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By making statistical assumptions, we attempt to extend the kinematical domain beyond the strong-ordering
limit in the multiperipheral picture. The relaxation of the strong-ordering hypothesis leads to an apparent
clustering among final particles. An attractive component of short range in rapidity is found in two-particle
correlations at fixed multiplicity and in the distribution of gap lengths between adjacent secondaries. In
addition, we remark upon the qualitative consistency of our model with the average track number per zone

associated with local compensation of charge.

I. INTRODUCTION

The cluster model has recently become one of
the most popular phenomenological tools for deal-
ing with multiparticle production data.!*? Neutral-
cluster models with the independent-emission
picture have enjoyed some success in reproducing
the local properties in rapidity of the processes.
It is usually assumed that the mobility of second-
aries is about one unit of rapidity®'* from the
clusters. However, as far as one persists with
the current parametrization, the neutrality of the
clusters has been almost ruled out®*® by the ob-
served distribution of rapidity gap lengths between
particles adjacent in rapidity, when the gaps are
labeled by the amount of charge transferred across
them. This observation raises the question as to
whether the clustering is merely a convenient
language, or whether real clusters are actually
produced. The aim of this article is to suggest the
former possibility.

In this article we shall be concerned mainly with
two observable quantities:

(a) two-particle correlations at fixed multiplicity,
in Sec. III, and

(b) rapidity-gap distribution in pp collisions, in
Sec. IV.

Comparison with experiment will remain tentative,
but it will be shown that there is a rough corre-
spondence between our calculated values and those
measured so far.

In Sec. II we shall present a model with second-
aries produced directly which is based on the mul-
tiperipheral picture.” The multiperipheral model
(MPM) has been the prototype for a short-range
correlation mechanism. However, the simplified
MPM of Chew and Pignotti®’® (the two-channel
model by Snider!® will be referred to in Sec. V)
cannot reproduce the attractive short-range com-
ponent mentioned in (a) (see Refs. 11 and 12) and
(b). This version of the MPM makes use of the

strong-ordering hypothesis®® that the particle’s
ordering in rapidity is their ordering along the
multiperipheral chain. Indeed, this hypothesis
should work well in evaluating single-particle dis-
tributions and in investigations at large rapidity
gap (more than one unit of rapidity). However, it
is doubtful that it holds for small rapidity separa-
tion between emitted particles, which is important
for clustering phenomena. In the strong-ordering
limit the subenergies given to the multiperipheral
links are large and, therefore, so are the rapidity
separations. Moreover, we can exploit empirical
mean values™ of track numbers per zone associ-
ated with local compensation of charge'® in order
to exclude the strong-ordering hypothesis in the
literal sense.

Thus an issue of central concern will be how to
extend our kinematical domain from the strong-
ordering limit. We shall assume that the asymp-
totic Regge form is valid, in an average sense,
in the low-subenergy resonance region of a partial
multiperipheral chain. Furthermore, outside the
small-momentum-transfer region, the probability
function (cross section) associated with a portion
of the chain will be small at high subenergies.
However, it will not be zero. We shall interpret
it as the tail of the forward scattering in an aver-
age sense.

It would be difficult to make a completely dy-
namical consideration on the above situation.
Therefore, we treat it in a statistical way. Our
considerations are expressed in the following two
assumptions: (1) The probability that a particle is
emitted at a given rapidity point is uniform, if
there are no subsidiary conditions. One will see
that this assumption is consistent with the MPM.
In the large-rapidity-gap region, our model ex-
hibits the strong-ordering limit. Therefore, the
probability can be related to the intercept of Regge
trajectories exchanged.!°*'® In this sense, our
model is a natural generalization of a one-channel
MPM with strong ordering. (2) Secondly, we adopt
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the notion of limited charge exchange (LCEX)®'!7 18
between final particles. That is to say, exotic-
charge exchanges are forbidden. Indeed, this con-
cept is an immediate abstraction from the exchange
picture.

At first glance, it seems to be pointless to in-
vestigate clustering phenomena at small rapidity
separation through the exchange picture, which
is obtained in the strong-ordering limit. We shall
find the justification in the central-limit theorem
and show that the asymptotic Regge behavior is
important for results which are valid in the small-
gap region.

The conclusions will be given in Sec. V, where
we shall discuss the relationship of our model to
other current ones.

II. THE MODEL

This section is divided into four parts: Before
illustrating our model in detail, we describe the
basic framework in Sec. IIA. Section II B deals
with rapidity distribution and Sec. II C with quan-
tum-number distribution. Finally, particle dis-
tributions will be given in Sec. II D.

A. Basic Framework

All theoretical quantities will be calculated at
fixed multiplicity. We shall temporarily regard
inclusive quantities as semiempirical through the
use of observed multiplicity distributions. The
basic framework is made up of the following points:

(P1) Our basic assumption is that those quantities
at large fixed multiplicity are dominated by the
short-range component of two-particle correla-
tions, which is generated by an exchange mecha-
nism. An advantage of these quantities has already
been pointed out by Berger.'®

(P2) If we can restrict ourselves to multiplicities
larger than 3 the mean multiplicity, it is possible
to ignore diffractive effects. Whether intrinsic
long-range correlations®® are present within the
nondiffractive component is uncertain. However,
we assume (P1).

(P3) We do not take account of energy-momen-
tum-conservation constraints. This is discussed
in Ref. 21 for two-particle correlations, in Refs.
22 and 23 for rapidity-gap distributions, and in
Refs. 9 and 24 for single-particle distributions.

We shall briefly discuss the constraints in Secs.
III and IV.

The following assumption is related to (P3):

(P3’) The maximum rapidity Y of pions is large:
Yy>1.

(P4) Mediating resonance production”* '®*%5 ig
neglected.

