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Using the techniques of current algebra and the partially conserved axial-vector current (PCAC) hypothesis,
we perform a soft-pion calculation of the amplitudes for four proton-antiproton annihilation processes:
Pp~K+K m. +n, pp~K+K n m', pp —tK K 7r+m, and pp iK+K m m . From these results we obtain
predictions for the reaction rates of these annihilation processes at various center-of-mass energies normalized
to the Pp~ X+K rate. The predictions are compared with the existing experimental data.

I. INTRODUCTION

Proton-antiproton annihilations occupy a special
place in the general hierarchy of elementary-
particle collision processes because of the rich-
ness of the allowed final states and the variety
of possible observable phenomena. Despite the
existence of a substantial amount of pp annihilation
data, the ability of particle theory to explain these
phenomena has left much to be desired. However,
recently the formalism of current algebra' and
the partially conserved axial-vector current
(PCAC) hypothesis' have been applied to pion pro-
duction from particle-antiparticle annihilation. ' '
The class of annihilation processes pp -KK(mm)
are particularly interesting to study in view of the
sizable amount of data" available at various
energies. The recent work of the authors' on the
process pp -KK~ suggests that the PCAC hypoth-
esis is approximately valid and that valuable in-
formation might be obtained about other pp anni-
hilation reactions involving multiple-pion pro-
duction from a soft-pion study of these processes.

In this paper we extend our previous study to the
annihilation processes pp -KKmm. Soft-pion anal-
yses of the reactions pp-K'K m'm and pp
-K'K Yr'7r' have earlier been reported by
Uritam. 4' However, the calculations which we
present here are more precise and complete.
To begin with, unlike Uritam's nonrelativistic cal-
culations, we present a fully relativistic treatment
of the pp annihilation process. This is necessary
if one wishes to study these reactions for non-
zero lab momentum where most of the experiment-
al data are available. In addition, we extend
Uritam' s results for pp-K'K m'& to include non-
vanishing lab momentum. Finally, we also ex-
amine the reactions pp-K'K'7r m' and pp
-K K'm'~' at various energies which have never
previously been considered and where data are

II. SOFT-PION THEOREM

We begin by considering the reaction

i —f+ m"(0,)+ m8(0,), (2.l)

where i and f represent arbitrary multiparticle
hadronic states, and the pions have four-momenta
0 l and k2 and carry isospin n and p.

In the customary way we define the quantity

d'xd'ye'"1"e'"'&, T & x &' y ) ~

where A „,A. B are the strangeness-conserving
axial-vector currents and T denotes a ti.me-
ordered product.

(2.2)

available.
We begin in Sec. II with a derivation of a general

soft-pion theorem based on current algebra and
PCAC. Such a theorem when applied to pp anni-
hilation allows one to ultimately obtain a relation
between the amplitudes of the processes pp
-KKn~i and pp-KK. In Sec. III we study the
process pp-K'K m'm . The soft-pion theorem
in this case relates the amplitude for the emis-
sion of two soft pions to the matrix element for
the emission of an isovector photon and to the
pole terms of the matrix element of two axial-
vector currents contracted with two-pion momenta.
Upon evaluation of the photon-emission term and
the pole terms, we calculate the ratio of the
reaction rates sv(pp- K'K m'm )/w(pp-K'K ) as
a function of lab momentum making use of the
"gentleness" assumption of PCAC.

We present a similar analysis of the Ieaction
PP-K'K-w m in Sec. IV and of the reactions
pp-KK&+' in Sec. V. In Sec. VI we discuss
the results and compare the theoretical predictions
with the available experimental data.
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Contracting M„„with k," and integrating by parts gives

d xd'ye "i"e'~2' y(8 "A~ x,A, y) i -i d x d ye'"&" e'"2' A() x,A„y i 5 xo —yo,

(2.3)
where we have used the identity

s)'T (A (»),A „(y)) = T(s "A „(»),A „(y))+ [A,(»),A „(y)]&(»,—y, ) . (2.4)

The first term on the right-hand side of Eq. (2.3) involves a matrix element of the divergence of the
axial-vector current;. According to the PCAC hypothesis, we may replace this divergence by the pion field
operator according to the relation

a~A„(») =c,y". (»), (2 6)

where c„=My,'g„/g+„„„(0), and M is the nucleon mass; p, is the pion mass; g„represents the renormal-
ized pion-nucleon coupling constant (g„ /4n = 14.6); K„„QO) is the pionic form factor of the nucleon

[KNN, (p, ') = 1]; g„ is the renormalized axial-vector coupling constant (g„=1.2).
The second term appearing in Eq. (2.3) involves an equal-time commutation relation between two axial-

vector currents. Such a term can be evaluated using the SU(3) x SU(3) current-algebra commutation rela-
tion

[A;(»),A'„(y)]6(», —y, ) =f...,V&(»)6'(» —y) .

Substituting Eqs. (2.5) and (2.6) into Eq. (2.3) yields

sk M = —tc d xd ye 1 e 2 7 fIP)) x,A1I y))$ +c~g d xe & ~ V~p x) l

Contracting Eq. (2.7) with 0, and integrating once again by, parts yields

-k,"k,"M„, =ic, ' d'xd'ye"~" e"2' 7 „x, „y ) i

+zc„d'xd'ye"&'e"2' (Ij)~ x,A., y) i 5 xo-yo

-ie g k," d4xe'+~"2~" V~ x i, (2 8)

where we have again used PCAC and have also invoked the conserved vector-current hypothesis which
requires that

»V"(») = 0. (2.9)

The second term appearing on the right-hand side of Eq. (2.8) involves a so-called o term, which will be
neglected in the usual way. ' By repeating the contraction of M„, with the order of k, and k, reversed and

combining the result with Eq. (2.8) gives the symmetric identity

k,"k,"M» =-ic„' d'xd'ye"&" e'"2" T(Q, x, Q, y i --2i e
&& k, —k, " d'xe' 1'"2 f V& x i

(2.10)

