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It is shown that (i) the small but definite discrepancy between the mass-squared Gell-Mann —Okubo mass

formula of the ~" baryons and experiment, (ii) the trouble of the X-A degeneracy, and (iii) the deviation of
the D/F ratio of the axial-vector semileptonic couplings from the SU(6) value as indicated by the value

~
G„/Gv~ = 0.435 ~ 0.035 of the latest high-statistics experiment on the X —~ n + e + v decay as compared

with the SU(6) value 0.25, can be explained simultaneously if a ninth I = 0, ~" baryon A' exists around
1700 MeV with a broad width of about 1 GeV. The hyperon semileptonic decays in the presence of the A'

are analyzed in detail. The Cabibbo angles are determined to be sin8v = 0.227 + 0.008 and sin&„= 0.220 ~ 0.020.
The theoretical frameworks used are asymptotic SU(3), chiral SU(3) SU(3) charge algebra, and the simple

mechanism of symmetry breaking.

I. INTRODUCTION AND SUMMARY

In the real world where SU(3) is broken, the use
of exact SU(3) and its implied sum rules is not a
priori justified, since we have to use physical
masses in computing actual transition rates and
other physical quantities. Still, its use, com-
bined with the phenomenological prescription of
using physical masses whenever masses appear,
gives a reasonable overall description of SU(3) in
many instances.

For example, in the application of the Cabibbo
theory of weak currents' to the semileptonic de-
cays of hyperons, we customarily parametrize the
axial-vector amplitudes in terms of three quanti-
ties, the D and F couplings and the Cabibbo angle
8, by using exact SU(3) for the axial-vector ma-
trix elements. Armed with the recent experimen-
tal data, one indeed finds that the overall fit of
the exact-SU(3) sum rules to the data is remark-
ably good. The latest review of Kleinknecht' shows
that the data can be fitted with (assuming one Cab-
ibbo angle)

D = 0.658 + 0.007, sin& = 0.230 + 0.003.D+F

Probably, this is one of the situations where the
conventional treatment of SU(3) works particularly
well. Actually, there is the following theoretical
reason why exact SU(3) sum ru-les work well in
this case.

A promising and theoretically more rigorous
way to approach such problems of broken SU(3} is
the purely algebraic approach which has been
formulated' in the following theoretical frame-
works: (a) the chiral SU(3) SSU(3) charge algebra
of Gell-Mann4 which is valid in broken SU(3), (b)
asymptotic SU(3) symmetry proposed by Matsuda,

Oneda, and Umezawa", and (c) the presence of
"exotic" charge commutation relations' (C. R. 's)
involving the time derivative of the SU(3) vector
charges V, (i=4, 5, 6, 7) which expresses in an
algebraic fashion the simple machanism of SU(3)
and chiral SU(3) I3 SU(3) breaking. It was realized'
that the broken-SU(3) sum rules for the Physical
axial-vector semileptonic decay coupling constants
(but defined only at the zero four-momentum trans-
fer limit), obtained in the above theoretical frame-
works (a) and (b), take exactly the same form [in
the absence of the SU(3) mixings] as the usual
exact-SU(3} sum rules. That is, the usual Cabibbo
analysis of the semileptonic decays using exact-
SU(3) parametrization and the physical masses of
the hyperons is, in fact, justified in this particu-
lar case in the theoretical frameworks (a) and (b).

In this paper we further add the theoretical con-
straint (c) and mainly study the following prob-
lems.

(i) SU(3) mass relations for the 4 = ~" baryons.
The imposition of the exotic C. R. 's [V~, V~] = 0
and [Vxo, A ~]= 0, etc. (Vr 0 = V, + i V„Ar 0 =A,
+ iA„etc.), upon our theoretical frameworks (a)
and (b), imylies the existence of the following
SU(3) mass formulas"' for the &' and —,

"baryons
(m'=A', etc.):

(1.3)

These mass formulas are exact [except for the
possible effect of intermultiplet SU(3) mixing
which was not considered] and take the mass-
squared form. Recent high- statistics experiments
indicate' that the mass-squared equal mass spac-
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ings, Eq. (1.3), among the —,
' decuplet are better

satisfied than the usually assumed linear equal
mass spacings, and they agree with the experi-
ments well. '" However, experimentally Eq.
(1.2) reads 5.156= 5.222 in (GeV)'. Therefore,
there is a small, but nonvanishing meaningful
discrepancy between the predictions, Eq. (1.2),
and experiment to which we wish to address (the
sign as well as the magnitude).

(ii) The problem of Z-A degeneracy. By sand-
wiching another type of exotic C. H. , [Vr0,A, ] = 0,
etc. , between the states {n(k)~ and ~Z'(k)} and also
between {T {k)~ and

~
(k)) with k Matsuda and

Oneda have encountered' the yrobleIn of the Z-A
mass degener'acy in the above theoretical frame-
work. The Z-A degeneracy is, in fact, reminis-
cent of the troubles of the simple quark-counting
model and also of the nonrelativistic SU(6) with a
simple mass breaking interaction. We wish to
remove simultaneously the Z-A degeneracy as
well as the discrepancy between the SU(3) mass
formula, Eq. (1.2), and experiment.

