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Broken SU(4) symmetry and the new resonances
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Weinberg's spectral-function sum rules are modified to accommodate broken-symmetry effects of SU(4). With
a simple choice of the symmetry-breaking term, the spectral-function sum rules yield the observed vector-

meson mass spectrum as well as sum rules for the e e+ decay rates of vector mesons. In particular, a new

mass formula, which can be interpreted as the broken-symmetry version of the Schwinger formula, is derived.

The agreement with experiment is excellent.

Among many theoretical attempts to explain re-
cently discovered resonances, "the charm pic-
ture' of SU(4) seems the simplest. According to
this picture' ' the g particle belongs to the 15+ 1
representation of SU(4), together with p, (d, and

Since the g particle is much heavier than the
rest of the multiplet, the involved symmetry must
be a badly broken one. The usual practice of eval-
uating various parameters in the exact SU(4) limit
is a highly ambiguous procedure in this respect. '

In order to take into account the possibly large
broken effects, a more reliable way may be to
employ Weinberg's' first sum rule."Unfortu-
nately the first sum rule alone does not have much
predictive power. In this connection we note that
earlier Das, Mathur, and Okubo"'" modified
Weinberg's second sum rule allowing for symme-
try-breaking effects and obtained some interesting
results.

In this note we extend the idea to SU(4) and use
the modified second sum rule as well as the first.
To be more specific, let us write Weinberg's

first sum rule in the form":

p
( iJ ) ()))2)

(

dm' 2 =A[5(i+ (X 1)(&„5i,]m'

dm p")&(m2) =A[D5&i+ Y5(25)2

+F(d2(i+ Pdi, ii)] (2)

where D, Y, F, and P are some constants. Owing
to the existence of the F term, symmetry is now
broken.

Saturating only the low-lying states p, K*, z, y,
and g we find from Eq. (1)

(i,j =0, 1, . .. , 15),

where p")&(m2) are spectral functions of the Kal-
ldn-Lehmann type appearing in the propagator for
vector currents V'„". Here A and X are some con-
stants independent of the SU(4) suffix i.

Concerning the modified second sum rule, let
us assume the following:
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and from Eq. (2)
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G 2=A D+F —+ (Gr2)2 =A D+F — +—1 p-
2W3 ve

G,'8' 2=A D+F ——+-
W3

G,") '=A D+ g (G(15))2 A[D (2)1/2PF] (5)

G(8)G(o) AF
i j G(8) (15)

6
G (15)G(o) P

14 788



BROKEN SU(4) SYMMETRY AND THE NEW RESONANCES 789

The parameters F and D are not independent, but
can be expressed as

E= —(G——G 2)=21 2 2
p E

2=-—(m 22 —m ')E p

D= =P+—(2GK2 +G )
F 1

~6 3A

,'[m, '+ 2—mK2'+&2P(mK2' —m, ')] .

After eliminating coupling constants altogether,
we find the nontrivial constraint for vector-meson
masses

o2(m&2 -E"")+t'(m&2X E")-)+A'(m
&.

2-E"))+2exo

(I 2 E&15))(~ 2 E&5))(~ 2X @&0))

(8}'

that the numerical value of P is identical to that
needed to fit the quadratic mass formula in the
mass mixing model. '" It should be emphasized
that our derivation is independent of details of the
mixing model, and that Eqs. (1) and (2) specify
mass dependence completely.

In order to understand the content of Eq. (8), we
discuss two special cases of Eqs. (1) aIld (2) m de-
tail.

(a) Y=O and X= 1 (referred to as model A),

(b} F=0 and arbitrary X
(referred to as model B).

Since the equations overdetermine the parameters
in either case, we can derive sum rules.

In model A the mass constraint, Eq. (8), be-
comes

(m &2 —m, 2) [m, ' —(2m K22 —m, 2) ]

where

E '=D+F — +—,(8)
WS &8

'

E &15) D (2)1/2p j' @&0)

F F FP0'
&8'

(i=&d, 9/, and g) 3m 2 2 2

P
l K* 2 0 (ll )

4&2(mK22 —m22)

m 2=m2
I&) p (12a)

y 2mi+ mp j (12b)

m„2= 5[4WSP(mK22 —m52)+2mK22+m22]. (12c)

Noticing that m, &2mxq'- m, ', we can identify

For given m, ' and mK22, Eq. (8) determines the
&d, i0, and g masses in terms of p, X, and F, or
vice versa. "

Choosing

X=0.9322, I = -2605 Mev'2, P = 21.49, (10)

we can reproduce the physical masses of ~, y,
and g." (This model will be referred to as model
I.) Note that since the above value of F gives
il'/Di —0.00089, I' may be neglected. Note also

Equations (12a) and (12b) are known as nonet for-
mulas, '~ and the agreement with experiment is
very good. The last equation, (12c), relates m22

to p. {Numerically P is 21.9 if the physical mass
is substituted for m, . This value is rather close
to the actual value [see Eq. (10}].) Eq. (12c) is
responsible for the vanishing of C~"' in this model.