If wenowinsert the Klein-Gordon operator and take the soft-pion limits, k, -o and k, -O, of the expression
we obtain the soft-pion theorem

k,"k,'M~„= — 4 d'xd4ye"1" e"2' 0„+p.
' (0, + p. ') f T(y„x), y, y) i

(2.11)

In this result the first term on the right-hand
side is, to within a numerical factor, "the ampli-
tude for the process i- f+w (h, )+)(~(k,); the
second term is related to the amplitude for the

process i -f+ isovector photon; the left-hand side
also does not vanish in the soft-pion limits since
M„„has contributions from terms of order k, '
or k, '. In fact, as we shall see when we apply this
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theorem to specific processes, it will be possible
to express both the isovector photon term and the
left-hand side in terms of the i -f amplitude.
Since this soft-pion theorem has been derived in
the unphysical region k, = 0, k, =0 (off mass shell),
we must extrapolate from zero-pion four-momen-
tum to low three-momentum on the mass shell if
we are to relate the physical amplitude for i-f
+ v+ v to the amplitude for i -f. Such an extra-
polation is assumed to be "gentle" in the usual
spirit of PCAC although, for the processes which
are considered in the following sections, the
pion three-momenta can be sufficiently large to
make the extrapolation which is required increas-
ingly demanding.

III. STUDY OF pp~K'K m'm

A. Application of soft-pion relations

In this section we present an analysis of the
charged-pion reaction pp -K'K m'& . Although
this pp annihilation process has been previously
studied by Uritam, ' we reanalyze this reaction,
giving a fully relativistic treatment to the calcula-
tion and extending the results to include nonzero
lab momentum.

In order to apply the soft-pion relation expressed
by E(l. (2.11), we take i =pp and f=K"K . Special-
izing to isospins corresponding to w and m emis-
sion, the soft-pion relation becomes

ZC
2

k,"k,"M'„„=— ', d'gd'ye"&*&'"2'(0„+)(, ')(CI, + )'()( KK IT(y, +(x)(p, -(y))I pp)

—-'.((k. —k,)' f d'xe'~ "*'*(K'(( ~v, *(*)()() . (3.1)

The first term on the right-hand side of E(l. (3.1)
is, to within a numerical factor, the amplitude
for pp-K'K ~'m; the second term is related to
the amplitude for the process pp-K'K + isovector
photon; the left-hand side does not vanish since
M'„„has contributions from pole terms of order
k 2

pression of the IA I' term as compared to the I BI'
term in the reaction rate" and that for lab mo-
menta as large as 5 GeV/c the IA I' term can be
safely ignored. "

The evaluation of diagrams (a), (b), and (c) in
Fig. 1 gives

B. Evaluation of pole terms

K K

The contributions to M»~ to order k ' can be
calculated from the diagrams shown in Fig. 1
where the axial-vector currents are attached to
the external p and p lines. Note that parity forbids
any attachments of the currents to the K' lines.
For v'v emission only diagrams (a), (b), and (c)
contribute. These diagrams can be easily calcu-
lated using Feynman rules. The central inter-
action, which for diagrams (a) and (b) is pp -K'K
and for diagram (c) is nn -K'K, can be written
in the relativistically invariant form 3}t =A+BE,
where Q= q, —q, is the four-momentum difference
of K' and K, andA and B are in general unknown
functions of the kinematic variables. However,
as it has been pointed out by both Uritam' and
the authors, ' upon evaluating the pole contribution,
the contribution from the A term can be dropped.
This can be explained as follows. At very low
energies (nonrelativistic region) it is easy to
show that the coefficient of the A. term mixes
large and small components of the Dirac spinors
and can thus be ignored. In the relativistic region
the preceding argument fails. However, we have
pointed out' that there is a natural kinematic sup-

~~K p xK

yK p yK

xK iK

K .K+

~.K p &K

FIG. 1. Diagrams of order k contributing to M~»~.
The S denotes the axial-vector current vertex.



14 CURRENT ALGEBRA, PARTIAL CONSERVATION OF THE. . 767

1 1 1 1
k, k™„,= 2Bg„v'(p) Q

p k p M y If'p —k -M r')f'+ 'k'-p +k, -M 'k'-p, +k + k, —M ~

1 1
MP -~ -M (3 2)

where p, and r are the proton momentum and spin state, and p, and s are the antiproton momentum and

spin state.
Keeping only terms of order k ' one finds after some manipulation

k"k2M~„= —2Bg„v '(P,)N,u"(P„),

where

Q(Mk, +P, k,)(M), -P, k, ) (Mk, +P, k,)(Mk, -P, ~ k, )Q (Mk, +P, k,)Q(Mk, -P, k, )

(p, k )p, (k +k ) (p, k )p, (k + k ) (p, k )(p, 'k2)

(3.3)

(3.4)

C. Evaluation of radiative term

We next evaluate the term appearing in Eq. (3.1)
corresponding to the emission of an isovector
photon: pp-K'K + isovector photon. Since in the
soft-pion limit k, -0, k, -0, and the momentum
of the photon k= k, + k, -0. Thus we can adopt the
procedure developed by Low" for soft-photon
emission. This procedure enables one to calcu-
late the radiative amplitude to orders k ' and k'
in terms of the nonradiative amplitude.

The amplitude for the radiative process is given
by

(3 8)M =M" +M".
V Il

M„'~ is comprised of all diagrams (see Fig. 2)
where the photon is emitted from either the
charged K lines or from the proton or antiproton
line. " M„'~ consists of all diagrams (see Fig. 3)
where the photon emerges from the interaction
vertex rather than from an external line. Now,
as k-0, it can be shown from Low's theorem
that M„' - k ' and M'„'~ - constant. Thus, in the
soft-pion limit only (k, —k, ) "M&~ contributes to
the radiative term in Eq. (3.1). From the dia-
grams in Fig. 2 one finds as k -0,

M„= d'xe""(K'K V„' x) PP . (3.5) Mo) 1 fir 'f2v P29 Pi&
u 2 q ~ k q ~ k P ~ k P ~ k

This amplitude can be separated into two parts: x v'(p, ) BQ4"(p,), (3 'f)

K

/ q

where the factor of —,
' represents the coupling con-

stant of the isovector current to the isovector
charges.

