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This article proposes a solution to the long-standing p-n' puzzle: How can the p and n be members of a quark

model U(6) 36 and the m be a Nambu-Goldstone boson satisfying partial conservation of the axial-vector

current (PCAC)? Our solution to the puzzle requires a revision of conventional concepts regarding the vector

mesons p, co, K~, and P. Just as the m is a Goldstone state, a collective excitation of the Nambu —Jona-Lasinio

type, transforming as a member of the (3,3) + (3, 3) representation of the chiral SU(3) X SU(3) group, so also

the p transforms like (3,3) +(3,3) and is also a collective state, a "dormant" Goldstone boson that is a true

Goldstone boson in the static chiral U(6) X U(6) limit. The static chiral U(6}X U(6) is to be spontaneously

broken to static U(6) in the vacuum. Relativisitc sects provide for U(6) breaking and a massive p. This

viewpoint has many consequences. Vector-meson dominance is a consequence of spontaneously broken chiral

symmetry —the mechanism that couples the axial-vector current to the m couples the vector current to the p.
The transition rate is calculated as yp

' = f /m~ in rough agreement with experiment. This picture requires soft
p's to decouple; but this requirement is not in conflict with any experimental features of the vector mesons.

The chiral partner of the p is not the A, but the 8(1235). The experimental absence of the A, is no longer a
theoretical embarrassment in this scheme. As the analog of PCAC for the pion we establish a tensor-field

identity for the p meson in which the p is interpreted as a dormant Goldstone state. The decays 8—«q+ m,

8 ice+ m, &~2' are estimated and are found to be in agreement with the observed rates. A static U(6) X U(6}
generalization of the X model is presented with the m, p, g, 8 in the (6,6)+(6,6) representation. The p
emerges as a dormant Goldstone boson in this model. Symmetry breaking in the model leads to the remarkable

relation mp' —m„=m~
' —m~', satisfied within 0.5%. Others' efforts towards an integration of PCAC with the

quark model, particularly in the context of the Melosh transformation, are discussed.

I. THE p-~ PUZZLE

A persistent puzzl. e in the interpretation of
hadron symmetries has been with us for almost
ten years now: How can one reconcile the success
of the approximate static U(6) symmetry of the
quark model, in which the w and p are classified
as members of the same 36, with the apparent
role of the m and the E and q as Nambu-Gold-
stone' states of a spontaneously broken SU(3)
&&SU(3) chiral symmetry? More simply, how is
PCAC (partial conservation of axial-vector cur-
rent) compatible with the quark model? ff the w

is a Goldstone state and the ~ and p are members
of the same quark-model family what does this
imply for the p'P

We will provide an answer to these questions
which requix es a revision of our conventional con-
cept of the vector mesons, a revision that has
experimental. support and unifies in a compact
way PCAC with the quark-model. symmetry. The
essence of our sol.ution to the puzzle is as follows.
We accept the m as a Goldstone state so that in

a quark model it emerges as a collective exci-
tation as described by Nambu and Jona-Lasinio. ~

So in the chiral-symmetry limit it has strictly
zero mass. The p meson is also assumed to be
a eoDective state, what we will call a dormant
Goldstone boson. A dormant Goldstone boson is
defined to be a boson that in the static, nonrel-

ativistic limit becomes a true Goldstone boson
associated with the spontaneous vacuum breaking
of a static Hamiltonian symmetry. While it has
been established that there can be no Goldstone
bosons of spin «1 in a relativistic theory, ' there
is no such requirement for a nonrelativistic the-
ory. We propose that the p meson and all the
ground-state vector mesons are such dormant
Goldstone states which, of course, become mas-
sive in a relativistic theory for which SU(6) is
broken. This viewpoint has powerful consequences
and resolves several outstanding difficulties in
our understanding of hadron symmetries. Before
describing these consequences in more detail
we will elaborai:e on the (apparent) conflict between
PCAC and the quark model.

The success of the quark model has been ex-
tensively described in the literature. ' The simple
quark model works. But it is not understood why
it works. Presumably such an understanding
awaits a dynamically consistent model of the had-
rons. Neverthel. ess, we do know that the quark
model (i) correctly classifies the hadrons into
a Wigner-Weyl-realized static SU(6) &&0(3) sym-
metry, (ii) gives mass formulas, mixing angles,
magnetic moments, decay rates, etc. and (iii)
more recently„ in the guise of the parton model,
has been successfully applied to the description
of weak and electromagnetic processes at high
momentum transfer. The salient dynamical as-
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sumption of the model is that the hadrons are
ordinary bound states of quasifree quarks and

antiquarks. The distinguishing feature of these
bound states is that the quarks may be permanently
trapped. It is a model in which the quarks are
confined in a potential well of infinite height; the
problem is then to guess the further details of
the potential well.

On the other hand, PCAC works. Chiral SU(2)
XSU(2) symmetry with the v as a Nambu-Gold-
stone state is the best hadronic Hamiltonian sym-
metry after isospin. ' It is hard to imagine that
a theory of strong interactions could be correct
if it ignores PCAC. Like the quark model, PCAC
has strong experimental confirmation (which has
recently been reviewed by one of us'). Included
in the successes of PCAC are (i) the Goldberger-
Treiman relation, (ii) all the soft-pion results
that follow from the Adler-Nambu-Shrauner zero
condition, and (iii) current-algebra results sup-
plemented with PCAC, such as the Adler-Weis-
berger relation and the theorem on K» decay.
However, the dynamical features of hadron in-
teractions implied by PCAC appear to be orthog-
onal to those implied by the quark model (see
Table I). Since the y, symmetry is badly broken
in the vacuum and gives rise to the Goldstone
phenomenon, interactions must play an important
and nonperturbative role. There is no Nambu-
Goldstone realization in a free field theory. This
is seen in the Z model' which implements PCAC.
If we assume that the ~, K, and q are bound states
of quarks and antiquarks then PCAC is consistent
with the requirement that these ground-state
mesons are collective excitations of qq pairs
analogous to a type II superconductor. ' The quarks
are not at all quasifree. Such a bound-state model
of the pion was actually constructed by Nambu

and Jona-Lasinio in analogy with superconductivi-
ty and subsequently developed as a renormalizable
field theory. '

There is an evident conflict between the quark-
model picture of the w and the PCAC picture. In
an earlier day this conflict led Brandt and Prepa-
rata9 to abandon (strong) PCAC in favor of weak
PCAC, a formulation which was compatible with
the quark model but in which the success of PCAC
had to be seen as accidental. Our response to
this conflict will be in the opposite direction al-
together —to look for new manifestations of col-
lective phenomena in the quark model and keep
PCAC.

The conflict can be appreciated in another way
by asking how one builds a soft pion. There have
been at least two attitudes taken in the face of
this question. The attitude of most contemporary
hadron builders and quark trappers is to build
the hadrons out of quarks and gluons and then try
to put PCAC in at the end. From their point of
view PCAC is a nuisance that has to be accomo-
dated; it has no fundamental role in the construc-
tion of hadrons. For example, the sundry po-
tential models" and most recentl. y the bag models
of hadrons" provide a reasonable description
of hadron levels. However, they fail when ap-
plied to the lowest excitations such as the n. The
w mass comes out wrong. Further, there is no
reason why such a bound-state pion should satisfy
PCAC and the decoupling theorems.

An alternate attitude, which has not been vig-
orously pursued, " is to recognize that the Gold-
stone nature of the w is a strong clue to how to
build the other hadrons. A~~ hadrons could be
collective excitations, a color-singlet condensate
in the context of quantum chromodynamics. " The
central problem of hadron dynamics is then simi-

TABLE I. Quark-model picture contrasted with PCAC picture.