We can improve the situation by not restricting
X to be 1. In model 8 the mass constraint, Eq.
(8), becomes

x& + x& 5 2&2 —3&2p&2+ 3)1 ——(3)1 —2&2+ &2P&2)X

+x&—(2 3&2P) SP2- —(3)12 —2&2+ &2pa) ——(3+X+SP2) — [3)12(X-I)+ 8&5(I —2WSP)] =0, (13)
2Q 2 2Q

where s, =m, ' —p and the abbreviation symbols
)12 —= 5(4mK5, 2 —m,2) and &2 =—mK22 —m, ' are used.
By eliminating P we can-derive two expressions
for X. When physical masses ax e substituted as
inputs, one then gives X=0.9317 and the other
gives X=0.9333. (Or, equivalently, P = 21.48 or
21.49.) These values are very close, and also
close to the value for P in Eq. (10).

We should like to express this fact in the form
of sum rules. Note that in model A the parameter

P is related only to m~'. Therefore, in model B
let us assume that m„2 and m„' can be determined
independent of any choice of P. In other words,
m„' and m„' should be determined from a coeffi-
cient of P in Eq. (13). Explicitly,

2 3X+1 2 1, 2 20. 32
SX '"' ""X(' "'}'9X 2VX

'=

(14)
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After eliminating X we obtain a sum rule, This is in excellent agreement with experiment:

—,'(2m«e2+m, ') emrs' —m, 2)2' » =1.054 experiment.
9 x„x„
8 (mrs' —mp' '

--,'x x„/(mre2 —m, ')' =1 was obtained in model A
and is known as the Schwinger formula. '6

From the above sum rule we find

» =1.052 (model B).x„x„
8 (mrs' —m, ' '

In order to be consistent with our assumption,
m„' and m„' should also be determined from the
rest of Eq. (13).

After eliminating X, we can again construct the
following sum rule:

3—-8 " ' —31+3— 2" " "+91-——

21 4PN 4 + td g +

Substituting an experimental value
(x„+x„)/a =-0.4867, we find

",' =1.067 imodel B).
8 o~

dure is independent of details of the mixing model.
Let us now briefly discuss hitherto unobserved

D* and E*particles. " After eliminating the cou-
pling constants from the equations

This agrees with experiment within 1.3%.
Before we conclude the discussion of masses,

we should like to add two comments. One con-
cerns a possible choice of the symmetry-breaking
term. Since masses are more accurately known
than coupling constants, the discussion of masses
could be an important criterion with which to test
the validity of available theoretical models. Ear-
lier, for instance, a symmetry-breaking term of
the type Jdm'p(m')/m' wa.s introduced by Oakes
and Sakurai" in connection with the current-mix-
ing model. "

Extending to SU(4), we assume a symmetry-
breaking term of the form

(G „)'=lie/( ——),

we can determine the masses.
When P of Eq. (12c) is substituted, the following

masses are predicted~".

1 2 2 1m~g2 , (mq'+ ——m—„'), mDg' = , (m~2+ m—p2)

model A. (17)

p(l j)(~2)
J) dm2 4 =a6;;+b(d;)8+ pd;;, 5),

More precisely, when P of Eq. (10) is substituted,
the masses are predicted to be

where a, b, and P are some constants.
We repeated the calculation using Eq. (16) to-

gether with Eq. (1) and found the mass formula
(13) again: however, the mass squares are now
replaced by their inverse squares. Substituting
physical masses for m„, I„, and m~, we find
that the two expressions for X do not give consis-
tent numerical values. Thus the above symme-
try-breaking term must be rejected from the dis-
cussions of masses alone. Of course our proce-

pyg~q = 2283.6 MeV, ma~ = 2236.3 Me7'.

g(0) C (l5)
i i

+(8) Qi and C(8) Sip
i i

(18)

These results agree with those of the quadratic
mass formula.