D. Amplitude and reaction rate

Substituting Eqs. (3.3) and (3.7) into Eq. (3.1)
gives for the invariant amplitude for soft-pion
emission in pp-K"K ~'m

iK
2 4

M', „=— ", Bg„v'(p, )M,u"( p, ),
C~

(3.8)

,K+
/

/q

K+
/'

/

K/
/

/
/

/q

qzx

~, K

qgy
xK

qX

FIG. 2. Lowest-order diagrams contributing to M ' . FIG. 3. Lowest-order diagram contributing to I&".
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where M, „=Bv'(p2)+"(p,) . (3.10)

1 Ip, ~ (k, k, ) p, ~ (k, k, )&
~8g„' p, ~ (k, + k, ) p, ' (k, + k, )

Squaring the amplitude in Eq. (3.8), summing
over final spin states, and averaging over initial
states yields

q1 (k2 k 1) q2 (k2 kl)
Q (3 9)

q, (k, +k, ) q, (k, +k,), (IM+-I2) P~g2 I (3.11)

where N, is defined in Eq. (3.4) and B is the quan-
tity in the corresponding invariant amplitude
for pp-K'K, which is itself proportional to B:

where Q' is a very lengthy expression given in

Appendix B.
The differential reaction rate is given by

(2 112 0 0 6 (Pl+ P2 kl k2 ql 'q2}(l ~s2 I ) 2ko 2ko2Wg P1P2
(3.12)

We evaluate the reaction rate in the center-of-mass frame. In this frame p, =(E, p), p, =(E, —p), k,
= (w„R,), k, = (01„E2). We also introduce the new variables y, = cos8„y, = cos8„where 8, (8,) is the angle
between%, (%2) and the z axis (chosen to be along the p direction). Thus, d'k, = k, 2dk, d(cos8, )de„d'k2
= k2'dk2d(cos82)d1p„where q1, (q12) is the azmuthal angle associated with R, (%2). Since the only dependence
on 1P, and 1p2 in+' are of the forms cos(1p, —1P2} and sin2(1p, —1p2), the two integrations in the 1p variables
can be replaced by a single integration over the variable 2: = cos(q1, —1p2). Hence, we obtain for the differen-
tial rate in the center-of-mass frame

2(g.'/4&}'IBI'K .' '(w ' —u')(w. '-u') "' W'

X d011dld2dy1dy+X 0 112q, 2q,

We also find (see Appendix A) the reaction rate for pp-K+K in the center-of-mass frame to be

(3.13)

w(pp-K+K ) = ' ' (2E'+M') 1- (3.14)

where m~ represents the kaon mass.
Integrating Eq. (3.13) and dividing by Eq. (3.14) yields for the ratio of the reaction rates

w(pp-K K n'v ) 3(g 2/4v)2EKN„, '
w(pp-K'K ) 4v'M'(E' —mr' )' '(2E'+M')

1 1 1

x dx dy, dy,-1 -1 -1

QJ 1mSX

d (d 1

(d 2 mRX (w 2 2)( 2 ~2) 1/2

d&2 —x

d3 d'
1 2 1 2 2qo 2qo

where

E'+ (E —p, )' —2m
+1max =

2E —p,
(3.16a)

(2E —&u, )(2[E(E —&u, }—m~'J+ p, ') -A
2 mRX (2E —w )' —(w ' I')F'-

A = ((01,' —p, ')F'{4(E(E—&o,) —mr'J

(3.16b)

—p. 2(1 -F2)(ru, ' —p2) 4p2mrg-)'". ,

(3.16c)

F = ((I —y, ')(1 —y.') J"'~+ y y' (3.16d)

The integration over the kaon variables (q „q,)

are carried out in Appendix C. The remaining
5-fold integration is calculated numerically. The
results for the reaction-rate ratio as a function of
center-of-mass energy as well as lab momentum
are presented in Table I. It should be noted that
in the final integration the pion's three-momentum
takes on values as high as 1.6 GeV/c. Thus, for
large lab momenta (p~-few GeV), we are making
a considerable extrapolation based on the PCAC
assumption that the amplitudes involved are suf-
ficiently "gentle" to permit the extrapolation. A

comparison of the numerical results in Table I
with the available experimental data" is made
later in Sec. VI. It should be noted that our result
for R at zero lab momentum is more than an order
of magnitude lower than the result quoted by
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p lab momentum Center-of-mass energy
(GeV/&) (Ge V)

0.0
0.5
1.Q
1.5
2.0
2 ' 5
3.0
3.5
4.0
4.5
5.Q

1.87
1.94
2.08
2.25
2.43
2.60
2.77
2.93
3.08
3.22
3.36

0.065
0.095
0.198
0.394
0.677
1.063
1.518
2.050
2.671
3.292
3.998

TABLE I. Ratio of calculated reaction rates 8
=m(pp-&+K n+m )/~(pp E+E ) at various energies.

u~%,"M„'„'=ag„'2'(p,g@"(p, ), (4.2)

where

Q(MP, —P, .k,}(Mli2+P, 02)

(p, a, )p„~ (u, +u, )

vrhere the isovector photon term is absent since
vanishes for m' r' emission. Once again the

left-hand side of Eq. (4.1) does not vanish in the
soft-pion limit due to pole terms in M~ of order

The contributions from these pole terms
result from all six diagrams shown in Fig. 1.
Evaluating these diagrams, keeping only terms
of order jg ', gives

Uritam. Aside from relativistic corrections,
this difference can be partially traced to an error
of a factor of ~ in Uritam's expression for the

PP -K'K rate which has the effect of enhancing
his value for 8 by a factor of 2.

(MP, +P, .k,)(M)t, —P, )2,) ~(p, .i,)p, (I,+I,)
(MP, +P2 I2,)Q(MP, -P, ir, )

(p, u, )(p, I,)
(4 3)

IV. STUDY OF pp ~E'E mon 0

In this section we present a study of the neutral-
pion reaction pp -K'K n'm'. Although this pp anni-
hilation process has been previously studied by
Uritam, ' @re repeat the analysis here for the rea-
sons cited earlier in the paper.