Quark model PCAC

Quarks are quasifree Interactions are essential

Vacuum state is simple
and nondegenerate

Vacuum complex and infinitely de-
generate chiral sea

Bohr-Sommerfeld model of
hadrons, Schrodinger po-
tential models: hadrons
are bound states, quarks
in bag or potential

Superconductivity model of hadrons,
many-body theory: hadrons are
collective excitations

Symmetry realized as
Wigner-Weyl symmetry

Symmetry realized as Nambu-
Goldstone symmetry

Weak PCAC Strong PCAC
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lar to the problem of superconductivity, which
is to guess the correct ground state. This is to
be contrasted with guessing Schr6dinger potentials
or building Bohr-Sommerfeld models of the had-
rons. The major physical consequences for had-
ron dynamics are the dynamics of the vacuum.
The physical vacuum, rather then being an "emp-
ty" state into which one deposits bound states of
the quarks, is instead a chiral sea of colored
quark-antiquark pairs. The reason that quarks
do not get out of hadrons is that they are not in
the hadrons —they are everywhere. A hadron
is then a collective motion of the sea bearing its
distinguishing quantum numbers —a wave on the
sea. The difficulty with this approach is that it
is hard to implement mathematically; perturbative
techniques of field theory fail ab initio. New tech-
niques will have to be found to implement this
viewpoint.

The difficult problem of actually building a soft
pion, or any hadron, is not the subject of this
article. Rather we address the simpler question
of how to reconcile the quark-model approx-
imate symmetry of static U(6) and its classifi-
cation of the m and the p as members of the 36
with the Nambu-Goldstone nature of the n.

It is important to emphasize that we are here
concerned with the description of hadron states
at low momentum —essentially the static limit.
The description of hadron states in terms of their
quark content is momentum-dependent. This is
because the quark-number operator does not com-
mute with the Hamiltonian. It is this feature,
among others, that has led to extensive studies
in the literature of the P, -~ limit, where p is
the hadron momentum. '4 In the P,-~ limit the
hadrons may be classified according to the group
SU(6)w, and in terms of their constituent-quark
content the states may have a simple description. "
The difficulty with this approach is that in singling
out the z direction the content of angular momen-
tum conservation is extremely hard to recover. "

Lightlike charges" have also been used to study
this question" and have many formal advantages.
However, on the light cone the Wigner-Weyl real-
ization of a symmetry and the Nambu-Goldstone
realization merge. " So going on the light cone
solves the p-m problem by avoidance. As one
probes the light cone at high momentum transfer
the contribution of the wee-quark sea presumably
falls away, leaving the contribution primarily
from valence quarks, whose quantum numbers
and orbital states can be used to classify the had-
rons. However, for states at ~est, whose classi-
fication scheme in existing hadron levels we en-
deavor to understand, the p-m problem remains.
What we wish to suggest in our remarks here is

that for high-momentum-transfer processes, for
which the quark-sea contribution to single-par-
ticl.e hadron states is negligible, the problem
can disappear since only the Wigner-Weyl reali-
zation is possible. However, one state, the vacu-
um, must have a momentum-independent de-
scription, and for this reason the various ap-
proaches to this problem can be distinguished by
their treatment of the vacuum.

Our resolution of the p-n problem is as follows.
We will adopt the quark model and abstract com-
mutation relations from quantum chromodynam-
ics." Further, we assume that in the static limit
the p and the w and their U(3) partners transform
like members of a (6, 6)+(6, 6) representation of
the Feynman-Gell-Mann-Zweig (FGZ) chiral
U(6) &&U(6) algebra. " Then the w and the p family
transform like the 36 of the U(6) subgroup,

n'- qiy, —,A.
'

q,

This means that under the chiral SU(3) xSU(3)
group of currents the operators m' and p~ both
transform like (3, 3)+ (3, 3). While this repre-
sentation content is what is usual for the pion
[for example, in the Gell-Mann-Oakes-Renner
(GOR) model '] and in agreement with experi-
ment, ' it is not usual for the vector mesons, which
conventionally are thought to transform like (1, 8)
+(8, 1) or qr(2&'q. We will assume that the w and
the p belong to (3, 3) +(3, 3) of chiral SU(3) xSU(3).
(There can of course be mixing of representations,
but we will ignore it to emphasize our viewpoint. )
This is the principal requirement of the recon-
ciliation of PCAC with static U(6), and it has
s everal cons equences.

The first point is that the chiral SU(3) &&SU(3)

partners of the w and p transform like

chiral
SU(3) )SU(3)

77 P3

O' Bq

So the chiral partner of the p meson is the B(1235),
J =~ not the +~ J =~+ As js well kno
the A, has escaped attempts to establish it as a
real resonance, while the B(1335) is a well-
established state. Our classification does not
require an A, or strong coupling of the mp chan-
nel to the A, if it exists. In the present state of
affairs with no A, this seems to us to be desirable.

The action of the group generators on these
operators is described as follows:

-static U(6)-
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The (v', p';) and (o', B', ) transform as 36 repre-
sentations under static U(6), while (v', o') and

( p', , B', )tra. nsform like (3, 3) + (3, 3) under chiral
SU(3) xSU(3). Under chiral U(6) x U(6) all these
operators together transform as members of
a (6, 6)+(6, 6) representation. This is essentially
one of the assignments described in FGZ."

The mode of symmetry breaking we use here
is shown in Fig. 1, which is designed to contrast
the Wigner-Weyl route of the breaking of U(6)
xU(6) with the Nambu-Goldstone route. The re-
moval of hadron mass degeneracies is shown in
Fig.2. What we have done here is to propose that
the Nambu-Goldstone route is in fact closer to the
existing phenomenology of the hadrons. This is
accomplished by extending the picture of chiral
SU(3) x SU(3) spontaneous breaking developed by
Glashow and Weinberg" and Gell-Mann, Oakes,
and Renner ' to spontaneous breaking of static
U(6)xU(6). The Wigner-Weyl route shown in Fig.
1 is the alternate route which arises in potential
models of the quarks (no spontaneous breaking)
or as suggested by the work of Brandt end Prepa-
rata. '

Our starting point is to imagine a nonrelativistic
world with a Hamiltonian symmetry chiral U(6)
x U(6). The vacuum symmetry is spontaneously
broken to U(6) or SU(6) and this is the classifica-
tory group for hadrons at rest." The w and p
along with their U(3) partners are true Goldstone
bosons in this nonrelativistic world. In the rela-
tivistic world, in which the U(6) vacuum sym-
metry is necessarily broken, the p meson will
be massive —however, it remembers its origin
as a Goldstone state (more about this later). The
pseudoscalars can remain strictly massl. ess true
Goldstone states in this relativistic world with

a chiral SU(3)xSU(3) Hamiltonian symmetry. The
breaking of chiral SU(3)xSU(3) then proceeds as
in the GOR model. "

Next we turn to the experimental fact of vector-
meson dominance (VMD) of current matrix ele-
ments. '4 If the p field operator transforms like
(3, 3)+(3, 3) and the vector current like (1, 8)
+ (8, 1) under the chiral group, how can the current
couple to the p? It is well known that the axial-
vector current, transforming like (1, 8)+ (8, 1),
couples to the v transforming like (3, 3)+ (3, 3)
precisely because of the spontaneous breaking
of the chiral symmetry. That is, the coupling
proceeds via a a going into the vacuum and hence
the strength of the coupling is specified by f,
-(o'), (see Fig. 3). So too in our picture of vec-
tor mesons is the above question answered be-
cause UMD is a consequence of spontaneously
broken chiral symmetry. The same mechanism
that couples the axial-vector current to the m

coupl. es the vector current to the p. Computing
the transition matrix element corresponding to
Fig. 3(b) we find

1 f, Z,
pp m p Zp

where (Z, /Zp)'t' is a ratio of normalization
constants which is equal to unity in the SU(6) limit.
With (Z, /Zp)'t'=l. 5 this relation agrees with the
measured transition rate.

Our picture of the vector mesons implies PCTC
(partial conservation of tensor current) relations

p, K", ~, $/
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FIG. 1. Group diagram for the breaking of U(6) x U(6)
symmetry with the Nambu-Goldstone route (collective
states) contrasted to the Wigner-Weyl route (quark
model) .