(iii) The deviation of the D/E ratio of semileP-
tonic hyperon decays from the SU(6) prediction.
SU(6) predicts in contrast to Eq. (1.1) that

D/E = -'„D/(D+E) = 0.6. {1.4)

Since the other SU(6) prediction, (G„/G«)q =—', for
the nuclear g decay, differs significantly from the
experimental value (G„/G«)~ = 1.25, the D/E ratio
is also expected to deviate to some extent from the
SU(6) value, Eq. (1.4). Present experiment [i.e. ,
Eq. (1.1)] seems to demonstrate that this is indeed
the case. As a matter of fact, the SU(6) value
D/F = 2 yredicts, when combined with the experi-
mental value (G„/G«)~ =1.25, that

(G„/G «)p- „,- p
= —0.25

as compared with the value obtained by the recent
high-statistics experiment" of

i
(G„/G«)~- „,-«i =0.435+ 0.035.

Since we now work in the presence of the theoreti-
cal constraints, [Vro, A, ]=0, etc. , which impose
dynamical constraints upon the axial-vector hy-
peron semileptonic couplings and the masses of
the hyperons, our proyosed mechanism of solving
the problems (i) and (ii) is also hoped to be con-
sistent with the present data of the hyperon semi-
leptonic decays which exhibit a deviation from the
exact-SU(6) prediction, D/E = —,.

The simyle mechanism we wish to proyose is
the existence of a ninth" J = &' baryon, A', which
will weakly mix via the SU(3)-breaking interaction
with the A resolving the problems (i) and (ii) and
at the sametime explain the present hyperon semi-
leptonie data [problem (iii)].

Apart from simplicity, one of the motivations
for introducing the A' comes, of course, from
the simple observation that the SU(3) decomposi-
tion of the baryon configuration in the popular qqq
description of the quark model involves a singlet,
i.e. , 3(3 3(33= 1+8+ 8+10. For bosons nature
seems to realize all the representations of the qq
state, i.e. , the singlet as well as the octet.
Therefore, it may not be unrealistic to imagine
the existence of the A'. Matsuda and Oneda have
derived' the SU(6) result D/E = -', , etc. [but not
encountering the bad result of SU(6), (G„/G«)~ = —,']
in a purely algebraic ayyroach without assuming
SU(6), by adding to the theoretical frameworks (a)
and (b) a (further) constraint dealing with the
C. H. , [A„A~]= if,&~V„and assuming that the
ground-state baryons consist of the &' octet and
the &' decuplet. In a subsequent paper we make
this picture more comylete by adding a —,"singlet.
In See. VIIIwe add abrief remark about the A' when
viewed from the yoint of view of the SU(6) O(3)
elasslfleat1on.

The role played by the singlet-octet mixing for
bosons tempts us to expect a similar role played
by the A-A' mixing. We recall that such mixings
as the (o-p and q-g' mixings take care of the de-
ficiencies of the original Gell-Mann-Okubo (GMO)
mass formulas for' bosons. In our formulation of
asymptotic SU(3), these mixings automatically ap-
pear~ in the mass-squared SU(3) mass relations
for the 0 ' and 1 mesons obtained from the "ex-
otic" C. H. 's, [Vro, Vro]=0 and [V„O,Aro]=0.
However, in the absence of the ninth bosons, the
imposition of the "exotic" C. H. 's [Vro, A, ]= 0,
etc. , indeed lead, for example, to the p-P or g-v
degeneracies similar to the Z-A mass degeneracy.
In the presence of the ninth bosons, these "exotic"
C. H. 's in fact play a remarkable role producing
the sum rules' which exhibit the interesting dy-
namical interplay between the masses, SU(3) mix-
ing angles, and the axial-vector matrix elements
which is consistent with experiment. In Sec. II
we briefly describe the derivation of the broken-
SU(3) sum rules using our theoretical framework
(a), (b), and (c). In Sec. III, we use some of the
latest hyperon semileptonic data to derive the vec-
tor Cabibbo angle 8~. We calculate that sin8„
=0.227+0.008. We also find that r(n-pe v)=975
+12 sec„ from which we infer that the radiative
correction to G~ in the 0'4 decay is (3+ I)%, in
good agreement with the radiative corrections
predicted by the SU(2)~SU(l) gauge models. In
Sec. IV, we fix the mass of the A' and simultane-
ously determine the axial-vector Cabibbo angle
e„by using some of the latest experimental data
on hyperon semileptonic decays and from the in-
ternal consistency of our sum rules involving the
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axial-vector couplings and the masses of the &'

baryons. We find that sin6}„=0.220 + 0.020 and
A' = 1.711 GeV. We also obtain some of the axial-
vector matrix elements. Using the calculated
values of 8„, 8 ~, and A', we derive and present
in Sec. V branching ratios for various hyperon
semileptonic decays and also their respective
G„/G» ratios. In Sec. VI we give the simple bro
ken-SU(3) parametrization for the various obser-
vable hyperon semileptonic couplings. In Sec. VIII
we calculate the branching ratios for the strong
decay modes of the A' and find a large width = 1
GeV for the A'.