The soft-pion relation (2.11}becomes in this
case

Combining Eqs. (4.2) and (4.3}with (4.1) gives for
the invariant amplitude for soft-pion emission in
PP-K+K m &

(4.4)

Squaring the amplitude, summing over final spin
states, and averaging over initial spin states
g.ves

(( Moo (2) (4.5)

X &If If-I T4,o(2}y,o(y)) IPP)

(4.1)

where ~ is another lengthy expression exhibited
in Appendix B.

The differential reaction rate is given by

(2W) M ~ o dk1 dI22 d q1 d F2
(2v)12 popo

6 (p1+p2 ~1 ~2 Il 12)&l ~srl ) 2I 2 2~o 2g 2g1 2 2 1 2

which in the center-of-mass frame becomes

(4.6)

x do11d1112d/1dyod& 2 o 2 o
2g~ 2/2

Integrating this result and dividing by Eq. (3.14) gives the reaction rate ratio

w(pp -Z Z 2'2') 3(g„'/42)'ZX„„,'
2o(pp-Z'Z ) 16''M'(Z'- m, ')" (2Z'+M')

ax dy dy a~ ™Xy~
1

(4.7)

The integrations over the kaon variables are performed in Appendix C and the remaining integrations are
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carried out numerically. The results for the rate ratio are presented in Table II and a comparison of our
theoretical predictions for pp-K'K ~'m and pp-K'K n m are displayed in Fig. 4.

V. STUDY OF pp~E'Eom*mo

A. Soft-pion theorem and pole terms

%e conclude our analysis of pp annihilation reactions with a study of the processes pp-X R'm'm' and

pp- K E'n m'. Since the results for these two reactions are identical, as they must be by the CPT theo-
rem, we shall concentrate on the m+w' emission process.

The soft-pion theorem, Ec(. (2.11), states in this case

k,"k,"M'„„'=— ", d'xd'ye"~'e"2'(0, + p, ')(0„+p,')(Z'ff ~T(y, +(x)y„o(y))~ pp)
p.

~ -', (Ir, —0)"f d e'*~ "''(*Z*'Z ~V'„"*(xl~pp), (5.1)

where the second term on the right-hand side
represents a radiative term which can be thought
of as involving the emission of a "charged'* iso-
vector photon.

The pole terms of order k ' appearing in M&,
'

are calculated from diagrams (a), (c), and (d) in
Fig. 1. %e find

B. Evaluation of the radiative term

M'„= d xe K'E" V'„pp . (5 4)

We next consider the evaluation of the radiative
amplitude corresponding to the soft emission of a
"charged" photon. The amplitude has the form

k,"k2Mq, =kg~'B' g'(p, )N~u"(p, ),

(II())f)(„+p, k,)(M)(, -p, k, )

(p, k,)p, (k, +k, )

g(M)), +P, k,)(M), -P, k, )

(p, k, )p, (k, +k, )

(Mk, +p, k,)(()(Mg, —p, k,)

(p, k, )(p, .k, )

(5.2)

(5 2)

Low's procedure, although originally proposed
for a physical, uncharged photon, can again be
employed here. As pointed out by Adler and

Dothan, "Low's theorem can be easily generalized

(a) w(pp~KKn-w )/w(pp~KK )

(1) w(pp~KK w~)/w(pp-w K K )

(c) w(pp~KK vr'w')/w(pp~ K K )

B' is the kinematic function appearing in the
interaction matrix for pn -K K'. However, it
can be argued' from isospin considerations and
s-channel meson exchange that B' —=B.

2.4

TABLE II. Ratio of calculated reaction rates &
=2f(pp-E+E Yf'z')/u(pp-K+E ) at various energies.

P lab momentum Center-of- mass energy
(«&/&) (Ge V)

C

C

CQ

l.6

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

5.0

1.87
1.94
2.08
2.25
2.43
2.60
2.77
2, 93
3.08
3.22
3 ~ 36

0.038
0.052
0.099
0.186
0.321
0.504
0.736
1„014
1.335
1.696
2.094

0.8

2
Lab Momentum (GeV/c}

FIG. 4. Comparison of theoretical predictions for n'vr

7f' 7f ~ and 7t' x eIxllsslon in pp annihllatloI1.
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K K

y q)

iK'

.K

Iq

FIG. 6. Lowest-order diagram contributing to M+&

M'„"'- k ' and M'" - constant so that only

(k, —k2)~M'„"' contributes to Eq. (5.1) in the soft-
pion limit. Upon evaluating the diagrams in Fig.
5 to order k ' we find

-'(p )IIV."(p )
q1' k q2' k p1'k 1

(5.7)

K

/qi

C. Amplitude and reaction rate

From Eqs. (5.1)-(5.3) and (5.7) we obtain for the
invariant amplitude for soft-pion emission in

PP —K K m'm

q ~.K'

FIG. 5. Lowest-order diagrams contributing to M& ".

4M'0=, v 2Bg„~V'(P2)M2u"(P, ),
C»

where

(5 8)

to any case where the divergence of the partic-
ular current is known. In our case, we are deal-
ing with the charged isospin current which is a
conserved current according to Eq. (2.9) just as
the electromagnetic current is conserved. Cur-
rent conservation thus requires

1 p, (k, —k) q, (k, —k)
2v 2g~2 p, ' (k, +k, ) q, ' (k, +k, )

q, ' (k, —k, )
q, ' (k, +k, )

(5.9)

Squaring the amplitude in Eq. (5.8) and performing
the usual spin sums and averages gives

k"M' = 0. (5.5)
( M+o ~2) (5.10)

Similar to the analysis performed in Sec. III, M',
can be divided into two parts:

M' = M' 1~ + M' (5.6)

where M'„"' consists of the sum of diagrams shown
in Fig. 5 and M'„'" is represented by the diagram
in Fig. 6. As k - 0, Low's theorem requires that

where the expression for Z" is presented in
Appendix B.