Experimentally, this occupies a large fraction

(about 30% in pp collisions) of the final-meson
cross sections.?® Assuming (P3) and (P4) would

be a considerable idealization. However, at the
present stage, which is not the ultimate one, in-
cluding these effects reduces our insight into gen-
uine results from the relaxation of strong ordering.

(P5) Owing to the small average value of trans-
verse momenta of secondaries, we consider only
rapidity dependence. A brief comment will be
made in Sec. V.

(P6) We may either treat production amplitudes
or probability functions (differential cross sec-
tions). We choose the latter for simplicity, al-
though we are not strictly justified in this choice.®
This corresponds, in some sense, to the ladder
approximation of the MPM.

(P7) We take the so-called leading-particle ef-
fect into account: Two protons are produced at
both ends of a multiperipheral chain.

(P8) Except for the two protons, only pions are
produced. This is justified by the dominance of
pion production even at CERN ISR energies.?®

Expressing explicitly the LCEX mentioned as
assumption (2) in Sec. I, we make a rather re-
strictive assumption:

(P9) Only charges +1, 0, — 1 are exchanged.

We usually invoke the strong-ordering hypoth-
esis (abbreviated as SOH in this subsection) to
simplify the MPM. However, assuming both (P9)
and SOH contradicts experimental analyses'* of
local compensation of charge.’ That is to say,
(P9) and SOH imply that the mean number of
charges (n,) per zone is equal to 2 irrespective of
charge multiplicity n.. (Throughout this section,
leading protons are excluded in obtaining (x,).)
By contrast, the observed {x,) increases with n,.
Their values are rather near (somewhat smaller)
to those of a set of fictitious events obtained by
randomly reassigning charges to the observed
tracks.' It is concluded in Ref. 14 that the dif-
ference between the data and those of the random-
ized-charge model is meaningful. Furthermore,
the leading-proton effect (P7) cannot explain the
discrepancy, although this effect does reduce it
appreciably.

To understand the above observation clearly, in
Table I we compare the data in the central region
with {n,) calculated in a simple random-production
picture: Positive and negative charges are emitted
with the same weight under total charge conserva-
tion.

Table I implies that the actual situation lies be-
tween the two extreme cases: the MPM with (P9)
and SOH, and the random-production picture. It
is natural to relax SOH in constructing our model,
since (P9) is more deeply connected to multipe-
ripheral dynamics. Indeed, the hypothesis of



838 N. MURAI 14

TABLE I. Average number of charged particles per
zone in the central region. This is plotted versus charge
multiplicity. The observed values (Ref. 12) are com-
pared with those of a random-production picture given
in the text.

n, 102 GeV/c 400 GeV/c (nz) (random)
4 2.00+0.01 2.00+0.01 2.0
6 2.28 +0.03 2.21 +0.03 2.2
8 2.52+0.03 2.46 +0.03 2.72

10 2.72 £0.03 2.59+0.05 3.03

LCEX is precisely the content of the local-charge-
compensation postulate.

B. Rapidity distribution

Our relaxation of the strong-ordering hypothesis
is intuitive and statistical. The fundamental as-
sumption is

(P10) The probability that a particle is emitted
with rapidity between y and y +dy is proportional
to dy, if no subsidiary condition is imposed. The
constant of proportionality, D, is uniform through-
out the whole rapidity range. This assumption
would lead to the central plateau of inclusive spec-
tra in the high-energy limit. Suppose that a par-
ticle is produced at a certain rapidity. The prob-
ability of finding a gap 7 around it, i.e., the near-
est particle is rapidity space at distance », is®®

pr)=3De™ ", (2.1)

where p(7) is normalized to unity when integrated
over 7 in the infinite rapidity space. Snider'®
showed that (2.1) is consistent with the MPM in
the strong-ordering limit and that D is related to
the intercept «(0) of the Regge trajectory ex-
changed in the following way'°’ 6:

D=2-2a(0) . (2.2)

We require (2.1) with (2.2) for an outgoing pair, to
neighbors on the multiperipheral chain, but not
necessarily to be adjacent in rapidity. Equation
(2.1) holds in any one-dimensional space. Here,
the space is the multiperipheral chain with rapid-
ity as metric. The above trick does not contra-
dict the derivation of (2.2), since our model al-
most coincides with the MPM with strong order-
ing in the large-gap region (see Sec. IV).

It is well known from two-body reactions that
the ordinary Regge trajectories, the highest ones
in the Chew~Frautschi plot, have the intercept
a(0) ~3. With the choice of @(0)=0.53,3° one ob-
tains D=0.94 by (2.2).

A final simplification is the following:

(P11) The emission probability of a particle is

Rapidity——

ioiel is1 i
A A

(a) (b) (c)

FIG.-1. Various types of multiperipheral subchain in-
cluding the pions ¢ and i +1. AB, BC, CD, etc. are
Reggeon lines.

proportional to that of its nearest neighbors in the
multiperipheral chain, but independent of other
particles.

Under assumption (P11), if a particle is emitted
with rapidity y, then the probability that a second-
ary particle separated from it by % links of the
multiperipheral chain is produced with rapidity
y+ Ay is

/\/k\,\
Fy(ay) = p®---@p(ay)’
where ® means convolution. By using the Fourier
transform, (2.3) leads to

D
Fk(Ay):%%<—2Ay_

(2.3)

k-1/2
) Ky-1/2(DAY) , (2.4)

where K (x) is a modified Bessel function of the
second kind.?*

Now for convenience in the subsequent discus-
sion we give some notations which will be employed
throughout the present article. At fixed multi-
plicity N we assign the numbers 1,...,# (N=n+2)
to pions from left to right along the multiperipheral
chain, and denote their rapidities by y,,..., ¥, in
the center-of-mass system (c.m.s.) The pion 1 is
an immediate neighbor of a proton produced near
the “left” kinematical boundary with negative ra-
pidity in the c.m.s. The pion n is connected di-
rectly to the other proton.