In order to determine the coupling constants we
must solve Eqs. (3) and (4). The ratios of the cou-
pling constants, for instance, are found to be
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where

(19a)
~SX [&Ra+ 3P(p' —m, ')]

4v 2 aP+ 3(p,' ——,'a+ Y-Xmg)

~2a+3p(p, '- mp)b]= p t=(dy +y and $
4v 2 ap+ 3(p, ' —-,'a —m p)

(19b)

G,"' is expressible in the form

mq axb
g

(20)

Here, without loss of generality, we have chosen
G,"'/m, &0. Numerically,

m
Q)

G (0) G (15)

mQ) m Q 0.6149 0.6529 0.4061
G(8)

m
fp

m
fp

m
(p

0.7886 -0.5085 -0.3175 (21)

G (8) G(Q) G (15)

mQ mQ m

7.831 x 10 4 -0.4955 0.8608

Restricting ourselves to the quark model for
simplicity, we suppose that(P, Z, A., and 6" have
charges of —'„3 3 and Z, respectively. The
electromagnetic current V'„now takes the form

rules:

m„I'„+m„l „=3m l",
m„I'„=Z' —'(3+X)m,I', .

(27a)

(27b)

gem y(3 &+ y(8) ~ (V(o) v 3 Y(x5))
7 (22)

and the width for a vector meson V decaying into
an e e'pair is

4~ e2 2 f 2

V
(23)

where the coupling constants fv are defined by

(oiV'„-iV(u)& =f,~„
0

(24)

The relations between f» and G, are

=Gp,

W3
'

W2

(25)

i=&a, p, and g.

With these preliminaries, the final results are
expressible in terms of widths.

It is well known that Weinberg's first sum rule
alone yields a sum rule'

m„I'„+m I'„+m&I'& ——[3+Z —'(3+X)]m,I' .
(26)

Previously either a parameter X was assumed to
be 1, or otherwise the value was not known. Since
X is evaluated here, it is possible to test the above
sum rule in a more quantitative manner.

In practice our models satisfy the individual sum

Equation (27a) is a. well-known SV(3) sum rule, '0

and Eq. (27b} can be obtained from the Weinberg
sum rule under the additional assumption that g
consists of a 6"d ' state only.

Furthermore, in model A we obtain the well-
known results" '"

1m„I'„=—.m„r„=-',m, r„
m, r, =2Z'm, r„

while in models I and B we have

m„I'„=-',m, I',(1.065 —0.107Z)',

m „I'„=Qa m, I', (0.966+ 0.062 Z}2,

m&7„= (4.52 && 10 ~- 1.4047Z) m I'

= 1.97Z~m, l, .

(28a)

(28b)

(29a)

(29b)

For a range of Z of interest (Z= —', -f), numerical
results of model I and model B are close to those
of model A. The only new feature is that the ur

(or y) width has a mild Z dependence due to the
g-&o (or P-y) mixing.

The experimental results are'4

m „I'„=(0.59 + 0.13) MeV2,

—,'m I'y ——(0.68+0.06) MeV,

9 m, I'~ = (0.55 + 0.07) MeV2,

m„I'& ——(14.86 + 1.86} MeV~.

Both Eqs. (28a) and (29a) agree with the data with-
in the accuracy of experiments.
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Equation (28b) does not agree with the data if
Z= —,'. In order to fit the data we must have Z=1

Exactly the same situation holds for Eq.
(29b}.

In order to obtain a better agreement with ob-
served masses, it was important to allow X to
deviate from 1. However, present experiments
on widths do not distinguish the small difference
between the X=1 and the X&1 cases. So far we
have not included contributions of higher excited
states such as g', p', and &u'. According to SU(4),
the g' particle should belong to a member of an-
other 15 6 1 representation of SU(4), together
with p', (d', and y'.

Following the idea of Ref. 5, let us suppose that
these excited states alone satisfy the sum rules

p(i j&(m2}
dm2

2 =A'[5;, +(X—1)5;05~2],

dm2P" J'(m ) =A'[D5, , + Y5; 52& +2F (d2&&+ Pd», ;)],

(2')

where only A' is a new parameter, which may or
may not be equal to A. It then follows that these
excited states should obey exactly the same mass
formulas as those of the lowest states. The ob-
served particles seem to fit roughly the mass for-

mulas of Eq. (12a) and (12c).' Here we only men-
tion the results for widths.

Independent of Z (or X}we should have

A m I m~I'~

m, ,r,. m, , r, , ' (30)

A m I' m~I"~ m„I'„m„I'„
A' m, , r„m,, r,„m„,r„, m„, r„,' (31)

Experimental data are not available at present.
In conclusion we should like to stress that the

spectral-function approach is a powerful tech-
nique to handle a, broken symmetry such as SU(4).
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where A = G,2/m2' and A' = G,.2/m, .'. From the
experimental width'~ we find m„I'„/m„. I', , = 1.83
and from the p' experiments we obtain 0.93 sA/A'
&1.85." Thus the above sum rule seems compat-
ible with the present experiments.

Furthermore, model A predicts
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Here y is an arbitrary parameter and cannot be fixed
from group-theoretical arguments alone. We find that
the value of y chosen in the literature ranges from
1 to —1. Our Eqs. (1) and (2) uniquely yield that y
should be 1.
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