states which are coming from
the exterior region). The geodesic detector there-
fore sees no outflow of particles, but does see an
influx of particles into the black hole.

The key question is: Which of these definitions,
if any, corresponds to what the gravitational field
sees as particles, i.e., as carriers of energy and
momentum? If one accepts the "geodesic" parti-
cles, both near the horizon and at infinity, as the
true particles, one obtains the paradoxical situa-
tion that particles both flow into the horizon and
out through infinity —i.e. , the "black hole" in-
creases in area, and loses mass to infinity. The

only place where the "energy" for such a process
could originate would be in the vacuum polariza-
tion of the field in the region outside the black
hole.

In this context it would be of interest to push the
fermion-boson cancellation scheme of Sec. I, or
some other renormalization technique for the en-
ergy-momentum tensor, to four dimensions to
examine the behavior of the energy-momentum
tensor near the black hole.

IV. SPHERICALLY SYMMETRIC SCALAR

MINISUPERSP ACE

I= m" "—Ã H +77' —dtdrd8dpBg) . BC
a 4

(4.1)

becomes

I = 4v (m p+ go 4 —NOH )dt dr. (4.2)

Here, C is the scalar field and m& its conjugate
momentum; p, is defined by requiring g,.&

to be
diagonal and to be given by

g, , = diag(e', r', r' sin'8). (4.3)

z„ is the conjugate momentum to p, giving a dia-
gonal momentum tensor

~ ~ ~. ~7l 2~ 77$ 7TQ

4r '4r sin g

v„=r[e "(e "w„)'+ m~4'].

The function H is given by

p 2

H = —— (v —pm —e 4')p 8 7Tp r7TQ I I
2 8 4 g g I

(4.4)

77
2

+2r (1—2rp, i e g)+ o +r 4)
4

(4.5)

As a beginning of another approach to this prob-
lem, the Hamiltonian for a spherically symmetric
scalar field coupled to the gravitational field is
presented. This work is basically a correction of
that done by Berger, Chitre, Nutku, and Moncrief.

Berger ef al. (hereafter referred to as BCNM)
used the ADM (Arnowitt-Deser-Misner) formalism
to derive a Hamiltonian for the coupled scalar
gravitational fields under the restriction of spheri-
cal symmetry.

Using spatial coordinates adapted to the spheri-
cal symmetry (i.e. , the usual 8, P coordinates on

a sphere), they chose the radial coordinate r such
that the area of the sphere of constant t, r has
area 4nr'. Under these restrictions, the ADM
action"
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The overdot represents a/at and the prime repre-
sents a/ar The shift vector is given by

N& = ~e "N„0,0

= (N„,N~, N~). (4.6)

The equations which result from variation of the
action, Eq. (4.2), with respect to N„w„p, , vo, C

respectively are

a'=0, (4.7a)

4r'e "j=r(,Noe")'w„+Ng "4've, (4.7b)

1 1=4N e"-4(N re ")'+— Ne "—v '
0 0 4 + 0

(4.7c)

2y'e "4 =N0mo+ 2rN04'm„, (4.7d)

—N e "m m + 2r'N e "4' '.
O 4+ 0 4 g 0 (4.7e)

One still has one final coordinate condition to
choose. We choose the parameter t such that
m„=0 at all times. In particular, if t is a coor-
dinate such that m„40, one can make a coordinate
change such that v„=0. From Eq. (4.6) we see
that m„=0 is equivalent to choosing t such that
N, =0, i.e., the metric in the t coordinates is

N, 'dt' (g„dx'dx')-, (4.8)

the relation between t and t will be given by

t, x space are given by the characteristic equation

exp[+ p+ f"(e'"/r)dr]
N0= 0r (4.16)

Furthermore, the condition v„=0 allows Eq. (4.7a}
to be solved for p. , giving

e p(- J s,drlf ',
( I')'

(1 —f7,'/16r ') . (4.15)
dt 7T

Where 1 —v„'/16r' is zero, t is a null coordinate,
and that surface is a null surface.

Equation (4.13), together with the boundary
condition that

f(t, r)-t as r-~,
will completely specify f. (Note that the only con-
dition on P, N0, and e" necessary to satisfy the
boundary condition is that 8„-0as r- ~, and that
N, e ' approach a constant. )

These equations are different from those stated
by BCNM and those found by Kuchar for cylindri-
cal waves. '4 The presence of the factor N~" in
(4.7c) prevents us from using the Kuchar trans-
formation here.

Let us assume the spacetime is such that the
transformation m„=0 everywhere is possible.
Choosing N0 so 'that N0 1 at r = ~ and such that
Eq. (4.7c) is satisfied, one finds

and the metric in t coordinates is

(4 8)
O

2 C}l2
s = —+x—' 82

(4.17)

N, 'f 'dt'+ 2N+f'dt dr +N, 'f"dr ' —( g„dx'dx')

(4.10)

But in the ADM formalism, the metric is

Using (4.7a) and (4.8) we obtain

re "=re '"exp (4.18)

(N, ' g""N,')dt' —N, d—t dr N, 'dr' —g,,d—x'dx'.