Let us examine how the strong-ordering hypoth-
esis has been relaxed. Figure 1 shows a portion
of multiperipheral graphs contributing to F,(Ay).
We denote by s; the subenergy supplied to the out-
going neighboring pions Z and ¢ +1. It is expressed
asS2

s ~pZe” (2.5)

if w=|y;,,—¥;|>1, where p is the longitudinal
mass of the pions. Hence, high-subenergy “scat-
tering” is depicted by the graph 1(a) and low-sub-
energy scattering by the graph 1(b). The form
(2.1) means that the low-energy behavior is de-
scribed by extrapolation from the asymptotic
Regge form. Then, from the viewpoint of reso-
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nance fluctuation,®?'3* resonance production is not
considered [(P4)].

The probability function of the graph 1(d) [or
1(c)] is

D _.p

E e (2.6)
since each of the propagations along EF, FG, and
GH gives e™?. It is seen from (2.6) and (2.1) that
the low-energy graph 1(c), not strongly ordered,
makes a somewhat smaller, but nearly the same,
contribution to F, as the graph 1(b), while the high-
energy contribution of 1(d) is substantially sup-
pressed. More generally, consider n particles
outgoing at certain fixed rapidities. One can draw
many multiperipheral graphs according to various
choices in combining particles with links (Regge
trajectories exchanged). It is immediately clear
from (2.1) that a particular graph occurs with the
probability

(22>" e~Ps 2.7

where S is the total length of the multiperipheral
chain in rapidity: S=>,7-!|y; = y:.,|. Hence the
highest weight occurs for a graph having the short-
est chain length—a strongly ordered graph.
Strictly speaking, we have only exactly forward
and backward “scattering” because we are ignor-
ing the transverse momenta [(P5)]. If we refer
to 1(a) as forward “scattering,” we may think of
1(d) as backward “scattering,” regarding the Reg-
geon lines EGHF as a “black box” describing the
scattering. Since the same quantum number is ex-
changed in the graph 1(d) as in 1(a), the cross sec-
tion of the former may be the fail of that of 1(a).
This interpretation is possible in an average sense.
The average subenergy (s;) is given by*

(Si>ST1-1/NSl/N , (2.8)

where 7 is some peripheral range of momentum
transfer and s is c.m.s. energy squared. By taking
T =1 (GeV/c)? (the inverse of the slope of Regge
trajectories), at 205 GeV/c,*®

(s;)=1.8 GeV?, (2.9)

when the total average multiplicity N=1.5 ({n,)
—2) +2 with the charge multiplicity (n,?.® In the
backward direction, (2.9) leads to ¢; 2 —1.8 GeV/c.
The effective Regge trajectory at ¢; is a(¢;) = —0.96
by assuming a(t)=0.53 +0.83£.3° The effective
slope D in the form (2.1) is evaluated by (2.2):

D, 3.9, (2.10)
which is in fair agreement with
3D=2.8 (2.11)

in (2.6). If we employ the usual value {s;) ~1
GeV 2,2 the agreement is more complete. We
overestimate the probability function when s; >{s;)
and undervalue it when s; <(s;). It would be, how-
ever, plausible to say that, in an average sense,
the “scattering” 1(d) is the tail of the forward one
in the strong-ordering limit.%"

By virtue of the central-limit theorem,’® F,(Ay)
can be approximated for large & by

D Dayy?
Fu(&y) = ey €XP ["( 4:3’) ]

(2.12)

In addition to its simplicity, (2.12) has other ad-
vantages over (2.4): Even if (2.1) deviates from
the Regge behavior in the small-» region, only the
asymptotic form is important for the validity of
(2.12). Moreover, the theorem justifies applying
(2.12) to small rapidity separations, since (2.12)
holds in the region | Ay|<2(lnk)2.3® As remarked
in Sec. I, this is an important point in our scheme.
However, we still ignore resonance production for
small k& [(P4)].

For future convenience, we define the dirvection
of a link: If the rapidity order of two particles
connected by the link coincides with their order in
the multiperipheral chain, the direction of the link
is positive. Otherwise, the direction is negative.
In a strongly ordered graph, all links point in the
positive direction. Of course, the whole assign-
ment is reversible.

C. Quantum-number distribution

We deal with only the charge on account of as-
sumption (P8). A more general case has been
discussed in Ref. 18.

For simplicity, we assume that a kind of tra-
jectory is exchanged between the emitted pions.
Hence there is a factorization of the rapidity dis-
tribution from the quantum-number part.

Imagine that a link of the multiperipheral chain
is one of several charge states with a corre-
sponding probability. The probability for a charge
state changes with the links from left to right (or
right to left) along the chain. Such a simplification
reminds us of probability process, whose discrete
time corresponds to the production steps along the
chain. We employ Dirac’s bra-ket notation (a| or
|a) to denote an orthonormal charge state with
charge a. Let us introduce an operator T, whose
matrix element ( 8| T|a) represents a transition
probability from |a) on a link to |B) on the near-
est-neighbor link, [remember (P6) and apply (P11)
also to quantum-number distribution]. Then,
(B|T*|a) is the probability that |a) transits to |B)
through “successive” production along % links.3®

(P12) We impose stochastic conditions on T:
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S (BITla) =1, (2.13)

§;<m|a>=1.

Conservation of probability asserts (2.13). In high-
multiplicity events we expect 7*, 7° to be emitted
in the central region with the same weight. Charge
states in the central region are controlled by T*
(¢>>1). The conditions (2.13) and (2.14) ensure
that all charge states occur with equal frequency as
k ~x, (Here we deal with the nonperiodic and ir-
reducible 3 X3 matrix T.)