Integrating Eq. (5.10) over the appropriate phase
space leads to the following result for the reaction
rate for pp-K K'm'7t' relative to the rate for
pp -K"K:

ur(PP KK'w'w') — 3(g„2/4v)'EK„„,'
w(pp -K'K ) 8m'M'(E' —m ')'"(2E'+ M')

1 1 1

X '' dX dg1 ~ dg2
~1 ~1 1

d (d1

2 mQJf.
I (~ 2 ~2)(~ 2 ~2} 1/2

d 2 1

+Q

x &' P, +P, —,—,-q, -q, 0' ()' . 5.11
2q1 2q2
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After performing the integrations over the kaon
variables analytically, the remaining integrations
are performed numerically with the results pre-
sented in Table III. It should be noted that the
same results are valid for Pp-K K'm w'. Com-
parisons of these theoretical predictions with the
existing experimental data are made in Sec. VI.
In Fig. 4 we compare the momentum behavior of
all three reaction ratios calculated in this paper.
We observe that the momentum dependence of the
reaction rates for pp-K'K m'7I and pp-KS'm'
are nearly the same, with the rates themselves
being nearly equal for large lab momenta. In con-
trast, the reaction rate for pp-K+K n'n' grows
less rapidly with lab momentum.

VI. COMPARISON OF SOFT-PION PREDICTIONS
WITH EXPERIMENTAL DATA

In this paper we have made a soft-pion study of
four pp annihilation reactions involving the pro-
duction of a kaon pair and two pions. We have
calculated the reaction rates for these processes
at various lab momenta normalized to the
PP-K+K rate. We now compare these theoretical
results with the available experimental data. "'

For the annihilation process involving n'm

emission, a comparison of the soft-pion predic-
tions for the ratio R =(u(pp-E'K w'w )/(u(pp —K'E )
with the experimental data as a function of lab
momentum is made in Fig. 7. In making this
comparison we have subtracted out from the ex-
perimental data the "on-shell" contributions to
the reaction rate from K* -resonance production.
Furthermore, we have assumed equal production
rates for K'K and K'K' as well as for E'K m'm and
E'K"n'n . Also, we have taken K' and K' as having
an equal mixture of Id', and Kz so that(u(pp

IOO.O .—

IO.O

0 0
w(pp~tu'K nn )/w(()~KK)

8 8 Q S

aw(pp ~K' Ko riw )/w( p p~ K K )

1/aw(pp~)(K )

-K K w'w ) = 4(u(PP -K~zw'w ). As can be seen
from Fig. 7, the comparison is very disappointing
with the data being generally an order of magnitude
larger than the soft-pion predictions.

The soft-pion predictions for the ratio w(pp
-E'K w'w'))/(u(pp-K'K ) cannot be tested at this
time because of the lack of any two-neutral-pion
emission data. It should be noted that our results
for w'm' emission are in basically good agreement
with the results of Uritam' except for large lab
momentum where one expects our relativistic
corrections to be important.

In the case of m'w' emission a comparison of the
soft-pion predictions for the ratios w(pp- KKw'w')/
u(pp-K'K ) and [su(pp-KKw'w'))+(u(pp-KKw w'')j/

w(PP -K'E ) with the experimental data is made
in Figs. 8 and 9. Once again the discrepancy is
very great with the soft-pion results being about
an order of magnitude smaller than the data.

These large discrepancies between the soft-pion
predictions and experiment are very serious in-
deed. One at first might attribute these discrep-
ancies to a breakdown of PCAC, especially for
large lab momentum, in view of the very demand-
ing extrapolation which is required on the ampli-
tudes in the application of this formalism. How-
ever, in view of the impressive number of suc-

TABLE III. Ratios of calculated reaction rates R
=w(pp-KI&'x')/w(pp-K+K ) and 2R= fw(pp-K E'm+x')
+ w(pp-K'K 7( x')]/w(pp-K+K ) at various energies.

a
a

I.O
Ql
C

Ca

n'~ )/w(pp~KK )

~n )/aw(pp~K')(')

p lab momentum Center-of-mass energy
(Ge V/c) (GeV) R 2R O. l

n )/w(pp~KK )
S L

'w )/w(pp~ K K )

I Pred&ction
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4 ' 5
5.0

1.87
1.94
2.08
2.25
2.43
2.60
2.77
2.93
3.08
3.22
3 ~ 36

0 ~ 019
0 ~ 031
0.079
0.190
0.380
0 ~ 679
1.080
1.601
2.261
2.992
3 ~ 873

0.038
0.062
0.158
0.380
0.760
1.358
2.160
3.202
4 ~ 522
5 ~ 984
7.746

O.O I
I I I I

2 3 4 5

Lab Momentum (GeV/c)

FIG. 7. Comparison of theoretical prediction of
w(pp-K+K ~+m )/w(pp-K+K ) with experiment at
various lab momenta. In presenting the data, K* reso-
nance production has been subtracted out.
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cesses of the PCAC hypothesis, one is obliged to
search for another source for the discrepancies.

Similar discrepancies, in fact, have been ob-
served before"'" in the reactions pp-npm' and
pp-AAYt'. For the process Pp-nPm' the soft-pion
predictions" for the cross sections are almost an
order of magnitude smaller than the experimental
cross sections. ' Suspecting that "off-shell"
resonance effects might be important, Schillaci
and Silbar" examined the resonance contribution
of the 4(1236}isobar to the pp-np((' amplitude
and found that the isobar effects were substantial
and could account for all of the observed discrep-
ancies.

In view of the importance of resonance effects
in reconciling soft-pion predictions and the ex-
perimental data for certain other strong inter-
action processes, it would appear that "off-shell"
resonance effects may be decisively important
in explaining the discrepancies which we are faced
with in this paper between our soft-pion results
for Pp-KKmm and experiment. In Fig. 10 we dis-
play some of the "off-shell" resonance contribu-
tions to the pp-KKmn amplitude. Even though the
"on-shell" contributions of the ordinary K*(890}
have been subtracted out from the experimental
data, the K*(890) can still give an "off-shell" con-
tribution as shown in Fig. 10(a). In addition, the
K„(1240) resonance can contribute to the ampli-

IOOQ-

IO.O—

C I.O

C
O
L

CO

0.1

c.)/cw(ppmK K )

.c)/w(pp~ K K„)

.c.)/w(pp~K K )

ic Iion

O.OI
0

I I I

2 3 4

Lab Momentum (GeV/c)

FIG. 9. Comparison of theoretical prediction of
[u(pp —K+K 7r 7r )+ u(pp KK w+7r )]/se(pp K+K )
with experiment at various lab momenta.