II. BROKEN-SU(3) SUM RULES FOR THE SEMILEPTONIC
HYPERON DECAYS IN THE PRESENCE OF THE A'

The semileptonic weak Hamiltonian is given by

If .»»
= (G„/~~)[~ "(x)j;(x)+j "(x)~: (x)],

use of charge algebras, [V„Vs]= if,»V» and [V„A~]
=if,»A», is sufficient

We now briefly explain our dynamical assump-
tion, asymptotic SU(3)."' Consider the creation
or annihilation operator a, (q, s) of the physical
particle with physical SU(3) index o', helicity s,
and momentum k. The transformation of a (q, s)
under SU(3) can be expressed (suppressing the
time- dependent factor in the Schrodinger repre-
sentation ) as

[V„a (q, s)] =i Zsu& s(q, s)as(q, s)+ 5u& (q, s).

In exact SU(3), 5u, (q, s) = 0, particles a and 8
belong to the same SU(3) multiplet, u„s is a linear
combination of structure constants, and the above
expression is valid for any q. In broken SU(3),
this is no longer true. However, asymptotic SU(3)
assumes" that a (q, s) still transforms linearly
under SU(3) but only in the limit q- ~, i.e. ,

where G„=1.43583 X 10"erg cm', j„(x) is the
leptonic current, and the hadronic current J"(x)
is given by

5u, (q, s)- „, (a & 0) as q- ~.
I q I

"' (2.3)

&"(x) = [cos8» V"„(x)+ cosH„A,",(x)]

+ [sine»Vr". (x) + sin8„Ar". (x)].

I B

+ ~ ~ ~ (2.1}

(q' s') IA"(0) IBs(q s)}

"' E' "'g„(p')u.(q~, s ')y, y„us (q, s)
C B

The vector and axial-vector form factors of the
hyperon semileptonic decay B -BB+ l + v through
the currents V„"(x) and A„"(x), respectively, are
defined by

&B.(q, s')I V,"(0)IBs(q,s))

In the sum ZB, g can no longer be restricted to the
members of the same SU(3) multiplet involving the
e and 9 should, therefore, be extended, in prin-
ciple, to all particles which have the same J or
J~ as the n in anticipation of the occurence of
SU(3) mixing. However, with Eq. (2.3) the as(q, s)'s
can be related (only in the limit q- ~} linearly to
the hypothetical SU(3} representation operators
a, (q, s)'s. These linear relations define the SU(3)
mixing parameters. Since we only consider in
this paper the mixing between the octet hyperon
and the SU(3)-singlet ninth —,"baryon A', the an-
nihilation operators a»(q, s) and a», (q, s) will be
related linearly to the SU(3) representation opera-
tors a,(q, s) and as(q, s) in the limit q ~ by

/a»(q, s)) f costs sin&a) (as(q, s))
a~, q, s —sinu cosa a, q, s

+ ~ ~ ~
y (2.2) (2 4)

where E =(m '+q")'~', p'=(q —q')', s and s' de-
note the helicity.

The important fact we utilize below is that the
weak currents V",(x) and A", (x) (i =1,2, . ~ ~, 8) sat-
isfy the chiral SU(3) @SU(3) current algebras which
are valid in broken SU(3). As will be seen, for the
discussion of only the vector and axial-vector form
factors at zero four- momentum transfer, only the

where &o is the SU(3) ~-~™x~ngangle.
Let us rewrite the charge algebras in terms of

physical SU(3) indices as [V, Vs] =F s„V„and
[V,As]=F s„A„, where a, 8, and y stand for x',

etc. F» is a linear combination of f,». In-
serting the vector algebras between the &' baryon
states &B„(q,s)

I
and IB,(q, s)) with q-~, we obtain

a set of algebraic equations,

Z &B„(q,s)l V IB )&Bsl V» IB (q s)}—E &B»(q s)l VslB.)&B.I
V IB (q s})=F s»&B»(q s)l V» IB (q s)),
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in which the intermediate states are restricted to
the —,

' baryon states (with q and s) according to
asymptotic SU(3). [In exact SU(3) the above set of
equations is valid for any q. ] We thus see that, in
the absence of the A', &B,(q, s)

I
V, IB,(q, s})with

q- ~ takes the exact-SU(3) value even in broken
SU(3} thanks to asymptotic SU(3). With the nor-
malization

&P(q, s)l V, .IP(q, s)&=-'

(note that V, o
—= Io) we obtain, for example,

(n(q, s)
I Vx o

I
A(q, s)& = (

—', )' '

for q -~. In the presence of the A', the A' must
be included in the above set of algebraic equations.
Upon solving these equations we find that the ma-
trix elements involving the state A' are now modi-

I

fied and we find, for example,

(n(q, s}l vs 2
I
A(q, s)) = (2}'~' cosoo

for q-~. We may also conjecture this result via
the observation (in the limit q-~)

(n(q, s)
I
Vxo IA(q, s)&= &n(q, s)

I
Vxolcos&uA, (q, s)

+ sin&uAo(q, s))
= cost@ &n(q, s ) I

Vx o
I
A, (q, s))

= (
—')' ' cosa.