Requirements (P9) and (P12) determine the form
of T:

(2.14)

+1 0 -1
l1-a a O +1

T= a 1-2aa 0 (2.15)

0 a 1l-a) -1

where 0<a <%. Furthermore, we require that the
charge states of T7%|0) approach the large-k limit
in the most rapid way possible as % increases.
This will be related to a simplification of the
quantum-number part of particle distribution (Sec.
IV D). It is clear that the smaller the ratio of the
second largest to largest eigenvalues of T is, i.e.,
1 -a:1, the faster the rate of the approach. Thus,
a =% gives the most rapid approach.

D. Particle distributions

Combining Secs. II A—II C enables us to obtain
pion distribution at the fixed multiplicity N.

We assume that D =0 for the end links to deter-
mine the probability of the emission of pion 1,
once the “left” proton is produced (P7). Hence
we have a uniform distribution. This corresponds
to the statistically large end gaps observed.*
Another reason for this prescription is that we
need not take account of empirical proton distri-
bution to obtain analytical expressions for the
quantities considered in this paper [(a) and (b) in
Sec. I]: The pion 1 does not depend on the location
of the proton. In order to make clear that the first
pion is associated with the “left” proton, we adopt
a somewhat arbitrary cutoff: y,<0. A similar con-
sideration applies to pion n.

By virtue of (2.12) [or (2.4)], it is now straight-
forward to write down the rapidity distribution of
the pion 7 when » pions are produced,

Wi0i)=Ng ondyl J;Yd}'nFi-l( [y, =v:l)

X By i(|¥i=Yal), (2.16)

where Y is the maximum rapidity of pions in the
c.m.s.,

1
Mo T ay I° dy, [ @ya Fu-rl19 = 9 Faill3i = 92
(2.17)
and
Fy(x) =5(x). (2.18)

The normalization factor Ny is independent of ¢ at
very high energy (P3’).
The charge y of the pion i is distributed as

Qf-f;B ©IT™ P (B Tyla) (| T 0)

7" ’
(2.19)
where
\(BlTla), if the process a+B+y
(BIT,IoO: is allowed

/ 0, otherwise. (2.20)

If |y, |> € (€ 50.5), the results are insensitive to €.

One can see in (2.19) that T can be multiplied by

an arbitrary constant. Only relative ratios among

the components are important. The constant should

correspond to the square of a coupling constant.
Finally, we can derive the following expression

for the single-pion distribution with charge y:

1 doy,
On,y dy

pn(y,¥)=

n
=2 Wi0)QLy, (2.21)
i=1
where oy , is the partial cross section for m., It
is easy to verify the identity

2,: fp~(y, yYMdy=n.

Strictly speaking, (2.16) is correct only in the
high-energy limit. The pions stray out beyond the
kinematical boundary at finite energy. To elim-
inate this undesirable behavior, one can adopt the
well-known technique of reflection in boundary-
value problems.*’ One may prefer absorptive
boundary conditions to reflective ones to impose
py(2Y,v)=0. This consideration requires an in-
finite series of similar terms to (2.16). It would be
inappropriate to go into such detail since we have
ignored kinematical constraints, (P3). Instead, a
somewhat arbitrary prescription will be made to
save computation time*?: We employ the maximum
rapidity of the protons Y, as Y to suppress pions
lost beyond the exact maximum rapidity Y, of the
pions. The apparent exudation of pions beyond Y,
should correspond to the tail of the empirical pion
spectrum.

(2.22)
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At finite energy, (2.19) is not very satisfactory,
since the pions 1 and »n are either 7* or 7~ and
never 1°. Therefore n° production would be a
little suppressed, especially at low multiplicity.
To remedy this, one should replace T by

only for the pions 1 and n. However, (P12) guar-
antees insensitivity of our results to the choice of
T at high multiplicity. We employ (2.15) at the
end vertices for simplicity.

It is easy to generalize (2.21) to the two-pion
spectrum for 77 and 7%:

030 Z )
ou (3,73 9,0)= 3 W7 (3, 9)Q s, (2.24
To=[ 0 % 0 (2.23) e Fal3,90@0aiys »
030 where for the case i<k
_ 0 Y
W’,’.k(y,y’)=Nafydylf Ay, Fi (|3, = YV Foei(l v = ' DF 9" = 34l (2.25)
- (4]

L <0|T"‘|B><B|Ty|a)(le”"lE)(%lTaITI)(TIlT"'*lO)

sl (o[1"]0)

and W7 ,(y, y’) is symmetric under the exchange of
i,y and k, ¥’ and Q7 ,,,,s is symmetric under the
exchange of 7,y and k,5.

We have the identity

Y [ovnviy, oayay =ntn-1).  (2.27)
7,8

III. TWO-PARTICLE CORRELATIONS AT FIXED
MULTIPLICITY

It is convenient to define the two-particle cor-
relation function as

px(y,v:y’,6) 1 (3.1)

R s ; ',5 = —_— .
#3737, 0) ox(¥,V)ox(y’,0)

with (2.21) and (2.24), since the corresponding
empirical quantity is not very sensitive to errors
in normalization of experimental data.