(4.11)

Therefore

Equation (4.7b) is automatically satisfied because
of the Bianchi identities. With these solutions for
N, p, , Eqs. (4.7d) and (4.7e) may both be derived
from the Hamiltonian

(4.12}

00 r
dr exp Se(r)dr —1 (4.19)

9 7t 8

at 4re "No(1 —w„'/16r') ar

From (4.7c) this becomes

(4.13)

af rr„af+ 0
at Jdr(4N~"- v) ar (4.14)

The surfaces of constant f (i.e. , constant t) in

With (4.6), (4.3) this gives the first-orderpartial-
differential equation for f:

This Hamiltonian differs considerably from the
BCNM result. An examination of their result,
however, shows that their reduced Hamiltonian
does not reproduce Eqs. (4.7).

The reason for this difference is instructive.
After solving (4.7a) for p, , a variation of xo and
4 will lead to a nonzero variation of p. on the
boundary of the region of integration. This leads
to nonzero boundary terms when the action is
varied, with respect to no or C. Compensating
for these boundary terms leads to the Hamiltonian
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as given by Eq. (4.19) for the reduced problem.
Solve Eq. (4."la) for p, as a function of v„xo,

and 4, and choose v„ to be zero. (I assume this
can be done by an appropriate choice of No. ) The
action, Eq. (4.2), becomes

(4.20)

with g = p, (xo, 4) such that H:0. The variation
of this action with respect to n, for example,
leads to

But

(4.22)

where the prime denotes the var iation with p, re-
garded as an independent function, and 5p. is the
variation in p. caused by a variation of m~. Expres-
sion (4.21) becomes

a'Ho e'H'
4 —N, , 5m~ —N, , 5p dfdr. (4.23)

The first term is exactly the expression one ob-
tains by varying the original action (4.2) with re-
spect to n~. The latter term is essentially the
term one obtains by varying the original action
with respect to p, except that, now it does not vanish
on the boundary. The nonboundary terms of
N, 5'8'/5' p are equal to ir, and-thus are zero.
The boundary terms, however, are given by

The first factor in the integrand is just the flat-
spacetime Hamiltonian density for the scalar field.
Furthermore, one finds that K is just equal to the
gravitational mass as measured at infinity; i.e. ,
near infinity goo 1 —2K/K.

In quantizing the Hamiltonian (4.19), the fields
m~, C are interpreted as conjugate fields obeying
the usual commutation relations

(4.27)

Finding solutions for this problem is, however,
extremely difficult. For the unquantized fields,
it is obvious that C =0, m~ =0 represents a mini-
mum for X, corresponding to flat spacetime. No
proof has been found to demonstrate that flat
spacetime ((K) =0) represents the quantum-me-
chanical minimum expectation value, however. If
flat spacetime were a solution to this quantum
problem, one could, for example, form a quantum
wave packet at infinity representing a collapsing
shell of scalar "photons. " One could then calcu-
late whether there was any possibility of forming
a black hole, or whether any structure formed by
such a collapse always eventually evaporated.
Classically, Christodoulou" has shown that a col-
lapsing scalar "photon*' cloud can form a black
hole. The absence of such a possibility in the
quantum regime would indicate that the Hawking
process is a realistic possibility.

Unfortunately, no progress has as yet been made
on this approach and I present it here in the hope
that someone else may be able to do something
with it.

(rNoe "5g)dt,

which is not equal to zero. Furthermore, as
r -~, Eqs. (4.16)-(4.18) imply that

(4.25)

where K is given by (4.19).
In order that the action (4.2) give the same equa-

tions after solving and substituting for p, , one must
add a term JKdt to the action to cancel out the
boundary terms produced by the boundary varia-
tion of p. This leads to (4.19) as the Hamiltonian
density.

The importance of such boundary terms has also
been analyzed by Regge and Teitelboim. "

The Hamiltonian (4.19) may be rewritten by an
integration by parts as
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APPENDIX

To demonstrate the validity of the approximation
(1.53) to Eq. (1.52), 1st us examine the expression
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0 I 1/2
p((d, v') = — dv — exp[i(u(v —4M ln

~
v

~ )]2w

vo has been taken to be zero.
This leads to

y e fe'tp (A1)

which is an intermediate between (1.52) and (1.53).
(One could presumably specify a collapse for which
this would be the exact expression. ) For simplicity Define

x [f((d+ +))]4iui)( )- (A2)

&(,&) = f d&'))(&, & )'i(&'
+~&0

i"'"='")'()+ '4M ))'(1 —'4MB) f d ' '( '+ ) """t )
""""

0
(A3}

Defining n=((() —2), the integral may be written as

((v) + (d)-4i(a)i((dl + (d n)4i(al-6))l (()-4)4((i+) ~d» n 4i((a-)))k(
d +-4 j bN

o (d + (d x

~-4j d,@+1 ~ d g 4f (fi)+h)Af
yWj4N

=4M';0 ""' (A4)

where 0(1}means of order unity in n near (a=0.
As the expression K(((), &()) enters into the calcu-

lation of the energy flow through infinity by being
multiplied by e """'"=e f~" and integrated over
()), (d [or equivalently over n and v=2((d+ (())], and
since we are interested only in the behavior for
large u, only the behavior of IC((v, e) near 4=0 will
contribute. The terms of O(1) in n will die off at
least as fast as 1/u. The only term which contri-
butes to the steady state energy flow through in-
finity is therefore the term equal to i/(4mB -i0').

For large positive u, e "~ is zero for contours
going through 4=i~. Such contours will include
the pole at 4=i0'.

Therefore we obtain

e -4tH'

2 sinh 4))M(())

as the only term which contributes to the steady
state energy flow at infinity. This expression is
the one used in the paper [Eq. (1.54)].
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