Therefore, we have shown that in the framework
of asymptotic SU(3) &B„(q,s)

I
V IB,(q, s)) with q-~

can be parametrized in broken SU(3) by using ex-
act SU(3) with a simple modification due to mixing.
Proceeding in a similar way for the algebra
[V,Ap] =f p„A„, we obtain for q- ~

& &B,«, s&I V. IB.&&B. IApIB «,s»- &.&B2«, s}IAp IB, I&&B. I
V. IB.«s» =E.p, &B.«, s}

I
V, IB.(q, s».

Again the intermediate states are restricted to the —,
' baryons thanks to asymptotic SU(3}. It is then clear

that in the absence of the A', the axial-vector matrix elements (B„(q,s)IA IB,(q, s)) can still be parame-
trized (but only in the limit q- ~) by exact SU(3) in terms of two independent matrix elements usually
called & and F couplings. In the presence of the A, we again find that a simple modification due to mix-
ing takes place.

As an illustration, we consider a special case, i.e. , the algebra [Vxo,A„]= Ax, inserted between the
states &P(q, s)l and IA(q, s)) with q-~, i.e. ,

By noting that V„=f Vo(x)d'x and using our norm-
alization of the spinor wave function u (q, s = 2)
=(E +m„)'~'(2m, ) '(1, 0, 0, lql(E +m, ) '), we see
from Eqs. (2.1) and (2.2) that

Noting that

&P(q, s) IV ol&'&=f, E (o) =-I

and

Iim &B (q s
I V, IBp(q, s)) =f.,(0)

I a I-~
&n(q, s)

I V,olA&=f„,(o) =(-.')'"cos~,
we obtain from Eq. (2.5) the sum rule

lim (B (q, s) IA„ I Bp(q, s)) =g p(0),
I qI~oo

i.e. , the matrix elements of the vector and axial-
vector charges at q- ~ are directly related to the
vector and axial-vector couplings at the zero four-
momentum transfer limit. The contributions of
other form factors in Eqs. (2.1) and (2.2) to the
matrix elements of the charges V„and A„vanish
in the limit q-~. (G„/v2)gp~(0) sin8„, for exam-
ple, is the observed axial-vector coupling con-
stant (at zero four-momentum transfer) for the
A —P+ e + v decay. The values of f p(0) relevant
for the hyperon semileptonic decays are listed be-
low:

fp„(0)=1, f~E+(0)=0, fp„(0)=(2)'~' cos(o, f„E-(0)=1,

f~x-(0) =(2)' 'cosv, fEox-(0) =(2)' ', fE+xo(0) =1.

gp- —— gp-)0 + 4 p J cos Mg
S 3iz/2

fl 2

-(—,') ' ~ ' sincogE-~. ,

1
gE E+ ~2 (gnp+gE n} ~

(2.7)

(2.8)

gp+~p = -gg-~ (2.9)

g»(0) gE~g(0) + (2) cos&dgnp(0) . (2.6)

[Hereafter we write g»(0) =g», etc.] We empha
size that Eq. (2.6) is a broken-SU(3) sum rule de-
rived without recourse to exact SU(3).

In addition to Eq. (2.6) we obtain the following
set of sum rules which allows us to determine all
the couplings in terms of three (the inclusion of
the A' brings in one more coupling) independent
couplings and the mixing angle ~:
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g g+~ —-gg-~ ~

gEOE' gE Eo ~

(2.10)

(2.11) sin'(d[(A') ' —(A) '] = f22[(n) '+ (:"')']

gz-3:o —gg-~ ~

r 3Si/2
g3: p —i2) COSMgx-3;0+ g

—g„O = -(2) ggOrs+ (2) COS(dgpsO

-(—2)'~' sin(og~&. .

(2.12)

(2.13)

(2.14)

We now specify the mechanism of SU(3} and
chiral SU(3) )3 SU(3) breaking according to (c). We
first use the exotic C. R. 's [V~, Vro]=0 and [V~,
A~]=0, etc. , and then the exotic C. R. [Vro, A, ]
=0.