Some remarks may be added on the connection
between inclusive correlation function R and R,.
The inclusive single-particle distribution p(y,y)
is given by

p(3,1)= =2 py(y,7), (3.2)

7 Oinel

where o,,,, is the total inelastic cross section and
o the partial cross section at the multiplicity N.
Similarly, we introduce the inclusive two-particle
spectrum p(y,y;y’,8). Then R is expressed in
terms of R in the following manner:

owon(9,7)ox(y’,0)
R ¥: ,’6 = NMN N
(v,7:%',0) ; Trep (¥, )0V, 0)

X Ry(y,v;y’,0)
. < ONpN(y,y)pN(y’,G)J).
N

olnelp(yi Y )p(y', 5)
(3.3)

(2.26)

Recall that N is the total multiplicity and not
the charged multiplicity n.,. It seems reasonable
to use the semi-inclusive quantities R,,c, etc. in
order to understand crudely the relation between
R and R,. Here we utilize the relation

N=3@®m,-2)+2, (3.4)

assuming an equal weight for 7* and 7°. In our
model, (3.4) holds in an average sense. It is
known empirically*® that at 205 GeV/c R, (1.=4,6)
receives a large positive contribution from dif-
fraction dissociation. However, (P2) is affirmed
again by reconstructing R from R"c through the
use of (3.3): The contribution of low charge multi-
plicity is almost negligible.

Slansky®' showed in a model calculation that the
second kinematical term of the right-hand side
of (3.3) gave almost the whole of the positive part
of R(0,¥;0,5). It is thus doubtful that the ob-
served positivity' of R(0,y;0, 5) is a direct result
of intrinsic attraction between secondaries. It
should be noted that both the second term and the
coefficient R, in (3.3) are symmetric around
(y,9’)=(0,0) in the y — y’ plane. If an R, shows an
elongation along the line y =y’ in the contour map,
so does R. The converse should be true, if Nis
larger than the mean multiplicity (N). Thus, the
elongation is a crucial clue to the attraction.

Figure 2 illustrates the comparison between our
calculated R with N given by (3.4) and R, (Ref.
43) observed at 205 GeV/c.** One of the sahent
features is the peaks at Ay =y’ -y =0 for both
y=0and — 1. That is, one would find an elongation
along the line y =y’ in the contour map. It should
be stressed that these attractive correlations have
been obtained without having real clusters decay-
ing into secondaries.

This apparent clustering is ascribed to the in-
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@y 8)=(,0)
03¢t

-03
0 —l(-.-)
-03 /‘/l/’\{\[\l

O (y.8)=(s,-) y=0 | (s,-) y=-1
03} L

-03

0 F (-.-) y=0 [} (-,-) y=-1-

W &
N=172 0 2 -2 0 2 -
y -y

FIG. 2. (a) Two-particle correlations Ry;(y,v;y’,6)
compared with empirical semi-inclusive correlations
R, (n, =8). They are calculated at the rapidities 0,
+1, £2, and £ 3. The solid lines are drawn only as a
guide. (b) Two-particle correlations Ry;(y,v; ¥’,8)
compared withR,, . (n, =12).

clusion of the kinematical region outside the
strong-ordering limit. This is summed up by
(2.12). Under strong ordering,

DDAy .,

Fk(Ay)=T_1'5T— e , (3.5)

which vanishes at Ay=0 for #=2. That is to say,
the next neighboring pions do not contribute to
F,(0). Moreover, the probability function summed
over k is flat. A similar situation occurs in
DeTar’s phase-space volume.® By contrast, F,(0)
#0 for any k allowing for weak ordering, though

it decreases with increasing &.

The negative-charge correlations Ry(y,- ;¥’,-)
are in good agreement with the data. The apparent
attraction arising from the weak ordering over-
comes a repulsive tendency caused by the LCEX
[(P9)]. On the other hand, R,(y,+;¥’,-) show
steeper spikes than the empirical ones. A model
with independent neutral clusters* yields better
agreements with R,,c(y,+ ;¥’,=), but has repulsive
correlations for pairs of negative pions, in dis-
agreement with the data.

Energy-momentum- conservation constraints®

improve our fits in the following points; first,
Ry approaches zero at |y|, |y’| =3.0. Secondly,
the peaks at Ay=0 and y =~ 1 are lowered.

The central values R,(0,y;0, 5) approach zero
with increasing N. This trend is also suggested
by experiment. Let us designate by (¥ the repre-
sentive number of links connecting the pions at y
and y’. Probably, (& increases with N. Then the
distribution (2.12) will be flattened. Moreover,
the mean number of particles per apparent cluster
would slowly increase with energy, if indeed (&)
increases with the average multiplicity.

IV. RAPIDITY-GAP DISTRIBUTION

Rapidity- spacing distributions have been measured
for charged secondaries at high energies.** At
relatively low energies, neutral particles have
been detected in exclusive distributions.*” It is a
formidable task to study gaps between charged
particles in our scheme. Throughout this section,
our calculations concern gap lengths between adja-
cent pions, including both charged and neutral
ones.

In Sec. IV A we shall study qualitatively the
implication of weak ordering and LCEX. Our
numerical evaluation will be presented in Sec.

IV B.

A. Qualitative investigations

There is a simple and useful proposition for
evaluating the contribution of a given graph.
The rule is given as follows:

(R1) Suppose that two particles are separated
by a gap length » and that j links (exchange ob-
jects) pass across the gap. It sould be noticed that
these links have not necessarily immediate con-
nections to the two particles. Thenit follows from
(P10) that the graph gives a gap distribution e /2",

This ansatz is rather trivial. Recall that a
graph occurs with the weight (2.7). Provided 7 is
fixed, the length of the multiperipheral chain in
rapidity cannot be reduced to be less than jr.

It follows from (R1) that a graph with strong
ordering provides us with the distribution e=27
and that all graphs giving e* /2" (j =2) are not
strongly ordered. For large », only the former
type, e"P7, survives.

The relation (2.2) implies'® that the exchange
picture with the Regge intercept a(0)=~ 3 is con-
sistent with the data in the large-gap region, which
indicate D=1 there. Our model adopts this in-
terpretation.