100.0 =

10.0.— 'K

O

O
K

1.0
C:

O
C
D

Cl '1/cw(p p~ K'K')

w 1/w( p p ~K K )

(0) (b)

, K
I

I K

O.I redict)on

K

001
0

I I I

2 3 4
Lab Momentum (GeV/c) (c)

FIG. 8. Comparison of theoretical prediction of
w(pp —K K x'x )/w(pp K+K ) with exp—eriment at
various lab momenta.

FIG. 10. Possible "off-shell" resonance contributions
to the PP —KKn7r amplitude.
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tude [Fig. 10(b)] as well as the ordinary vector
mesons p and Q [Figs. 10(c) and 10(d)]. Just how
important these resonance effects are and whether
they can successfully remove the presisting dis-
crepancy between the predictions of PCAC and
experiment must await further study.

We conclude that our soft-pion analysis of the
class of pp annihilation processes, pp-KKwn, has
led to specific predictions as to the reaction rates
for these processes relative to the reaction rate
for Pp-E'E as well as to the energy behavior of
these reactions. The serious disagreement be-
tween the predictions of PCAC and the experimen-
tal data suggests that there may be important
"off-shell" resonance effects on the amplitudes
for these processes. The possible importance of
such resonance contributions is now being investi-
gated.

ACKNOW( LEDGMENT

One of us (G. K. G.) would like to thank Profes-
sor T. %. B. Kibble for the hospitality extended to
him at ImperiaL College, where much of this work
was carried out.

APPENDIX A

The differential reaction rate for pP -K'K is
given by

2q,' 2q',
(Al)

K= av'(P, )f(iu"(P,).
Now

2M 2M

= ~.(2(u, .e)(f, .e)-[(f, f.) M']e').

(A2)

Performing the integrations over the kaon vari-
ables (see Appendix C), we obtain in the center-
of-mass frame

~( pp -Z'Z-) = (2Z'+ M2) I-, . (A2)
I al

'

APPENDS. X 8

In this appendix we explicitly write down the lengthy expressions for each Z calculated for the various
annihilation processes. We introduce the notation

A=@,+k, A =q, +q, L =k, —k, Q=q, -q„P=p, +p, .
for pp- R+E"n'n we find

1 i, , (P k, )(P k, )+(p, k, )(P k, )+(P, 'k, )(P k, ) (P, 'k, )(P, 'k, ) —(P, 'k, )(p, 'k, )
'-

(P, k, )(f, k,)(P, Z)(f, Zf) (f, Z)(P, ff)

P'E 2 1 p2'L p~'I
(p, ff)(p, K) 64g„' P, K P, E~

~

1
((', '&, )()', '~) (P. '&.)((.'&))

."""'k)-~ '""" [2(P e)(f e)--,Pe)
(u &)(& &)

1 (R ' L)(Q A) —(8 ff)(Q I ) ' ~4C
16g ' (& ff')'-(9'&)' ' ' '

(P 'k)(P 'k)(P '&)(f '&)

+—,
k
' ' [(P ' k, )'Q'+ P'(k, ' Q)' —2(P ' k, )(P ' Q)(k, ' Q)]+ (P„k,—P„k,)

+
4 . '.~ — '.~ P .k P .k

f2(P'k, )(f), 'Q)(k. 'Q)+2(P'k, )(P. Q)(k, '9)

--.'[2(P k, )(P k, ) -P'(k, k,)]q'-P'(k, q)(k, q)

where

-2(k, ~ k.)(P, e)(p. e)] I,] (Bl)
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G=Q p. P' kx +0 P' k2 —
2 pl p& ky k2 P ky P k2 2 pl kl P2 k2 py k2 P2 ky

1
p

1

+ (P, ' Q)(k, 'Q) 2(P ' k,)(k, ' kQ) —2PQ(P ' k, )+ Q (PQ' k2)[(P, ' kk)(PQ' kQ) —(PQ k, )(P, ' k2)]
2

+(P, Q)(k, Q}j2(P k, )(k, k, ) —22 (P k, )~, (P, 'k, )[(P, k, )(P, 2,) —(P, k, )(P, '2, )]

—M, [(k, ' k, )(P ' k, )(P' kQ)](P, ' Q)(PQ' Q)

+(P, Q)(k, Q)j2(P k)(k, k) —2V, (P k, )~, (P, k, )[(P, k, )(P, k, ) —(P, k)(P, 'k, )I

+(P, 'Q)(k, 'Q)j2(P'k )(k, ' k ) —22 (P'k )+, (p, 'k )I(p, 'k )(P, 'k ) —(P, ' k )(P, 'k )]
2

P2 - — P2
+ P PQ+

2 (Pk'kQ)(PQ'kQ) —2(P'k2)' (k, 'Q) + PQP'+
2 (P, 'kk)(PQ'k, ) —2(P'k, )' (kQ Q)'

2

+(k, 'Q)(k, Q)j ', ' [(P, 'k )(P, 'k )+(P, 'k )(P, ' k )] —2P'(k, ' k )

+ 4[(])),' k, )(P, k,)+ Q, ' k, )(])), ' k, )]

For pp-K+K m'm we find

=2('j Z, + Z. [2(P;Q)(P. 'Q) — P*Q*]+ E, + E, I,

where

(P 'L)'[M'p'-(P 'k )'][M'p' (P 'k )']-
I (p, k )2(p, k )2(p, K)2 ( 2 2

[M'P' —(P, k,)2][M'P' —(Pk k, )']
(& k)'(u k)'