Consider [Vro, V~] = 0. By inserting the commu-
tator between the states (n(q) i

and i:-o(q')), we ob-
tain via the asymptotic SU(3) assumption the qua-
dratic GMO mass formula with mixing in the limit

[(Z')'+ 3(A)']) . (2.15)

The use of the exotic C. R. [Vro, A~] = 0, etc. also
produces" the same mass constraint Eq. (2.15)
after eliminating the axial-vector matrix elements
through Eqs. (2.6)-(2.14). Thus if the A' mass is
larger than the A mass, the small A-A' mixing
angle (d can fix the small deviation of the GMO
mass formula (quadratic} from experiment.

We now study all the constraints obtained by
imposing the exotic C. R. [V~,A, -] = 0. For ex-
ample, we insert this C. R. between the states
(n(q) i

and iZ'(q')) with iqi - ~, and we obtain
(actually this is the only independent information
from the C. R. 's of the type [Vro, A,-] =0, if we
use Eq. (2.15))

[(Z')'-(A)'](2)' 'cos(ogz. —[(Z')' (A')'](-,')' 'sin(og, z

2 0 2 3 1/2 3 1/Z (p)'-(z )'=(() —(z)]rsss —()sos gs,*()s2*.E —.. . 2v2 (n) -(z)g"
(2.16)

When Eq. (2.16) is combined with Eq. (2.14), we find that

[(Zo)' —(A)'] cos(dg&+~- [(Z )' —(A')'] sin(dg~, &, ———5'[(Z')' —(n)']g„o, (2.17)

where

5' =-(-')'"(I —[(P)' (z')'V[(22)' (z')']j = o

5' = 0 if we neglect the p nmass difference-. [If
we consider SU(2) breaking, then A-A-Z' mixing
takes place. In this paper we only consider SU(3)
A-A' mixing and neglect the SU(2) mixing. How-
ever, we keep SU(2) breaking in the masses like
6r in order to study a. partial effect of SU(2) break-
ing. ] In the absence of the A', i.e. , sin(d = 0 and
cos& = 1, the Z'-A mass degeneracy' is apparent
(g&,~40) from the sum rule Eq. (2.17}. Equation
(2.17) can be written in the form

(2.18)

where

qr —[I ( ))./25r pr]-)

GD and GF are defined by

1
G&2F —= ~ e gEoE+,

GV 2D =- (—,')' 'er(P —1) COS&ug&sO

(2.20)

III. EVALUATION OF THE VECTOR CABIBBO ANGLE
FROM THE HYPERON SEMILEPTONIC DECAYS

with D+F=1. G is simply a scale factor. In the
absence of the A', our D and F couplings can be
shown to coincide with the familiar D and F cou-
plings of exact SU(3).

where

(Z')' —(A)', (Z')' —(n)'
(Zo)2 (Ar)2 r P (Zo)2 (Ar)2

For the hypercharge-conserving and the hyper-
charge-changing semileptonic decay B,.—Bf+ l+ v,
define

g„o =
~2

t ggops+ (2) t (P —1) cos(dgpso

—= G22(D+F), (2.19)

We can also eliminate go,&, from Eq. (2.14) using
Eq. (2.16); then we obtain

(G„),z ——g,g0} cos8„, (G„},i=f,.z(0) cos8„, —

(3.1)
(G„),& ——g, i(0) sin8„, (G),i =—f,. (0) isin8r~s.

We also define X,.z
' ———(G„),.z/(Gv), .z.

In order to evaluate 8~, it is necessary to know

X, , ' and F(B,. -Bz+ I+ v) and it is convenient to
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have the superb numerical tables of Nieto'~ (cor-
rected for the more recent value of G, ) at one' s
disposal. Nieto's tables relate directly the par-
tial decay rates to the various form factors. We
will consider only the vector and axial-vector
form factors in this paper, as corrections due to
other form factors are expected to be relatively
minor. We also neglect the q' dependence of the
f;z(q') and g,z(q'). These effects tend to decrease
the Cabibbo angles 8~ and O„by a few percent.

We choose the decay Z -ne v to evaluate 8~,
as its statistics are much better than any other
decay. In addition, the problems of radiative and
nuclear corrections for the n- pe v decay are
avoided. Using the experiment, i.e. , X&-„' from
Table I and I'(Z -ne v) from Table II, and Nieto's
tables, "we find that

Thus

= (I'(E - ne v)/[9. 059+ 26.73(Xz-„')']x 10')'~'

= 0.227 + 0.008 =f&-„sin8

sin&v= 0.227 +0.008 [f&-„——1 from asymptotic SU(3)].

(3.2}

TABLE I. Axial-vector coupling constant to vector
coupling constant ratios from experiment for three
hyperon semileptonic decays.

Decay process X '—=(G~/Gz) ratio

Z ngv
n pg v

A —pg v

+(0.435+ 0.035)
1.250+ 0.009
0.658+ 0.054

The data are taken from Ref. 2.