Before delving into the small-gap region, we
may add some remarks on the distribution P, ()
of rapidity gaps carrying specific charge AQ. If
we order the rapidities of the »n, detected charged
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particles y ' <y@ <.+. <y} then the ith rapidity
gap is said to carry charge

ne i
se=i[ 0™ - eu™ ], @

where @(v) is the charge of the particle outgoing
at rapidity y.

The observed shapes® of P, o(r) for AQ=0 and
|AQ| =1 are quite similar in the whole measured
region. This observation rules out those models
in which strictly neutral clusters are emitted in-
dependently in rapidity, as already remarked in
Sec. III. On the other hand, our model would be
consistent with the data, since charge exchanges
-1,0,+1 occur with equal frequency. With the
same reasoning, we expect

Pyao) =2 Paqra (7). (4.2)

The above relation is compatible with the experi-
mental data.

Another empirical result is the absence of large
gaps which carry more than one unit of charge.
Such a truncation of the |AQ|>1 distribution is
realized in our model. We designate by g, * * * g,
the charges carried by the j links and by ¢, the
direction of the link carrying ¢,; €,=1 if the link
points in the positive direction of rapidity, other-
wise €,=— 1. It is clear that the total charge AQ
exchanged across the gap is

i
AQ = Zf Qa€e- (4.3)

Thus, the minimum number of links which pass
across the gap specified by AQ is |AQ| (except
for the case AQ =0). We infer from (R1) that in
the large-gap regime

e-12912r (1 AQ|=1),

~ 4.4
PAQ(’V) {e_p., (AQ=0). ( )
This is an explicit expression for the truncation
of the |AQ|>1 distribution.

B. Numerical results

The measured distributions of rapidity spac-
ings®+*® deviate at small separations from a sim-
ple exponential behavior extrapolated from the
large-gap regime. They show prominent spikes.
Now we are in a position to attempt to reproduce
this feature.

Our method is so complicated that we discuss it
separately in the Appendix. The detailed behavior
requires a knowledge of the technique. However,
the physical meaning of the rise at small 7 in our
model is summed up in proposition (R1). Indeed,

a strongly ordered graph has the highest weight
for any gap length. However, at small spacing,
each of the other graphs makes an appreciable
contribution to the rapidity-gap distribution P(r),
since e'?" (j=2) ~1 in (R1). Furthermore, the
number of configurations is large.

Figure 3 displays the rapidity-spacing distribu-
tion Py(r) at fixed multiplicity N at 205 GeV/c.
The slope of Py(r) increases with N. This tenden-
cy is found in the experimental exclusive gap dis-
tributions.?” The rate of increase in our model
slows down for N2 11. This may arise from omit-

F (a) A

205 GeV/c 1

Lo vl

10

10

0 1 2 3

FIG. 3. (a) Distribution of gap lengths between adja-
cent particles in rapidity at fixed odd multiplicities.
Gaps between a proton and a pion (end gaps) are ex-
cluded. Neutral particles are included. (b) Rapidity-
gap distribution at fixed even multiplicities.
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- 205 GeV/c 1

162 R | . ! .
0 1 2 3

FIG. 4. Total rapidity spacing distribution shown with
the solid curve. The dashed line represents PARA
adjusted to the solid curve at »=3.2.

ting graphs which are dominant at high multiplic-
ity (see the Appendix). It is clear from a model
calculation in Ref. 22 that energy-momentum-con-
servation constraints raise the rate of the slope
increase with N.

In Fig. 4 we depict the total distribution

P(r)= ;o"CPN(r)/cm : (4.5)
using (3.4) for n, and the empirical charge multi-
plicity distribution®® for 0, . A considerable spike
is found at small » above the simple form e-°",
However, it is not sufficient to reproduce the ob-
served distribution even*® for charged tracks. [In-
terestingly, P,,(r) gives a good fit to the latter.]
Our hope is that the discrepancy will be filled up
by consideration of all graphs and of energy-mo-
mentum-conservation constraints. Another kine-
matical constraint is the limitation of the total gap
[see (4.1)],

£3
i

) -yOy <2y, (4.6)

i

1=

which is not taken into account here. The con-
straint (4.6) would lead to a steeper slope of P(r).

V. CONCLUSIONS AND DISCUSSIONS

We have developed a statistical approach which
allows a generalization of the strong-ordering
hypothesis of the MPM. In the generalization,
strong-ordered graphs have the highest probabil-
ity in comparison with other graphs. It is sug-
gested that the inclusion of some kinematical do-

main outside the strong-ordering limit and small-
momentum transfer regions gives rise to a con-
siderable part of the empirical attractive two-par-
ticle correlations and to the spike in the rapidity-
gap distribution at small gaps. This extension of
the kinematical region can be interpreted in an
average sense as the inclusion of multiperipheral
chains which are not always strongly ordered. In
this picture, real clusters are not actually pro-
duced, but some of their effects are simulated by
multiperipheral chains with weak ordering. This
picture is physically based on the fact that the
mean subenergy supplied to a link is relatively
low (1-2 GeV).

In terms of Feynman graphs, our model cor-
responds to the ladder approximation. Twisted
ladders, which appear as interference terms,
might be an important correction to the ladder.
However, in evaluating them, we must deal with
the amplitudes and the phases would play an im-
portant role. It is uncertain whether or not the
interference terms contribute without much can-
cellation among them to the quantities (a) and (b)
in Sec. I, in the summation over all their config-
uration. We have neglected the contribution of the
twisted ladders, assuming the cancellation.

Another possible approach to (a) and (b) is
through Monte-Carlo simulations of the M PM.*°
So far the analysis has been limited to low-multi-
plicity phenomena and to inclusive processes with
pion exchange.!