NAMBU —GOLDSTONE ROUTE

FIG. 2. Level diagrams of the ground-state vector and
pseudoscalar mesons in the two routings shown in Fig. 1.
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FIG. 3. Coupling of (a) axial-vector current to pion and
(b) vector current to the p via spontaneous breaking of
chiral symmetry.

of the form

where the tensor current is t'„„=q2A.'v„„q,the
asterisk denotes the dual, and p', and B'„arethe
J = 1 and 1 field operators, respectively.
PCTC is not the analog of PCAC. It is simply
a way of projecting the p and B fields transforming
like (3, 3}+(3,3}out of the skew tensor t» PCAC.
in the form S "A'„=g, 'f, Z, ~'n' relates the non-
conservation of a generator of the symmetry to a
field operator. By contrast in PCTC t'„,is not
related to a generator of the FGZ U(6) && U(6} al-
gebra. We derive the analog of PCAC for the vec-
tor current as a tensor-field identity (TFI) from
which the dormant-Goldstone-boson character of
the vector mesons is evident.

The definition of the p field given by PCTC above
imPlies that soft p's decouple This .is how the p
meson (and the other ground-state vector mesons}
remembers its origin as a dormant Goldstone
boson. If G(q') is the vector-meson coupling con-
stant for virtual momentum q„then PCTC requires
the decoupling theorems

G «(0) =Gp»(0) =0, etc.

However, as we discuss below, there is no con-
flict with universality of vector-meson couplings
which we obtain in the usual form on the mass
shell:

ppGp(mp)Gp»(mp}40.
Further, PCTC is not in conflict with VMD of
electromagnetic form factors or, as far as we
have been able to determine, with any other ex-
perimental feature of the vector mesons.

We have also examined the decays

5» Yf + 7T
y

B» (d + 7T
~

E» 1T + 77 )

It would be desirable to have a field theory mod-
el, such as the ~ model, ' in which these ideas of
spontaneous symmetry breaking applied to U(6)
&& U(6) could be explicitly studied. Unfortunately,
as is well known, it is impossible to construct an
interacting relativistic field theory with this U(6)
& U(6) symmetry. 28 However, one can make a
static model with U(6)x U(6) symmetry. We have
constructed a static generalized ~ model with ele-
mentary fields corresponding to o, n, p, B trans-
forming like (6, 6}+(6,6) under the chiral U(6)
x U(6). By appropriate choice of Lagrangian pa-
rameters corresponding to U(6)&& U(6) spontaneous-
ly broken to U(6} vacuum symmetry, (oP)pw 0, one
finds that the n and p are massless and the v and
B states are degenerate and massive. So in this
static model the p shares the massless fate of the
n; it is a dormant Goldstone boson. In the real
relativistic world, which explicitly breaks the
static U(6) to U(3), the p acquires a mass while the
m remains massless as a consequence of the
usual Goldstone theorem.

By consideration of U(6}-symmetry breaking in
this static model we obtain the remarkable new
mass relation

mp —m, =m~ —m$ .2 2= 2 2

This relation is obeyed within 0.5%.
Our study is concluded with a discussion of

others' efforts toward a resolution of PCAC with
the quark model, "particularly in the context of
the Melosh transformation. " We also list un-
solved problems and suggestions for further re-
search.

II. CHIRAL U(6) X U(6) REVISITED

A. Quantum chromodynamics (QCD)

The model from which we abstract commutation
relations is quantum chromodynamics, "the gauge
theory of strong interactions. The Lagrangian is

2 =2„M+qPq +2sg,

where C„M is the Yang-Mills Lagrangian for an
octet of colored SU,(3) gauge fields, q is the quark
field operator transforming like a triplet under
SU, (3) and like (1, 3)+ (3, 1) under chiral SU(3)
&SU(3), and D„is the covariant gauge derivative.
In the absence of the symmetry-breaking terms
Zsq the Lagrangian symmetry is SU, (3}XSU(3)
x SU(3) x U„(1)&& U(1). The SU(3) x SU(3) chiral group
has associated currents

which test the chiral-representation content of
the mesons. Using our representation assignment
and hard-meson techniques the calculated decay
rates are in good accord with experiment. which if 2» =0 are conserved.

(2)
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There are numerous advantages to considering
this model of the strong interactions. " The prin-
cipal assumptions (as yet completely unproved)
of this model are the following: (i) only SU, (3}
singlets appear as physical states, ' (ii) if 2sb =0
the chiral SU(3) XSU(3) symmetry is spontaneously
broken to SU(3) in the vacuum, accompanied by an
octet of pseudoscalar Nambu-Goldstone states,
(iii) the ninth axial-vector current conservation
corresponding to the U„(1)symmetry is absent,
and (iv) the superficial scale invariance of 2 is
absent and explicitly broken. '0 If any of these as-
sumptions is correct, perturbation theory in the
gauge coupling constant is useless.

B. The U(6) X U(6) algebra

Chiral SU(3) x SU(3) is generated by the charges

Q'= d'x V,', 'Q'= d'x A.,',

(qa qb] bfabcqc

[qa bqb] hf abc bqc

[bqa bqb] bf abcqc

According to assumption (ii) the vacuum does not
have the chiral symmetry,

rules given by (4a), (6c), and (6f). This U(6) group
corresponds to static U(6) and hence may be termed
the classificatory group for hadrons at rest. There
is an SU(3) x SU(3) subgroup of this U(6) generated
'by Q', =Q' +'Q~ which is the collinear group of the
strong interaction and may also be a classificatory
group. It is to be distinguished from the chiral
SU(3)x SU(3) generated by q; =q' a'q' which is
supposed to be realized in the Nambu-Goldstone
fash ion.

The group that correctly classifies the physical
hadrons may in fact be generated by V'Q', V ' with
V some unitary transformation and sQ' a generator
of the collinear group. Q' is explicitly repre-
sented in terms of current quarks, q(x), while
V Q'„V ' is simply represented in terms of con-
stituent quarks. " For our present purposes it
suffices to suppose V =I.

Some remarks are in order about the equal-time
algebra of U(6) XU(6) given by (4) and (6). As is
mell known there are anomalies which appear in
perturbation theory in commutation rules involving
the space components of currents. " Such anoma, -
lies, if present, destroy the closure of the commu-
tation rules and the validity of the FGZ algebra.
Remarkabl. y, the asymptotic freedom of QCD
implies the absence of any such anomalies and the
closure of the U(6)&&U(6) algebra. " So this frame-
work is algebraically consistent.

and this symmetry is realized in the manner of
Nambu and Goldstone.

We also define the operators

Q) = d3x V';, 'Q; = d3x A], (5)

[qa qb] bf abcqc

['q' q'] = bf""q'
[qa bqb] &fabc bqc

[bqa bq b] bf abc qc

[qa qb] &6 fabcqc b& dabc bqc

(6a)

(6b}

(6c)

[bqa bqb] h6 fabcqc be dahc bqc («)
[q;, 'q&1 = h6;&f"' 'q'- be&„d'"q;. (6g)

There is a U(6} subalgebra of this U(6) &&U(6)

algebra generated by Q' and 'Q', with commutation

which are not time-independent. Further, there
is no rea, sonable limit in which these charges are
time-independent. So they are not properly the
generators of a symmetry. '6 If one considers the
algebra of these charges (5) with the chiral charges
(3) the system closes on the chiral U(6)XU(6)
algebra, of FGZ, '0

C. Chiral-representation content of meson states

We assume that single-particle hadron states
at rest can be classified according to irreducible
representations of static U(6), with the v and p in
the 36.