I and II), we obtain

(G „)~~ = 0.298 + 0.027,

(G„)~~=0.196+0.008 .
(3.4)

(G„)~-~——0.608+0.030,
)

(Gv}&-~ ——0 by assumption (no Z' A-A' mixing} .
For the P decay n- pe v, we obtain, "using X„~ '
from Table I and Eq. (3.2),

For the decays Z'- Ae'v, we find in a similar way

(G„)~+~= -0.615 +0.072,
(3.5)

(Gv) &+~ ——0 by assumption (no Z'-A-A' mixing),

From the definition of X,.&
' (we take X&-„' nega-

tive), we find that

(G„)~-„=(-0.435)(G„)~-„

(G„)„=f cos8 = cosa = 0.974 + 0.002,

(G„)~=1.217 +0.009.
(3.7)

= -0.0989 +0.0078 . (3.3)

Similarly, using I'(A-pe v) and X~~
' (see Tables

Thus we find that r(n- pe p) = 975 +12 sec, which
implies" that the radiative correction to G in 0"
decay is (3 +1)%, in good agreement with the ra-

TABLE II. Hyperon semileptonic branching ratios: (i) from experitnent, (ii) from a one-angle
Cabibbo fit, and (iii) from broken-SU(3) sum rules in the presence of A'(1711).

Decay process
Branching ratio

(ii) '

Z ngv
Z np, v

A~pg V

A~pp v

Z Ag v
Z+ Ae+ v

Z ~Afs' v
= -Z'e v

~Ag. v

~Zg v

~AP v

-zg v
0 Z+g v

(1.082 + 0.038) x10
(4 47 + 0,43) X10
(8 13 + 0 29) x10
(1.57 +O.35) X10 '
(6.04 +0.60) xlO 5

(2.02 + 0.47) &10
(1 15+'+») X10-'

0 5x10

(0.68 +0.22) &10 3

&1.3 xlo
&0.005
&1.5x10 '

1 07X10
4.95 x 10
8.13x 10
1.34 x 10
6.98 x10
2.28 X 10
0.46 x 10

0.55x 10

1.082 x 10 3

4.80 x 10
7.64 x10
1.23 xlo 4

6.11 x 10
2.00 x 10
0.41 X 10
0.08 X 10

0.49 xlo 3

0.11 x10 3

977 xlo 7

0.24 xlo 3

7~=2.624x 10 sec 7~ =0.80xlo sec 7 =1.482x10 ' sec 7'I;-=1.652x 10 ' sec
7~o=2.96X 10 ' sec

See Ref. 2.
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diative corrections predicted by SU(2)~ SU(1)
gauge models. "

IV. EVALUATION OF THE AXIAL-VECTOR CABIBBO
ANGLE AND THE MASS OF A'

With the definition of (G„)«and Eq. (2.6) we ob-
tain

For (G„)&.h = -0.615 we get

A' = 1.745 GeV,

& = 6.389',

sinH„= 0.221+ 0.020 .

(4 7)

(4.1)

(e'/2)(G„)„r-
(1 —~'/2)(Gh), „-&'(P —1)f.h(G, ) g h

'

From Eqs. (4.1) and (4.2) we find that

t~g ( A)hh" f„.(G.) +(G.), .
On the other hand, Eqs. (2.8) and (2.19) tell us
that

It is interesting to note that the average of the
last two results yields A' = 1.713 GeV. Using the
values of H„and H~ obtained from the data and the
broken-SU(3) sum rules, we can calculate all of
the axial-vector matrix elements. The results
are given in Table III.

V. PREDICTION OF BRANCHING RATIOS AND G~ /Gy
RATIOS FOR HYPERON SEMILEPTONIC DECAY

f~(Gh)~+ (Gh) r. h

(&'/2) (G„)„g-
(1 —&'/2)(G„)h„—e'(P —1)f„h(G„)~eh

(4.3)

(Gh)~ h
——-0.612+0.039= -(Gh)~-h . (4.4)

With the values of (G„)&.h, (G„)„h, (G„)h~, (G„)&-„,
and Eq. (4.3), we obtain, using a computer, the
following results:

and

A' = 1.711 GeV,

42= 6.594',

sin8„= 0.220 ~ 0.020 .

(4.5)

Now Eq. (4.3) is a function only of the mass of A',
(G„)„l;-, (G„)~+h, (Gh)h~, and (Gh)~„. Therefore,
A' can be determined from the data. Use of Eq.
(2.15), i.e. , the SU(3) mass formula for the —,"
baryons, then gives ur and thus f„h(&)'i' c so&a;

Eq. (4.1) then yields the value of 8„. What is the
value to be assigned to (G„)&+ ~ Under our hy-
pothesis of no SU(2) mixing, t(Gh)„h i

= i(Gh) &-h i.
Even with SU(2) mixing i(Gh)&, h

= i(Gh)&-hi is
expected to hold. Therefore, in the absence of an
estimate of the SU(2) mixing, the average of the
magnitudes of (Gh)&, h and (Gh)&-h may be the more
meaningful quantity to use in Eq. (4.3). We then
have