M'(k, ' k, ) —(Pk ' kk)(P2 ' k, ) M'(k, ' k, ) —(P2' kk)(P, ' k, ) '
(P, 'k, )(P, 'K) (P, 'k, )(P, 'K)

(P, ' L)(P, ' L)[ MP' +(Pk' kk)(PQ' kk)][M'P, '+ (Pk' k2)(PQ' kQ)]

(P, ' k, )(PQ' kk)(])), ' k2)(])), ' k, )(P2 ' K)(PQ ' K)

(P, ' L)[M'P' —(Pk ' k, )'][M'P'+ (]()2 ' k, )(PQ
' k, )]

(P, ' k, )'(P, 'k, )(PQ'kQ)(P2'K)

(P, 'L)[M'(k, 'k, ) —(P, 'k, )(P, 'k, )] (P, 'L)[M'(k, k, ) —(Pk k, )(P, 'k, )]
(P, ' k, )(P, ' k, )(P, ' K) (])), ' k, )(P, ' k, )(P, ' K)

M'(k, ' k, ) —(P, ' k, )(P, '
kQ) M'(k, ' k, ) —(P, ' k, )(P, ' k, )

(P, ' L)[M'P' —(P, ' k, )'][M'P'+ (Pk' k, )(P, k, )]
(P, ' k, )(P. ' k, )(P. ' k.)'(P. ' K)

[M'(k, ' k, ) —(Pk' k, )(P, ' kQ)][M'(kk' kQ) —(P, ' kk)(P, ' k, )]
(P, k, )(P, k, )(P, k,)(P, k, )

[M'p2+ (P, ~ k, )(P, k, )][M2p'+ (P, k,)(P, ' k, )]
(P, ' k, )(P, ' k, )(P, ' k )(P. ' k.)

MQ(k, 'kQ) —(Pk' kk)(][)2'kQ) M (k, ' kQ) —(P2
'

kk)(PQ
' k, )

(p, k,)(p, ~ K) (P, ' k, )(P, 'K)

(a2)

(a4)

(a5)
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4 [(P;k,)(p. 'k, )+(P, k,)(p, 'k, )]
(P, ' k, )(P. k, )(P, ' k.)(P. ' k.)(P, 'K)(P. 'K)

x~
' ' ' ' [(P kq)'Q'+P'(kq'Q) —2(P k, )(P'Q)(k, 'Q)]+(k k,}

, (P k, )(P ~ kq)[(pk p, )'(k, k,)+ 2[(p, kk)(pq' k,)+(p, ' k, )(p, ' k, )]]Q'
1

, (P ' k, )(P ' k, )(k, ' k,)(P, ' Q)(P, Q) —2(P ' kq)'(k, Q)' —2(P ' k, )'(kq' Q)'

+ (k, ' Q)(k, ' Q) 4[(P, ' k, )(P, ' k,)+ (P, ' k, )(P, ' k, )]

+ M.
' l( P,

'
kk)( P.

'
k, )+( P. ' kk)( P2' kq)]—2P'(kk'ka)

+2(P'k, ) (k, 'k, )+ ' ', ' ' (P, 'Q)(k, 'Q)+(P, —P, )

+2(P k ) (k, 'k )+ ' ', ' ' (P, 'Q)(k, 'Q)+(P, —Pq) ~, (B6)

' [2(P k,)(P Q)(k, Q) —P'(k, Q)' —(P. k,)'Q'] —( „k,—P„k,)

2M'(p, L) (M p —(p, 'k ) ) [P'(k, ~ Q)'+ (P ~ k,)'Q' —2(P k, )(P Q)(k, ' Q)]

+ —,[M'(k, k, ) —(P, 'k, )(P, ' k,)]
2

—(p, l k, —p„k,)

x ([—',P'(k, ' k, ) —(P k,)(P ' k,)]Q'+ 2(P ~ k, )(p, ~ Q)(k, Q)

~ 2(P ~ k, )(P, ~ ql(k, ~ Ql —2(k, k, )(P, ~ Q)(P, Ql —P (k. Q)(k, Q'))),

M'(k, ~ k,) —(p, ~ k, ) ( P, ~ k,) M'(k, ~ k, ) —( P, ~ k, )(P, ~ k, )

(P, k,)(P, K) (P, k, )(P, K)

x ([[QP'(k, ' k,) —(P k, )(P ' kq)] Q'+ 2(P ' k, )(p, ' Q)(k, ' Q) + 2(P ' k, )( p, ' Q) (k, ' Q)

—2(k, 'k, )(P, ' Q)(P, ' Q) —P'(k, ' Q)(k, Q)j+(P, —Pg). (BV)

For PP-K K m'm we find

where

= M. (P(2(p Q)(p. q)-lp*q*l

HR ' L)'(Q'K)'+ (Q ' L)'(R K)' —2(R L)(R K)(Q ~ L)(Q K)]
2g ' [(R K)'-(Q K)']'

Q+P (k Q) —2(Pkk )( ' Q)(k Q

] 4M'[M'(k, k, ) —(P, k, )(P, ~ k,)] 1 M'(P, ~ L)
(p, k, )(p, k, )(p, ~ k,)(p, ~ K) ~2g„' (p, k, )(p, k,)(p, K)

"(tP'kltP'k, )Q P'(k, Q),(k, Q) —2(P k, )(P, Ql(k, Ql —2(P k,l(P, Ql(k, Qll)
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[M'p, ' —(P, ~ k, )'J[M'p, '- (P, ~ k,)'] [M'p, ' —(P, k, )'l[M'p, ' - (P, k,)'J
(P, k, )'(P, k.)' (P, k,)'(P. k.)'