Chiral SU(3) x SU(3) symmetry breaking is ac-
commodated by the quark mass matrix

sa =& 0

0 =q2A.'q,
n)

(6)

The relevant commutation rules are

[bqa Oh] bdabcVC

[bqa &b] bdabc&c

[qa &b] bf chic

[qa &h] bf abcvc

(10a)

(10b)

(10c)

(1Od)

vrhere c, are parameters related to the quark
masses and o' belongs to (3, 3) +(3, 3}of the chiral
SU(3)x SU(3). Then the divergences of the axial-
vector current s"A& d'b'eb v' are ——also (3, 3)
+ (3, 3), with the pseudoscalar field operator given
by
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Similarly

(ol o'(0)l o'(k)& =z. (12)

with lob(k)& scalar states corresponding to &,

S*, and c." Introducing the meson decay constant

(OIA'„Iv'(k)& = i k„f,6", (13)

it is straightforward to show that in the chiral-
symmetry limit, 2» =0, assuming the vacuum is
SU(3)-invariant,

f —Z 1/2 (k)1/b( gO
& (14)

and the pseudoscalars are all massless Goldstone
states.

We next consider the action of the U(6} genera-
tors Q' and 'Q; upon v' and O'. One obtains (10}
and

According to PCAC the divergences of the axial-
vector currents have matrix elements dominated
by the ground-state pseudoscalars n, K, and g.
We are led to suppose that m' strongly connects the
vacuum to these physical states,

«I ~(0)l "(k)& = z.'6". (11)

+(6, 6) under U(6)&&U(6).
The physical vector mesons are to be classified

in the same 36 as the pseudoscalars. Let Ip'(k, e)&

be the J =1 states identified with p, ~, Q, K*.
Then, in general,

i/2

(Ol t'„,
I
p'(k, e)& = 6"(k„e„—k,e „),m

p

(18)

D. The absence of the A I meson

where e(k) is the polarization of the vector-meson
states. It follows from (18) that for a state at
rest, k=0,

(olt:, I p'(k, ~)&« .==z, 'e~6"

(oI t'(, I p'(k, e)&b=. =o

By performing a static-U(6) transformation one
can relate (18) at k =0 to (11) and one finds as a
consequence of static U(6)

Z 1/2 —Z 1/2
P 7('

We will assume that this normalization is approxi-
mately valid in the real world.

[bqa Ob] ifabc ate

[bqa Vb] +if abc tc

[bqa t b ] +if abc 6 +c idabc~ t c

['Q (, t /b] =- bf' ' e ( /b
o' - b d' ' e /b, t,', ,

also

[q' t' ]=ido'c *tc [Qa t' ]=if"ct'

(15a)

(15b)

(i 5c)

(15d)

(i5e)

Interestingly, this development implies that the
chiral partner of the p is not the A, axial-vector
meson, & =1", since (Ol at'„„IA,& =0 on account
of C invariance. Instead we identify the chiral
partner of the p as the B(1235)with I =1, J~c =1' .
The B is a well-established resonance although
the remaining members of the octet are not well
established. Presumably the strange partner of the
B lies in the Q region. We will suppose that the p
and B are members of (3, 3}+(3, 3) of chiral SU(3)
X SU(3) and

Here
a — & a It', =qoqcb& q, ~„=bi[yq,yc],

a ash at „=-.~&.xet =q~rp„.—.~ q,
(i6)

are fundamental skew tensors. What one learns
from (15) is that (s', t c;) and (cr', *tc, ) each trans-
form like a 36 under U(6). Further, t', and *t',
transform like chiral partners, as members of
the (3, 3)+ (3, 3) representation of chiral SU(3)
xSU(3). For completeness we record the com-
mutation rules with the remaining U(6)&&U(6) gen-
erators

[Qa Ob] bdabc t c

[qa b] idabc at c

(1 7a}

(i 7b}

[Q' t' ]=-id"'6 o'+if"ce. , *tc (17c)

(17d)

The v', m', t '„„transform as members of (6, 6}

C/2

(ol *t qcIB (k, e)& = 6' (k~e„—kate„). (20)
B

The states IB'(k, e)& and lob(k)& belong to a U(6)
36. The result of static U(6) is the condition
Z ~2=Z '~

It is well known that the A, meson has escaped
all experimental attempts to produce it as an un-
ambiguous resonant state in spite of theorists'
insistence that it must be there. '4 It could be that
the A, is hiding and the experimental searches
would thus far have failed to find it."

A state with the A, quantum numbers is certainly
present in the simple quark model. However, the
quark model provides no unambiguous information
on how strongly this state is required to couple to
other hadrons. A «idion d' etre for the A, has al-
ways been the results obtained from the Weinberg
spectral-function sum rules. ' However, the axial-
vector spectral function could well be saturated
with pn' continuum states. There seems to be no
reason why the A„if it exists, does not couple
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weakly to other I",adrons. " Usually the arguments
that the A, couples strongly presuppose the A, as
the chiral partner to the p. As our scheme has
avoided this requirement, the experimental ab-
sence of the A, and the presence of the B is a fea-
ture that supports our view.

The usual picture is that the phenomenologieal
p field transforms like q2~'y„q and its ehiral part-
ner in this instance is q&~'y„y,q, which can con-
nect strongly to an A., state. This picture is or-
thogonal to the one presented here. Our p and
B transform like the components of the skew ten-
sor q&~'o„„q—like the electric and magnetic fields
in the Maxwell tensor. Under the homogeneous
Lorentz group they transform like (0, 1)+(1,0)
rather than (~, —,'). Our classification also pre-
cludes any attempt to describe these vector me-
sons as gauge bosons of a spontaneously broken
gauge theory.

Furthermore, not only may the A, be missing
but, if our scheme is correct, so is the particle
that transforms like the vector current, at least
insofar as the p is pure (3, 3}+{3,3}. Of course,
there may be representation mixing with (1, 8)
+ (8, 1}. But, modulo such mixing, two possibilities
are offered: one is that the physical states whose
associated phenomenological fields transform like
qy„2~'q and qy„y,,~'q do exist but lie very much
higher in mass than usually supposed and/or cou-
ple weakly to other hadrons. The other possibility
(at variance with the usual quark-model assump-
tions) is that there are no physical states whose
associated phenomenologieal fields transform like
qX&z~'q and qy&y, ~~'q, but that these objects only
play the role of currents and that they connect
to physical states (the p' and v', respectively) only
via spontaneous symmetry breaking (see Fig. 3).
%e explain this further in Sec. III.

are given by PCTC

8 t„V=PPlpgp pV
jJ 0 lk

V PPZQ g~ BV y

consistent with (20) and (18). The fields p', andB'„fideed nby PCTC, (21), have only three inde-
pendent components since (21}automatically re-
quires 9 "p'„=8 "B'„=0.

(21)

E. PCTC

%'e establish a phenomenological form of PCTC"
(partial conservation of tensor current). The ef-
fective vector and axial-vector fields p& and B&,
normalized so that

Historically, relations of the type (21) were
called PCTC" in analogy with PCAC. However,
we have found this analogy misleading. The di-
vergence of the axial-vector current is a measure
of symmetry breaking of the chiral generator 'Q',
However, the divergence of the tensor current t &„
is not a measure of symmetry breaking. If the
U(6) XU(6) generators were all required to be con-
served then the appropriate current-conservation
law following from Q; =0 is for A),„„=g),„V'„
-g&,V'„in the form a "A»„=e„V'„—g„V'„=0.Our
version of PCTC, (21}, is simply a covariant
means of defining effective p'„and B'„fields which
transform as (3, 3) +(3, 3) under the chiral group.

The usefulness of PCTC, in contrast to PCAC,
is mitigated by the circumstance that the tensor
currents &'„„arenot known to participate in the
weak interactions, unlike the axial-vector current
A.'„.However, the matrix elements of t'„„arein
principle normalized by equal-time commutation
relations [t'„,t ~~~] which extend the algebra to
U(12)

As emphasized, our interpretation is that PCTC,
(21), is simply the consequence of our chiral-
representation assignment of the vector mesons.
It has, however, an important physical conse-
quence. Since the left-hand side of (21}must van-
ish between states of zero momentum transfer
(in the absence of any zero-mass vector state)
it requires that soft vector mesons decouPle.
Physical vector mesons are not soft, so this PCTC
analog of the Adler-Nambu-Shrauner~ zero is
difficult to test experimentally. Such tests should
be sought to see if this scheme is viable; we dis-
cuss this further in the next section.