Let us explain in a little more detail than in Sec.
ITA how our picture is consistent with local com-
pensation of charge. Compare the two cases:

(a) three positive particles emitted successively
in order of rapidity, and (ii) emission of two posi-
tive particles and a negative one. In a random-
production picture (RPP), (i) and (ii) appear with
equal frequency at large multiplicity (z,>6). The
strong-ordering hypothesis (SOH) forbids (i). In
our model, (i) occurs with a smaller weight as
compared to (ii). The case (ii) receives the con-
tribution of a graph with strong ordering as well
as that of other graphs. Thereby we realize how
many-track zones are suppressed. This simple
example suggests that our model lies between the
two extreme cases (RPP and SOH) with regard to
local compensation of charge. A quantitative in-
vestigation will be interesting.

A two-channel MPM (Ref. 10) attributed the
sharp rise of the rapidity-gap distribution to the
lower trajectories (e.g., daughter trajectories).
In this picture, the mean track number per zone
(n,) is still two, provided (P9) and strong order-
ing is assumed. This is inconsistent with the data
(Table I).

Owing to the Pomeron exchange at the end links,
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our model provides us with the same single-pion
spectrum p, for 7* and 7~. Including neutron pro-
duction will make p ., bigger than p,_.'* Here the
neutron spectrum is necessary as an input, since
D+#0 in (2.1) and the distance between the pions 1
(or n) and the neutron should be explicitly consid-
ered.

Neglecting transverse-momentum dependence
[(P5)] might prevent us from understanding attrac-
tive correlations between identical particles. Re-
cent experiments*?:5° on azimuthal-angle correla-
tions display a remarkable peak at zero angle.
This might suggest that Bose-Einstein statistics
play an essential role.®® Further investigation is
necessary.

There is still a controversy among experimen-
talists®:52 about the neutrality of possible clusters.
However, the distribution of rapidity gaps with
specified charge transfer is the most direct evi-
dence excluding the neutrality at present.

The clustering pictures may be classified into
two categories®: (1) independent production of the
clusters with rather flat rapidity distribution, and
(2) exchange mechanism acting between the clus-
ters. The independence in (1) may be only appar-
ent and originate from a certain statistical aver-
age over all configurations of the cluster rapidit-
ies. The average number of clusters should be
5-6 even at CERN ISR energies?® if particles per
cluster are 3-4 (Ref. 53) in number!+%* It is,
therefore, doubtful whether such a statistical in-
dependence holds at currently available energies.
The possibility of clusters emitted independently
should correspond to a saturation of strong inter-
actions.

On the other hand, the clusters of (2) would not
be new objects reflecting some unexplored dynami-
cal mechanism, but would be simply reso-
nances.”+18:24:26,5 1t jg interesting to note a
similarity between (2) in the strong-ordering
limit and our model in reproducing the local pro-
perties in rapidity. The resonancelike clustering
means a small multiplicity of resonances as com-
pared to the multiplicity of final particles.'®
Therefore, the kinematical domain is in the
strong-ordering limit.'® The decay spectrum cor-
responds to the size distribution (2.12) of the
curled multiperipheral chain in rapidity space.
Hence it will be difficult to discriminate between
(2) and our picture.
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APPENDIX: METHOD FOR CALCULATING THE
RAPIDITY-GAP DISTRIBUTION

1. Gap factors

Suppose that two particles are nearest neighbors
in a multiperipheral chain. Then, the contribu-
tion of the graph to the distribution should be pro-
portional to (2.1). We refer to such a contribution,
which comes from a partial chain between the
particles giving the gap, as a gap factor. For
convenience of systematic calculations, we develop
a graphical method. Equation (2.1) is shown by
the graph (a) in Fig. 5.

In addition to (R1) in Sec. IV A, the rules for the
graphs are given below:

(R2) A link is depicted by a solid line or curve.

(R3) The open circles represent pions produced
at fixed rapidity points.

(R4) The black circles are pions whose rapidities
are integrated over. If a black circle is to the
left of an open one, we integrate the gap distribu-
tion over the former rapidity from the left kine-
matical boundary to the rapidity of the open circle.
A similar rule is applied to a black circle to the
right of an open one.

Throughout this appendix we make use of the
assignment of pions in Sec. IVB. The graph 5(b)
shows that the two pions ! and m are next-nearest
neighbors in the multiperipheral chain. The pion

Rapidity ——

l m
o——o0 (a)

| m’l m o)

oO----0 (c)

e S ©

FIG. 5. Graphical representations of partial proba-
bility functions. (2.1), (A1), and (A4) correspond to
(@), (), and (c), respectively. The second term of (A4)
is illustrated in (d).
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between them in the chain is not allowed to enter
the interval [y, y,], since r=|y, -y,| is the gap
length. The gap factor is

Gz(r)=<1:du+fyydu>€—2

xexp(-D|y, —u| =Dy, -ul)

=l§) e'D"({l - exp[—D(Y+ Y1 )]}

+{1 —expl-D(Y -y,)]}), (A1)
where u=7y,,,. In the high-energy limit [(P3")],

Galr) =% 7" . (a2)

Similarly, the gap factor of the next-to-next-
nearest neighbor is

Gylr) = 322 (5+¢~207)e=Dr (A3)

under (P3’).

An examination of the calculation of (A2) and
(A3) leads to the following rules:

(R5) A link passing through the gap carries the
factor 3, which represents the choice of its fixed
direction between the two possible directions.

(R6) A black circle connected to two links in
fixed opposite directions gives a factor ; in the
high-energy limit [see the graph 5(b)].

Applying (R5) and (R6), one can obtain (A2), and
(A3) and further higher gap factors G,_,(r). It is
not difficult to see that G,,,(r) decreases with in-
creasing m — 1. We take account of them up to
[m —1|=4 in our calculations. Note that the gap
factors are overestimated in (R6) near the kine-
matical boundary. However, we employ (R6) for
simplicity.