Using the calculated axial-vector matrix ele-
ments listed in Table III and the values of H~ and
tl» (sine»=0. 227+0.008 and sin8„=0.220+0.02) we
can calculate G„and G» (the axial-vector and vec-
tor form factors, respectively, at zero four-rno-
mentum transfer) for each semileptonic decay.
With the help of Nieto's tables, we can then easily
determine the partial rates or branching ratios.
The results are presented in Table II. The G„/G»
ratios are determined as well and are presented
in Table IV. We emphasize that these branching
ratios and G„/G» ratios [including r&-I'(Z -ne v)
and X&-„'] in column (iii) of Tables II and IV are
not input, because they are recalculated using the
value of H„which depends on the experimental data
»&-I'(Z - ne v), X&-„', »h I'(A- pe v), X» ', X„h ',
and»&+ I'(Z'- Ae'v) as given in column (i) of these
tables. We find that the experimental values are
well reproduced except for the small discrepancy
in the A- pe 7 decay. We believe that this is due

TABLE III. Axial-vector matrix elements calculated
using three different values for the mass of A': (i) A'

=1.681 GeV, (ii) A'=1.711 GeV, and (iii) A'=1.745 GeV.

Axial-vector
matrix element

A'= 1.681 GeV,

(0 = 6.806',

sin8„= 0.219+ 0.020 .

(4 6)

We note that most of the error in sinH„ is due to
the error in the value of (Gh)&.h.

Actually, the results for A', co, H„are not qual-
itatively much different even when we use (G„)&,h
= -0.608 or -0.615. For (Gh)&,h ——-0.608 we ob-
tain

gz+ go

gg-n

gpss

gp go

gpss&

gA" g+

gX03:-
gg03,-

gW'3, -
gpn
gz+w

+ 0.5634
-0.4509
+ 0.8941
—0.3189
+ 0.4490
+ 0.6300
-0.4509
+ 0.8822
+ 0.0748
-0.5646

1.2476
-0.6232

+ 0.5645
-0.4495
+ 0 ~ 8912
—0.3178
+ 0.4347
+ 0.6102
—0.4495
+ 0.8824
+ 0.0802
-0.5470

1.2479
-0.6270

+ 0.5657
—0.4480
+ 0.8883
-0.3168
+ 0.4199
+ 0.5896
-0.4480
+ 0.8825
+ 0.0856
—0.5287

1.2481
-0.6308
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to the slight inconsistency between the nominal ex-
perimental values of r~ I'(A- pe v) and X~» '.

VI. BROKEN-SU(3) PARAMETRIZATION OF THE
SEMILEPTONIC HYPERON DECAY COUPLINGS

TABLE IV. Axial-vector coupling constant to vector
coupling constant ratios: (i) from experiment, (ii) from
a one-angle Cabibbo fit, and (iii) from broken-SU(3) sum
rules in the presence of &'(1711).

Thanks to the constraint from the C. R. [Vro,
A,-] = 0, even in the presence of the SU(3)-break-
ing interaction and the singlet &' baryon A', we
still find it possible to parametrize all the axial-
vector couplings with just two parameters D and
F defined by Eq. (2.20) (which reduce to their ca-
nonical Cabibbo values as (() [the SU(3) mixing an-
gle] vanishes) given the mass of A'. In the follow-
ing we list the parametrization for the observable
axial-vector couplings. The parametrization of
the vector parts is, of course, obtained by setting
D= 0, changing 8„to 8~, and scaling the overall
coupling G to an appropriate value:

Decay process

Z nev
A pe v

n pe v

e v

~Ae v

Zoe v
~p"e v

Z —Roe v

See Ref. 2.

+(0.435+ 0.035)
0.658 + 0.054
1.250+ 0.009

-0.394
0.702
1.250

-0.435
0.709
1.250
1.208

0.064
1.208

—0.450
0.340

n pe v:-(GM2) cos8„(E+D),
(2)l/2

Z -Ae v: (G&2) cos8„D,
2

A-»s; (GW2) ~ s» I» ~ '1 —„DI[(-)'~'sss ],
p cosco~

G~s)„„s» ) [ "* [(&')*-(&')'~ (»)'-()[)(»-()}
Q

1 (p —1) sin'(0[(Zo)' —(Z')'+ (p)' —(n)'] [(Z')' —(A)'] sin'(d
e'([8 —1) Q

—:e v: (same as Z -ne v with sin8„- cos8„),
-Ae v: (~)'~' cosvg[. -„+g&»~,

G~2) 8 ~, .[(~')'-(~')'+(p)'-(n)'](P -1)s»
A Q

x F+ 1+
[(~')' —(A)'l

~'[(~')' —(~')'+ (p)' —(n)'](iI —1)

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

Here

y —= -e'([8 —1) cos((),

o( -=a{2[(n)'+(:"')']-[(Z')'+3(A)']),
(6.8)

G =g&„(1/V2)(D+F) '
w—ith D+F= 1 .