PCTC in the form given above preeludes the
possibility of any current-field identities 0 of the
form V'„=Cpp'„.Such a current-field identity taken
along with the observation that PCTC implies
vector-meson decoupling would imply that the
charge associated with V'„must vanish. Since this
charge is an SU(3) generator, the proposition is
nonsense. "

III. VECTOR-MESON DOMINANCE

A. Spontaneous symmetry breaking and VMD

An immediate objection to putting the vector
mesons in (3, 3}+P,3) instead of (1,8)+(8, 1) is
that they then would not couple to the vector cur-
rent V'„which transforms like (1, 8}+(8, 1). This
would be txue were it not for spontaneous sym-
metry breaking. The same mechanism that couples
the axial-vector current directly to the m couples
the vector current to the p [see Figs. 3(a) and 3(b)].
Vacuum symmetry breaking in these two instances
corresponds to the nonvanishing vacuum values of
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(lob) and (1Vc),

&['0', v']&, = —i (s)'~'3"&o'&„

&[Ql, t.', ]&.= —i(-')'~3"&o'&„

which imply that VMD is a consequence of spon-
taneous symmetry breaking.

This feature of VMD permits us to estimate the
current-vector-meson transition amplitude de-
fined by

(Z, /Zp)' ' =1.5 one obtains the observed rate'4 for
p- e'+ e . One ean generalize this discussion to
the vector mesons u), (j), and (j), assuming the (t),
to be the state at 3.1 GeV. These vector mesons
also have their coupling to the photon given by
spontaneous vacuum breaking. To understand the
(t), leptonic decay rate one must assume there is
large SU(4) breaking, and it is not at ail clear how

to incorporate this properly.

&olv'„Ip'(}t, e)& =-ie„o"
P

(23) B. Form factors and PCTC

l. Pion form factor
Consider

)"„'...(d) = Jd'x 8"'(OI)'(V;(0)) ', „(x))(0),

(24)

)t')", ', „(d)= i J d'x e" (D()'(V;'(O)d't'„(x))(d)

+ i &ol[q;, t t, ] lo&. (25)

Setting h =0, using PCTC (21), (22), and (14), one
has a sum rule

One might think that PCTC and the vector-meson
decoupling theorems would be in conflict with the
observed behavior of electromagnetic form factors.
This is not so.

%'e simplify the discussion by considering the
internal symmetry to be SU(2). Then the matrix
element of the tensor current between pion states
is

&s'(P)lt'„.I v'(~)& = iT(q')e'"(q„E,-q.P„),(23)

q=p-k, p =p+k

while that of the vector current is

Z )Pd

-z de Or V', O p,'x) 0 =~"~„
P P

&v'(P)l V'„Iv'(h) & =E,(q')e"'E„,
E,(0) =1 .

(29)

(20)

If just the vector-meson state p(VVO) is inserted
in the integral on the left, after expressing it as a
sum on states, one obtains

%'ith the effective p field defined by PCTC, Eq.
(21), and the p source defined by (CI+mp')p'„=PZ'„,
one obtains a relation between the pen matrix ele-
ment,

&s'(P)l '~'„Iv'(h)& =G, (q')e"'E, ,

and the tensor current T(q'). It is

(30)

for the transition amplitude (23). Of course other
states with p quantum numbers ean contribute to
the integral. Approximate SU(6) invariance implies
(Z, /Zp)'~ =1, Eq. (19}. Our result (2V} is similar
to the KSRF relation, "although the derivation
bears no resemblance to the KSRF derivation. In
our notation the KSRF relation is yp

' =2f„'/mp'
or yp =&2 f, /mp and this result is numerically in

good agreement with experiment. However, as is
well known, 4' the KSRF relation does not follow,
even in an approximate fashion, from general prin-
ciples such as current algebra or PCAC. As has
been adequately described in the literature, ' using
curxent algebra one ean obtain any relation one
pleases for yP. Only with additional assumptions,
whose ultimate justification rests on the fact that
the KSRF relation works, does one obtain the de-
sired result.

%'e do not have an independent estimate of the
ratio (Z, /Zp) ', although on symmetry grounds it
should not be very different from unity. %'ith

G...(q') =q' Z,&, T(q') .
m

p p

(31)

This implies, since Gp (mp ) =gp is nonvanish-

ing, that T(q ) has a p pole. Since T(q2) has no

pole at q' =0, we have G p (0) =0, the decoupling
theorem.

If we assume that E, (q') obeys an unsubtracted
dispersion relation, E„(~)=0, and saturate this
relation with just the p pole according to ImE, (q')
=(mp'/yp)Gp~{mp')5(q' —mp'}, we obtain

(,)
1 Gp~(m p')m p'"~ =y, q+m,

the usual vector-meson dominance. E, (0) =1 im-
plies

yp=Gp (mp'}=gp-,

the universality relation. " The point is that

Gp (q') is not a smooth function; it vanishes at
q'=0, and at q'=mP' it is the pwn' coupling.
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2
gp q+ 2 2

yp -q +mp
(34}

This is identical to (32). The no-subtraction hy-
pothesis, F, (~) =0, yields the usual vector uni-
versality relation (33) from (34}.

2. nucleon form factor

An alternate approach consistent with the above
is to assume that after removing the p pole from
the tensor current what remains is smooth. Then
(-q'+m~')T(q') =constant is smooth and G~ (q')
=(q'/m~')g~„ from (31). If we now consider the
contributions to the pion form factor F, (q'} they
are given by a direct coupling of the current to
the pionic isospin plus a p pole term (see Fig. 4}.
This direct coupling is required since in our ap-
proach the p does not couple to the isotopic charge.
This is further elaborated on in Sec. IIIC. De-
noting the direct coupling by 1 we have for the two
processes in Fig. 4

m p' Gp„(q')
y -q'+m p'

g ~+m
q'-[H(q') + 2MR (q'}]-q +m

p

Z&m Z»
=+ [G(q') +q'R(q')),

P

Zs'km~ Fs(q')
+m~

(37a)

(37b)

(37c)

From (37a) follows the p-decoupling theorem

Ff (0) =0.

Notice that there is no similar requirement for the
BNN coupling to vanish, E~(0) w0. So PCTC re-
quires only vector-meson decoupling, not axial-
vector decoupling. " We also learn that the tensor
form factor G(q'} has only the B pole, while the
form factors H(q') and R(q') have both B and p
poles; the combinations of G, H, and R in Eqs.
(37a) and (37b) are free of the B pole contribution.

The vector form factor is specified by

&N(P)li"„IN(k)& =s(f ).'"[F,'-(q')y„

+F,"(q')i o„„q")u(k),

(39)
The same development applies to nucleonic form

factors. The general matrix element of the tensor
current is

with

F,"(0) = I, F2"(0) = 2 (K~ —K„). (40)

&N(P)l t »l N(k)&

=a(p}-,'~'[G(q')o„„+iH(q')(y„q„—y.q„}
+ iR(q')(P„q„—P„q~)].

The form factors G(q'), H(q'), R(q') have poles
corresponding to the p and B mesons. Defining the
p'„and B& sources as ~J& ——(0+m&')p& and sJ&
= (0+m~')B'„one has

&N(p)l J'„lN(k)) =u(P )-r' [F~~ (q')y„

+ i o„„q"F~ (q')] u (k),
(36)

&N(P)l 'J'„IN(k)& =u(P)F'(q'},"r'P„iy, u(k) .
Using PCTC and the useful identity

u (p)y, e „B„~qyp 'u(k)

=u(p)(-q'o„s+a„„q"q8 —os„q"q )u(k},

these for m factor s are related by

FIG. 4. Separation of the vector form factor into a
direct plus a p pole contribution. The p coupling to
hadrons vanishes at zero momentum transfer.