[M'p, ' —(P, k, )'][M'y. '+ (P, k,)(P, k,)] 4
[M'(k, k,) —(P, k, )(P, k,)]'

(P, k,)'(P, k,)(P, k,) (P, k, )(P, k,)(P, K')'

[M'(k, k,}—(P, ~ k, )(P, k, )J[M'(k, k,)+ (P, k, )(P, k,)]
(P, k, )(P, k.}(P, k.)(u, K)

1 (P, L)' 1 (P, L) [M (k, k) —(P, 'k)(P, 'k)J' 8g„' (p, K)''&2g„' (P, «,)(P, k,)(P, 'K)'

1 [M'(k, k,)+ (P, k, )(P, k,)]
(p, k,)(p, k,)(P, K)

APPENDIX C

In calculating the totally integrated reaction rates for pp -KK&m the following types of integrals are
encountered:

(B9)

(C1)

6'
T(A, B)=

2
'

2
'

(Q A)(Q B)5'(P-K R), -
d'q, d'q, , (Q K)'(R ~ L)'
2q', 2q [(R'K)'-(Q K)'J'

d'q, d'q» (Q K)(Q L)(R K)(R L),
2q, 2q, [(R ~ K)' —(Q ~ K)']'

d'q, d'q, , (Q L}'(R K)'
2q 2q [(R K)' —(Q K)']'

d'q, d'q, (Q A)(Q B)(Q K)'(R L)'
2q', 2q', [(R ~ K)' —(Q K)']'

d'q, d'q, (Q A)(Q B)(Q K)(Q L)(R K)(R L)
[(R K)'-(Q K)'J'

d'q, d'q, (Q A)(Q B)(Q L)'(R.K)'
2q', 2q', [(R K)'-(Q K)']'

By evaluating these Lorentz-invariant integrals in the K K center-of-mass system, we find

(C2)

(C8)

(C4)

(C6)

(C6)

(C7)

(C8)

T= ——R2 E

R~ 4T(A, B) = —[(R A)(R .B) —R'(A B)]

(Ce)

(C10)

R' 4m '''
7' = R2(R ~ L)2

(R K) — 2
r R(K, K)

where R(A, B)= (R A)(R B)—R'(A B),

(R K)2

R(K K) rz

1 4m 2 &i Ri 2(K/ 2K)

(8' 4 *}'', , //R' (R K)

(C11)

(C12)
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(R')' R' 4m ' "'
8 R'(K, K) R'

(R2)1/2

(R K)[(R' —4m'')R(K, K)]"' [R(K,K)R(L, L) —(R 'K)'(R L)']

+, , [R(K,K)R(L, L) —3(R K) (R 'L)']

(R' —4 ')R(K, K))'~'
(R K)'R'

R
R'(R K)' —(R' —4m+')R(K, K)— [R(K,K)R(L, L) —(R K) (R 'L) ]

R K'
~

1
[R(K,K)R(L, L) —3(R 'K)'(R L)'] (C13)

w R' 4m ' (R')'
T////(A, B)

8
(R L) RR R'(K, K)

(RR)'/' R (A, K)R(B,K) —R(A, B)R(K, K) (R' 4m'')R —(K, K)
(R K)[(R' —4m z')R (K, K)]"' (R')' R'

, (3R(AK)R(BK) —R( , K)RK(A, B!
(R')'

(R 4')*R-(K,K))'"
(R .K)2(RR)RR', 2(R' 4m'')R(K, K) 3R(A, K)R(B,K)-R(K, K)R(A, B)

R'(R K) —(R' —4m «')R(K, K) R' (R')'

(R —4m+')R (K, K) R(K, K)R(A, B)—R(A, K)R(B,K)
8 (R')'

(C14)

w R' —4m ' '' R'
TKi(A, B)= —(R 'K) (R ' L)

j (Ra)i/R (R' 4m ')
i(R K)[R' —4 ')R(K, K)]"' R' '

)
(R' —4m zR)R (K, K)

R'(R K)'

R (R —4m z')R (K, K)
R'(R K)' —(R' —4m ')R(K, K) R'

R
(RR —4m K')R (K,K)

Cyl
R

where

(C 15)

a, =
R 3 [R(B,K$R(K& K)R(A, L) —(R K)(R' L)R(A, K)]+R(A, K)[R(K, K)R(B, L) —(R.K)(R ~ L)R(B,K)]

+(R K)(R LfR(K, K)R(A&B) —R(A, K)R(B,K)]j, (C16)

P)= R R (R.K)(R L)R(A, K)R(B&K)&
2

(C17)
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w (R')' R' —4m '
cc( ) =

22 R4(

(R2 )1/2

ii(R K)[(R' - 4m, ')R(K, K)]'I'

(R' —4m»')R(K, K) ' 2(R K)'(R' —4m»')R(IC& IC)
+2

3()(-K)'() ~(R K)' 8()) )(' )' '- ' )a h ' '
)-2

R~ (R2 —4m»2)R(IC, K)
R (R'K) —(R —4m» )R(IC, K) R

(R ' K)~(R' —4m»2)R(K, K)

where

()) x)'()()) x)'-s("' *',)"( ' ))().

—8()( If)'(()('K)* — * '
)yI ~, (C))))

a(2 =
2 4 [R(K, K)R(A, L) —(R ' K)(R ' L)R(A, K)] [R(K, K)R(B, L) —(R ' K)(R ' L)R(B, IC)]

3

P2 =
2 ~ (R K) (R ' L)'R(A, IC) R(B, IC),

8
(C20)

y, =, , [R(K, K)R(L, L) —(R ~ IC)'(R ~ I,)']R(A, K)R(B, K)
4

4 (R K)'(R L)'
+ (,), { ) ( ) ( p ), [R(K, K)R(A, L) —(R. K)(R. L)R(A, K}]

x [R(K, K)R(B, L) —(R ' E)(R ' I )R(B, K)]

4 ' (R.K)'(R L)'
(R) "( ) R{KK)R(L,L) (R. K)(R. L) 'P x """

+ 2 4 (R K)(R L)R(B, K)[R(K, K)R(A, L) —(R K)(R' L)R(A, K)]
8

+ ~ ~ (R K)(R L)R(A, K)[R(K, K)R(B, L) —(R ' K)(R ' L)R(B) K)],
8

(C21)

&mac& &'P~&'I-" = —&abc~ &'P2&'I-'

= 4 &(B' - I)I')' '[(~,' - u ')((d 2' - u') (& - 3 ') (& - s2') (& -&')] ' '
~ (C22)
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