With A'=1.711 we find that F=0.319, D=0.681,
and D/(D+ E) = 0.681. These may be compared
with the latest fit' to the experimental data with
exact SU(3) parametrization, i.e. , D/D+ E = 0.65

+0.02, D=0.65+0.02, and F=0.35+0.02. We,
therefore, have shown that even in the presence
of the A', we can parametrize the data in terms
of the newly defined D and E couplings [Eq. (2.20)].
Since we found that A' weakly mixes with A, our D and
F couplings will not be significantly different from
original exact-SU(3) D and E couplings. The value of
the D/F ratio of the new couplings is found to be close
to the bestfitof the exact-SU(3) D/F ratio to the
present experimental data which deviate rather
significantly from the SU(6) D/E value. Thus, in
our formulation, all deviations from SU(6) are
mainly due to A-A' mixing.
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VII. STRONG DECAYS AND BRANCHING RATIOS
OF THE A'

TABLE V. Branching ratios for the strong decay
modes of A'(1711) calculated using a broken-SU(3) decay-
rate formuIa.

In order to calculate the yartial rates of the
main strong decays of the A', me use the broken-
SU(3} decay-rate formula given by'

Decay mode Branching ratio

(7.1)

where I'„ is a 4 =0 meson, f» is the appropriate
meson decay constant (we take f,= 0.132 GeV,
fr=0.157 GeV), p is the center-of-mass momen-
tum of the final-state baryon, and g~,~ is the ap-
propriate axial-vector matrix element. Our re-
sults are presented in Table V. Since the mass
of the A' is large, the total width of A' turns out
to be of the order of 1 GeV. This will make the
observation of the A' difficult. However, there is
some indication for the existence of a J = &' reso-
nance at 1.75 QeV."

VIII. FINAL lGUHARKS: MIXING FROM THE POINT
OF VIEW OF SU(6) O(3) CLASSIFICATION

If it is insisted that SU(6}%80(3) is the under-
lying classification group of hadrons, our A' mill
probably belong to the SU(3) singlet of the 70 I,»
=0' which comprises (1,—,'), (8, —,'), (10,—,'), and

(8, —,'). The predicted mass of our A' lies, in fact,
in the range of theoretical expectation. " The
ground-state baryons belong to the 56 I. = 0' which
comprises (8, —,") and (10, —,').

The seemingly natural point of view toward the
inter-SU(6) 80(3)-multipIet SU(3) mixing will be
that the mixings between the multiylets belonging
to the same I ~ dominate over others. Then, for
the ground state -' octet, the mixings with the
L»=0' (1,—,")„,(8, —,")„,and (10, ~')„wil1 be rela-
tively important. The simplest argument which
favors the mixing with the (1, 2 )„treated in this
paper will then be that the A' lies closest to the
ground-state 2' octet, It may also be noted that
the SU(3) mixings between the two SU(3) multiplets
of the same multiplicity, such as the 8-8 or 10-10
mixings, will be less important in the SUt'3) sum
mles because of the symmetric appearance of the
mixing angles. For example, consider the 8-8
baryon mixings. There are four mixing angles
8„, e~, 8&, and en. (e„denotes, for example, the
n-n' mixing). In the SU(3) sum rules, these mix-
ing angles appear only in the combination' 8,. —8,.
(i,j=n, A, Z, "). However, in the zeroth approxi-
mation we expect" that 8,.'s are the same. There-
fore, even if 8,. itself were large, the net effect of

En
K p
Z+7t'

zo~o

Z 7t+

0.11
0.12
0.26
0.26
0.25

I'{A' aiI) =—1005 Me V

this type of mixings in the SU(3) sum rules would
be expected to be small. On the contrary, in the
8-1 mixing only 6)~ appears and its effect will be
keenly felt. In this connection, 8-10 mixing could
also be important. In this case only 8& and 8~ ap-
pear (and we expect in the zeroth approximation
8~ ——Hn).

In fact, Lipkin" has tried to use the 8-10 mixing
to patch up the GMO mass formula for the —' octet
and also the deviations observed in Z/A transition
ratios by considering the mixing between the
ground-state —,"octet and the (10,—,")» belonging
to the I,» = 3' SU(6) multiplet. The nonstrange
member of this ~' decuplet is taken to be 4(1910).

However, Matsuda, Oneda, and Takasugi have
found" that the 8 10 mixing [for the decuplet, one
may take the 70 f.» = 0' (10,—,')] does not fix the
GMO mass formula for the ground state &' (the
correction gives the wrong sign) in our theoretical
frameworks (a), (b), and (c), whereas the A' can
easily do the job as shown in this paper. This sug-
gests that the 8-1 mixing should be more impor-
tant for the ground-state 2' baryons. For the
ground-state 2' decuplet, the effect of the mixing
with 70 I = 0' (8, —,') remains to be studied.
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