We assume that there is both a direct coupling to
the nucleons and a contribution mediated by the p.
For the direct coupling we assume for simplicity
no anomalous magnetic moment, and so we specify
this coupling as u(P) —,'r'y„u(k). Then one has

,)
m p'E]'(q')

y (m ' —q')' (41a)

m p' E~ (q')
(41b)

y~ (m~' —q') '

Assuming that F,"(q') satisfies an unsubtracted dis-
persion relation and saturating this relation with
just the p state one has the universality relation

y =E~(m ') =F,(m ')

for the on-shell pNN coupling. Again this is only
possible if F, (q') =g~»(q'/m~') is not a smooth
function but F (q ~~)/q2' is a smooth function. We
have found no experimental evidence from photo-
production or electroproduction of vector mesons
that is inconsistent with this proposition.

The purpose of this exercise was to show that the
usual lore about form factors is in no way incon-
sistent with PCTC and the decoupling theorems it
implies. It would be worthwhile to search for
experimental evidence or new experiments that
could serve to verify or disqualify the hypothesis
of PCTC. It is important to emphasize that al-
though our discussion of PCTC was motivated by
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the resolution of the p-m puzzle, our discussion
is essentially independent of this motivation and is
an interesting question in its own right.

in an interacting theory; in this case it is a defini-
tion of C|;.47 Using (45) in (46) we obtain the de-
sixed form of TFI, the analog of PCAC:

C. Tensor-field identities (TFI)

As remarked before, PCTC is not the analog
of PCAC. However, there is a tensor-fieM iden-
tity (TFI) which is the analog of PCAC.

We begin our discussion with the vector current
V'a(x} =q(x}2&'yaq(x), for which we write

V', (x) =V', (x)+ ' p', (x).
P

(42)

+t ~8 —~cf8 h~ C +~a~ t X8 ~8~ (46)

where t'
8 is the usual tensor current and Cz

= (& qq}y,—,'&'q -qy, —,'&'a tq is a second-class axial-
vector current. We can assume that (46} is valid

Here pa is specified by PCTC (21),

a~t
~ =(m~'Z~)~P', t'„a-qo &-,'X'q,

and so (42) is just a definition of Va(x). The sepa-
ration of the vector current into two pieces given
by (42) just corresponds to the two diagrams in

Fig. 4. There V8 corresponds to the direct cou-
pling of the current V8 to hadrons and has no p
pole term, and p8 corresponds to the p pole piece.
From (42) and (21) we have

V'&(x) =qya '/'q (m-, /y, —Z, '~}a'(qo~a '/'q), -

(43)

so we see that the charge of V'8 is identical to the
charge associated with V8, the group generator,
providing there are no massless states.

This procedure is familiar in the separation of
the axial-vector current A'„=qy„y,&~'q as

/I'„=/ll„—f,Z, ~'a„a', (44)

where n =quay, &~'q. 4'„thus defined has no pion
pole. The utility of the separation (44) has been
elaborated on by Dashen and Weinstein" to under-
stand the m, '-0 li~it for chiral dynamics. Using
(27), y, '=(f, /m, )(Z,/Z, }+, and (43) one has

j Z 1/2
ff Z~ 8)'t ' (45)jf ZP

where V'„has no p pole terms. This is the analog
of (44).

Note that (44) and (45) imply that the curls of
A.

&
and A„areequal and the divergences of V„and

V„areequal. Conversely, it is the divergence of
A„and the curl of V„that are measures of U(6)
x U(6)-symmetry breaking, since they imply 'Q'
WQ and Q',. WQ, respectively.

Next we make use of the identity, valid in the
free quark model,

V8- eev' =e V, -~8V'„

u'a
mZ w (~ta ~ ayCah)

Zp

This TFI ean be used to study the m, '-0 limit of
chiral U(6) x U(6). The utility of TFI lies in the
fact that the curl of the vector current is on the
left and this is a measure of U(6) x U(6) breaking.

It is illuminating at this stage to suppose that we
are in the U(6) & U(6} limit. It is impossible, in
fact, to accomplish this limit, in contrast with the
chiral SU(3) x SU(3) limit, in a relativistic field
theory such as quantum chromodynamics. Let us
suppose anyway that we have Q; =0 and the corre-
sponding conservation law &„V„'—8„V„'=0,so the
left side of (47) vanishes. The consequences of
this may be seen by taking nucleonic matrix ele-
ments of TFI, (47). Denote [for SU(2) symmetry]

(tt( p) ~
V:~H(») = u( p)-,'r'[E, (q')y. + E,(q')to. ,q']u(»,

{N(P) I C:le(»& = a(P}-'."[C(q )ty, P.]s(t ),

(Z 1/2
E,(q') = —[C(q') + q'R(q')]f,

i
(48)

C(q') = G(q').

Since C(q') can have no p pole and E, ,(q') ha.s no p
poles —by construction —we learn from (48) that
as q'-0, since E,(0}=land C(0}e0, 2M&(q')
+H(q') has a pole at q'= 0 corresponding to a
massless particle. This is the Goldstone theorem.
The p mass must vanish —it is dormant Goldstone
boson.

Since there does not exist a quark field theory
for which Q'. = 0 and e„V„'—&„V'= 0 the above exer-
cise is pedagogic. It is intended to emphasize the
analogy of PCAC and TFI and the dormant Gold-
stone character of the p. However„ the impoa i-
bility of a relativistic SU(6) is the only feature that
prevents a strict one-to-one analogy between our
treatment of the m with PCAC and the p with TFI.

a.nd the matrix elements of t'8 given by (35). Then
8 Vz-8&V' =0 implies from TFI

Z xj2
E,(q ) = q'[2MB(q') + H(q') ]f,
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IV. DECAYS OF SCALAR AND VECTOR MESONS

We consider the decays

5-g+w,

B CO+ 7T)

7t'+

PTER

each of which has a pion in the final state. These
decays are chosen to test the chiral representa-
tion content of the mesons. The experimental
widths are

r, „„=(50*20)MeV,

(n(k) IA:(0) I
5'(P)& ='

6

d'xe'~" qk T5 xA' 0) 0,

['I))')5 ]= q) a, b=1, 2, 3
vS

(s2)

with (7= q ~X'iy, q the )7 field operator [see Eq. (9)].
Multiplying (51) by —iq and taking q, —0, using

(51)

where 5'(x) =q —,'X'q (a=1, 2, 3) is identified as the 5
field [see Eq. (8)]. On the mass shell P'=m, ' (51)
is an identity. The relevant commutator is

r „„=(120 + 20) Me V,

r, „=(600-700) MeV (large errors). "
(49) (q(k) IA: I

5'(p)& =",f,s ~A(k, p, o)

+ terms regular in q„,

Elementary application of current algebra does
not suffice to determine these decay amplitudes.
Only if one supplements current algebra with some
rather questionable extrapolation procedures does
one obtain definite answers. We present our re-
sults without detailed justification for these extra-
polations, which are typical for hard-meson tech-
niques. 4'

For the 5~(p)- m'(q)+)7(k) decay, with the 5(970)
identified as the I = 1 chiral partner of the pion, we
write the amplitude

(n(k) li:ls'(u)&=5"A.(k', f', q'), f =k+q. (50)

We will work in the chiral SU(2) x SU(2) limit for
which m, = 0 and always keep the final pion on the
mass shell. Extrapolations of O(m, ') we consider
to be harmless. We examine the amplitude, with
the initial state 5 off-shell,

the commutator (52), and the normalizations (11)
and (12), one obtains

IA(m„,m„,O)
I

=
M3f, z, (53)

Ikl
r~ „„=~ IAsl', Ikl =fi~a~ mom~~t~m

77m
Q

and (54) the crude estimate

Z 1
Z 4 (ss)

Next consider the decay B'(fj) -7)'(q) + ~(k) with
the amplitude

The major assumption is to assume that (53) ap-
proximates the physical amplitude

(54)

From the experimental width, 50+20 MeV, one
obtains from

&" kk
& (e)lj:le' (j)) X(e j e'*)e"=(e.' —**,' e', —, ee- e e)e m.