Rapidity ——

1 l m n
®o------ -0 O------ k] A
1 m | n

Qe . e B

FIG. 6. Classification of multiperipheral chains giving
a gap between the pions! and m. The B* and B ~ class
includes graphs which are symmetric with respect to
the central rapidity to those shown here.

Rapidity ——

....--_.\o (a)

_O/.--- (b)

?7 (c)

FIG. 7. Multiperipheral subchains as elements of end
subchains. (a), (), and (¢c) correspond to (A6), (A7) and
(A8), respectiely.

2. End-subchain factors

Now we are in a position to evaluate the contri-
bution of the partial chain including either the
pions 1,...,1 or m,...,n to the rapidity-gap
distribution. These partial probabilities will be
referred to as end-subchain factors.

In the case that the left end subchain (the pions
1,...,1) does not pass the gap between the pions
! and m, it is rather easy to estimate its contri-
bution using the central-limit theorem.?® Then
the subchain is analogous to a trajectory of
Brownian motion. For the initial distance |y, - y,],
the step -1 of first arrival at y, is distributed
with a density*

D - D2 - 2
2[411(}1’1_ 1}));}1/2 €xp <— 4|-{l‘ — ]:_y)ll > 6(1-3)

+C, _,exp(-D |y1 -0, (A4)

where 6(I-3)=1 for 1=3, otherwise 6(1 -3)=0,
and

(k=1),
C,= (A5)
{ (R-1)/2%7 (k>2).

The second term of (A4) comes from the discrete
nature in contrast to the continuous Brownian

N

Rapidity ——

1 l m

R o o (a)
1 l

- -0 [e] (b)
1 l m

o---@ (c)

FIG. 8. Diagrams of the A* type which are considered
in the present paper.
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motion. This factor is shown by the graph 5(d).
The whole term (A4) will be illustrated by a
dashed line [Fig. 5(c)].

The gap is located either inside the interval
[y.,y,] or outside [y,,,]. The two cases are re-
ferred to as the A and B class, respectively.
Moreover, we have two possible cases: y;<y,,
and y, <y,. These classes are shown by the super-
script + and —, respectively. Thus we can divide
all diagrams into 4 classes: A*, A~, B*, and B".
The simple graphs in these four classes are dis-

H (9, )= Gy 211 = exdl-D( + )1}

played in Fig. 6. A more general end subchain is
a combination of the three kinds of subchain
depicted in Fig. 7. For example, the end sub-
chains of the A* class including one or two
dashed lines [(A4)] are given in Fig. 8.

A systematic classification of an end subchain is
given by the number of dashed lines.

We set y=min{y,, y,+and z =max{y,, y,}. An
explicit evaluation of the diagram 7(a) can be
performed by integrating over the rapidities of
the black circles: When y<0,

= (m)! 2c*expl- D(v+y){erfc(-vVX) - erfc (3D(Y + y)/V X =V )}

+erf(VX +3D(Y+y) N X)-erf(/N)]} o(x - 2)

+ Cx(2{1 - exp[-D(Y+ y) [}-D(¥+ y)expl- D(¥+ y)] - 1 {1 — exp[- 2D(Y+ )]}, (A6a)

where the right black circle is denoted by 2 and A=k -1,

erf(x)=‘/?7fx e t’dt, erfe(x)=1-erf(x).
0

When y >0,

-D

H,(y,)) =(—4i—r}-\_)—:_2 [2(1 - e72%) = ()2 eMe™ P Y [erfe(- VX) - erfe(: D(Y+y) VA=V V)]
+[erf(A DYV X+ V) - erf(V )]
- lerfe(~-vX) —erfc(3Dy/VX =V )} 6(r - 2)
+Cre™®[2(1 —=e™®%) —=DYe PY + Dy(1 —e~PY) — (1 —e~2PY)]. (A6D)

In diagram 7(b) the two black circles are supposed to be connected by p links. Then, it is calculated as

H,,(Z,u)=(4niw{l —expl-2D(Y -2)] - (1p)2 ¥ [erf(D(Y -2)/V 1 +Vi) - erf(Vi))

+ ()2t [y—z dxe P erfc(Vp -5$Dx/Vp) —erfeWr +sD(Y -2z = x) /N )I}o(n - 2)

+iC{1 —exp[-2D(¥Y -2)]}.

Graph 7(c) gives

(AT)

H,(2,v) =(4—TTIV)IT {1 —exp(v - w?) - (1)"/2e”[erfc(w) - erf(Vv)]}6(v -2) + 5 C {1 —exp[- 2D(Y -2)|}, (A8)

where vy is the number of links between the white
and black circles and w=vv+3D(A —z)/Yv. An
end subchain can be evaluated by applying rules
(R1), (R5), and (R6), and by utilizing (A6), (A7),
and (A8). For example, the diagram 8(b) has the
following expression

1-4

(2)°€™ 22" 3~ H(y, VHo(-y,1-1=3). (A9)
A=1

r

In the present paper, we take account of the end
subchain graphs with one or two subchains denoted
by the dashed line. From rule (R1) we can read
off that only graph 6(a) gives the behavior e¢™P7,
1t follows from (R1), (R5), and (R6) that each
contribution of other diagrams to P, (r) is smaller
than that of this simplest one. However, they
have many configurations in rapidity space. The
number of the simplest graphs 6(a) is n —1, while
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the two-dashed-line graphs of the A* type is

iz E~0n®
k=1

in number. When z>1, the larger configuration

compensates for their damping factor coming
from (R5) and (R6) in the small-» region. This
causes a spike to arise at small ». In the large-
gap regime only the simplest graph remains
dominant due to (R1).
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Nagoya 466, Japan.
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