This decay proceeds by both S and D waves. Experimentally the D-to-S-wave amplitude ratio is Oe24

+0.06, and so we will ignore the D wave and try to estimate the S wave. We consider the amplitude

(~(e",k) IA!(0) Ifl'(", f)&= „.' &'xe*& "(~(e",k) IT(Bt(x)A:)lo)~".,
i(P' —m ')

B

(56)

(57)

with the B„'field operator mBB„'=8" *t'„„definedby
PCTC. On the mass shell, p'=ms', (57) is an
identity. The commutation rule we need is

I

and (57)

Im' —m Im Z'~'
(m 2 m 2 0)l " s m m (59)

r mB
[5q~ *I() ] (58)

where 8"t,„corresponds to the ~ field operator
(B and (d transform like a chiral quadruplet in our
representation assignment). One finds from (58)

Again using our assumption of extrapolation to the
physical point

As=As(m ', m~', 0) =A~(m„')m ', 0),
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one obtains for the rate V. THE GENERALIZED Z MODEL

(60)

with ~k
~

the final momentum of the decay. To get
a definite answer one makes the assumption of
static SU(6) for the normalization constants

Z ZR 1
(61)

This implies

I' „„=90 MeV,

in excellent agreement with the observed rate (49)
of 120 + 20 Me& and D/S = 0.24 a 0.06.

We now consider the & -2m decay and identify the
& with the mn resonance in the region 1100-1300
MeV." The decay amplitude for b:(p) —v'(q) + v (k)
1s

If one wishes to extend the SU(3) x SU(3) Z model
to include the approximate U(6) symmetry observed
in the hadron spectrum, one finds that the smallest
group which contains these groups and which closes
is U(6) xU(6). Hence we consider the generaliza-
tion of the Z model to chiral U(6) xU(6) symmetry.
Owing to the well-known and apparently insur-
mountable difficulties in effecting a relativistic
generalization of SU(6) symmetry, "we are able to
study only a static (p=0) model, but we still of
course demand Galilean invariance. Furthermore,
as fermions are an unenlightening complication
here, we look at a model restricted to mesons. "

It is convenient to employ the following notation.
The charges which generate chiral U(6) x U(6) obey
the commutation relations

(v'(k)
~
j;(0) ~k(p)) = 5"jl,(k', p', q'),

As before we consider the amplitude

(62)

p= k+q.

[ qA qB] iFABc qc

[ qA qB] ZFABC qC

[ qA qB] bFABC qC

(66)

( (vkb) ~~: ~ ~(p)) = „,(p' —m, ')

d'x e'~ " m' k T e x A'„0) 0,
with the initial state off-shell. Using the commu-
tator ['q', &]=iv' (a=1, 2, 3) for the k field opera-
tor e(x}=(I/v 6)q[Xc+ (I/v 2 }Xa]q, one finds

ia(o o, o)i =
( ) (63)

Making use of the result valid in the SU(3) limit

Z Z
Z ZQ

and (55) we obtain Z,/Z, =-, . Then the rate is de-
termined using the drastic extrapolation assump-
tion

where A =a or ai, and a =0, . . .8, i = 1, . . . , 3. Note
that the generators A„ofstatic U(6) obey

TrA„A~= 25~~,

and

[A„,AB] = 2iF„BCAC,

(AA, AB) = 2D„BCA C,

Fake(&) fake) , abc (2) abc

Fai, bjck (a } , ij k abc+(a } 6i jfabc

ai, bj ~ ck (2 } ei jkfabc (2 } 6ij dabcr

where f„,and d„,are the usual SU(3) coefficients,
and d = (-')'j'

The mesons are classified into two 36-plets of
static U(6). Using Ca.rtesian coordinates we identi-
fy an odd-parity 36-piet,

as

jl, =A, (0, m, ', 0) =A,(0, 0, 0)

= 1100-1800MeV,

(64)

(65)

M~~™,=4) Mac =pc)

and an even-parity 36-piet,

N~ Xg 0 ) Ng~ Bf ~

Together these multiplets transform as a (6, 6)
+ (6, 6) representation of chiral U(6) xU(6).

in fair agreement with the rather uncertain exper-
imental range of 600-700 MeV.

We caution the reader that the use of these ex-
trapolations and symmetry results such as (61) is
potentially dangerous. Remarkably, if we make
these naive assumptions we can test our represen-
tation content of the vector mesons and everything
works our far better than one should expect.

[ qA AfB] bFABcMc

[ qA jyB] bFAB civic

[,q",Af B]= —iD""x',
[ qA ~B] iDAB CM C

(67)

Note that the (6, 6) + (6, 6) representation is forced
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upon us once we have the pseudoscalar mesons and
vector mesons in the same multiplet and then de-
mand that the pseudoscalars be in (3, 3)+ (3, 3) un-
der chira. l SU(3) xSU(3), as they are in the usua, l
formulation of the Z model. The requirement of

the (6, 6)+ (E, 6) then fixes the charge conjugation
property of the axial-vector mesons to be the same
as the vectors, i.e. odd, while o' and m' are even
as usual.

The potential part of the Lagrangian is

goo( = —2il (M~g + NsNs) —X(M~„+NsNs)

y[D~s-cD~ s c(M~yIS„,Ms, + N„NsN„,Ns, + 2M~sN„,Ns, ) + F~scF~ s cM~NsMA, Ns, ]. (68)

This is the most general U(6) xU(6)-invariant La-
grangian (restricted to polynomials of degree ~ 4).
It should be pointed out that there is no trilinear
term, in contrast with the case for SU(3) xSU(3).
Hence, the maximal group that leaves the Lagran-
gian invariant is U(6) x U(6) and not just SU(6)
x SU(6).

As in the usual Z model, if p, '& 0 then in the clas-
sical limit the potential defined by Z~„has a min-
imum when o' has a nonvanishing vacuum expecta-
tion value,

(oQ, =a.

This condition restricts the vacuum to be just U(6)-
inva. riant, and the U(6) xU(6) symmetry is sponta-
neously broken. We introduce a displaced field

I
O' =0' —a,

whose vacuum expectation value is zero. Rewriting
I

the Lagrangian in terms of this well-defined 0',
we isolate the term linear in o',

o' a(p, '+4.a'+gya').

If (o' ) is to be zero at least at the tree-graph lev-
el, we must demand that this term linear in o'
vanishes. This is just the condition that the clas-
sical potential be at an extremurn. Hence we re-
quire

2
P

4(x +y/3)
(69)

The masses of the various mesons are found to be

m o" = p, '+4a'(3X+y),

m ~' =m = p. '+ 4a'(X +y), (70)

m ' =m ' = p,
'

+ 4a'(A, +y/3) = 0,

where o denotes the scalar octet. That is, the
masses of the axial-vector nonet and the scalar oc-
tet are equal, while the whole odd-parity 36-piet
has become massless, corresponding to the Gold-
stone mode of the broken U(6) x U(6} symmetry to
U(6)." The vector mesons cannot of course be true
Goldstone bosons in a realistic, relativistic theory.
But they are Goldstone states in this static model
and hence can be termed dormant Goldstone bos-

T =N+iM,

T~ = V~ —ill~,

we may then write the mass operator as

TrTT ——,P'Tr[o T][aT )

(72)

2( 2 2 2 II2) 1P2(p2 II2)

(73}

where [ ] indicates the spin trace. The p,
' term is

as above, Eq. (68), and the P' term gives the spin-
dependent U(6) breaking, and hence explicitly
breaks U(6) x U(6). The spin-one mesons are now

split from their spin-zero multiplet partners, and
the mass formulas are

ms' = y.
'

~ P'+ 4a'(A +y),

m = p. '+ 4a'(X+y),
2 2

m =P,
m„'=0.

(74)

The vector mesons have acquired a mass, which
we expect to be large compared to the actual pion
mass since we know that U(6) is a badly broken
symmetry compared to SU(3}. From these mass
formulas we have the relation

sons. As we shall now see, relativity will explicitly
break the symmetry and rouse the vector mesons
to massive states.

So let us consider explicit symmetry breaking.
Unfortunately one cannot be as precise here as in
the case of SU(3) x SU(3)-symmetry breaking. How-

ever, it has been pointed out that once one demands
relativistic invariance, the kinetic energy terms in
the free part of a Hamiltonian must give rise to
spin-dependent mass terms in the presence of in-
teractions. " We will assume that this spin-depen-
dent effect is SU(3)-independent.

It is helpful to use the tensor notation

M 8
= i 5)Ps t- ( v e )', V 22, (71)

No8 ——i5,'S"+~(a'e),'Ils,

where Pg = ( I/v 2)g', = o &22m', V22 = (I/2 2)Z ',=, &22, p',
etc. , and c is the polarization vector. Combining
these tensors into
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2 2 — 2 2I ~
P fr 8 a

This relation is in remarkably good agreement with
the experimentally determined masses. For ex-
ample, putting in the masses of the I =1 members
of the octets, i.e. , the 7r, p, B, and 5, one obtains

2 2 ~2 ~2
Ht —I —PPl 8 PPl gP

(0.593-0.019) GeV' vs (1.53-0.953) GeV',

0.574 GeV' vs 0.577 GeV'.

Similarly, for the K*(892)-K mass' difference, the
result is 0.55 GeV'. Unfortunately the strange
members of the even-parity 36-piet are not well
enough identified to make comparison worthwhile.
At any rate, from these results it appears that
U(6)-symmetry breaking due to spin-dependent ef-
fects independent of SU(3) breaking is rather well
borne out experimentally, with the parameter P'
=0.6 GeV'.

VI. DISCUSSION AND CONCLUSIONS

A. PCAC and the Melosh transformation

We have addressed ourselves to the p-r puzzle
and thus to the problem of how to coherently incor-
porate PCAC in the quark model. Our solution is
based on a static symmetry, U(6) x U(6). There has
been another attempt to incorporate PCAC and the
quark model, but one that does not discuss the p-
m puzzle. This is the work of Carlitz and Tung and
their collaborators. " More specifically, these au-
thors were concerned with the problem of installing
PCAC within the framework of the Melosh trans-
formation in a more integral way than the phenom-
enological approach of putting it in by hand. They
propose some intriguing concepts, especially that
the Nambu-Goldstone realization of chiral symme-
try is the origin of chiral representation mixing.
However, we believe that the problem of incorpo-
rating PCAC with the Melosh transformation still ex-
ists for the reasons we shall now explain.

The approach of Carlitz and Tung is in the for-
malism of null-plane or lightlike charges. But since
the signer-Weyl and Nambu-Goldstone realizations
of a symmetry merge on the light cone, the Nambu-
Goldstone nature gf the pion cannot be distin-
guished. To do so, Carlitz and Tung go outside
their formalism to the usual static or timelike
charges. This leads to two pions in their scheme.
Gne is the Nambu-Goldstone pion which transforms
like {3,3) + (3, 3) under the usual chiral SU{3)
x SU(3). This pion they subtract away in defining
their lightlike axial charge. The other pion, the
quark-model pion, is in a Wigner-Weyl representa-
tion along with the p meson. It is not subtracted
out in defining their lightlike axial charge. This
can be seen explicitly in their discussion using the

Z model where the elementary pion field [trans-
forming like (3, 3) + (3, 3)] is subtracted but there
still remains the pion composed of quarks. In the
representations of the algebra of lightlike charges
there exists a representation with the p and the n

as members of the same representation. They are
built out of quarks and antiquarks. But the PCAC
pion, while removed from the lightlike axial
charge, nevertheless exists and plays a very im-
portant role. So there are two pions in this ap-
proach which are distinct, and the p-m problem
comes back to haunt one.

Furthermore, having two pions is essentially the
same situation that existed before the work of Car-
litz and Tung. This can be seen, for example, in
the phenomenological applications" of the Melosh
transformation to the calculation of the transition
rate for a P+n.

The p that is contracted from the state p+ p is a
soft pion, p, -0, while P and n are states at p, —~.
For this soft pion one uses PCAC, s~ 4„=p'f„w,.
which is a representation of the m in terms of cur-
rent quarks. However, a p that is contained in a
or P is taken to have p, —~ and this pion has a sim-
ple representation content under SU(6)~ in terms of
constituent quarks. So in these calculations the n

is treated in two different ways, as a bound-state
quark model p and as a PCAC p. As long as one
uses PCAC for soft v's and the SU(6)~ (strong) rep-
resentation for g's with p, -~, which is done in
these phenomenological applications, the approach
is consistent. However, the connection between
these two treatments of the pion is still obscure.
The problem remains to devise a description of the
pion that interpolates between a pion at rest and a
pion moving with p, = ~.

The discussions of the Melosh transformation are
given in the context of SU(6)~ symmetry. This
symmetry is invoked if one is concerned with sat-
urating sum rules since it involves only "good-
good" commutators in the p, -~ limit. " Instead we
have used the FGZ U(6) x U(6) algebra, which in-
volves "good-bad" and "bad-bad" cummutators but
for which rotational invariance is evident. Further-
thermore, this symmetry incorporates the static
SU(6) symmetry approximately observed in the had-
ron spectrum. It and its subgroups seem to us to
be the symmetr ies of choice when talking about low-
energy phenomena such as PCAC. What we have
emphasized in this paper is that it is through PCAC,
(more precisely, through the Nambu-Goldstone
mode) that the quark model tells us in a fundamen-
tal way how hadrons are made in their rest frame.

B. Unsolved problems

It would be desirable to have a real relativistic
quantum field theory in which one could study these
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problems associated with dormant Goldstone bo-
sons. Can one build a Nambu- Jona-Lasinio model
of the p as a dormant Goldstone boson? Such a
model should satisfy the requirement that it has a
reasonable static limit with U(6) x U(6) invariance
realized by vector and pseudoscalar Goldstone
states which are collective excitations. Some ef-
forts in this direction have been made by the au-
thors but will not be reported here. Eventually one
hopes to understand the m '-0 limit as well as the
m „'-0limit. Conceivably there are other dornm~t
Goldstone bosons such as 2' tensor mesons asso-
ciated with spontaneous breaking of higher sym-
metries.

If we look at the group diagram, Fig. 1, we see
that the relative merits of weak PCAC vs strong
PCAC can be parametrized in terms of the GQR
"q" parameter. " For strong PCAC g—--~, as
seems to be observed. This raises the question of
how one gives a similar parametrization for the
choices describing the breaking of static U(6) x (6).
Such a parametrization is desired to formulate
these questions with greater clarity.

We have pointed out that the reconciliation of
quark-model symmetries with PCAC requires the

p to be in the (3, 3) + (3, 3) representation and so it
satisfies decoupling theorems. Can one extend the
development of phenomological Lagrangians to in-
clude such vector mesons? What are the further
experimental consequences of the decoupling the-

orems?
If anything, this work shows that the p and the

other ground-state vector mesons are collective
excitations. So a simple potential model for the
quarks in the vector mesons must fail. Recently
such potential models for the P,(3.1) and P,(3.7)
have had qualitative success. " Our picture sug-
gests that these new states are also collective ex-
citations. Does this feature shed any light on the
details of charmonium levels?

A final remark: The present work indicates that
the ground-state vector mesons, like the ground-
state pseudoscalars, are manifestations of collec-
tive phenomena of the type familiar in superconduc-
tivity. There seems to us to be nothing in principle
that prevents understanding of all hadrons as col-
lective phenomena. Contrary to conventional in-
terpretations of the hadron spectrum, perhaps
more is to be learned from the paradigm of the
theory of superconductivity than from atomic mod-
els.
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