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We show that a simple ‘“‘closure” assumption of the bound-state poles leads in relativistic two-dimensional
models to spectra of the form m, = 2Mcos(n8,).

The application of a new field-theoretic WKB m,< 2M characterized by one quantum number 7.

approximation'' 2 to the “doublet states” of the sine-
Gordon system?' ? yielded® the spectrum

m,=2M sin(n6,), n:1,2,...,—2n— (1)
60
where M is the soliton mass and 6, is determined
by the mass and coupling in the sine-Gordon equa-
tion. In the equivalent field theory®' of the mas-
sive Thirring model M is the “elementary fermion”
mass and (1) describes then the various fermion-
antifermion bound states. Equation (1) was veri-
fied to nontrivial orders both in the weak- and
strong-coupling limits and most recently proved
by a direct lattice approach to the Thirring model.”
An application of the WKB method to another one-
dimensional field theory, the Gross-Neveu model,
has also led to a fermion-antifermion spectrum

. n(m/2)
=2 phd LTS
m,=2M sin N

n=1,2,... N-1. (2)
The simplicity and similarity of Egs. (1) and (2)

are clearly striking. In particular they become

identical if the parameters in the sine-Gordon

equation are chosen so that
(3)

a choice which is particularly natural from some
points of view.®

We would like to show that Eq. (2) can be de-
rived from the following assumptions:

(i) The two-dimensional field theory considered
has a spectrum consisting of a fermion (antifer-
mion) of mass M and a discrete set of bound states

14

We note that this assumption implies in particular
that the m m, continuum (unlike the fermion-antifer-
mion continuum) is suppressed and does not play an
important role in the decay of a higher bound state
(mn=m; +m;).

(ii) An S matrix describing the scattering of the
fermion states and the bound state exists. In
particular we might attempt to describe it in terms
of diagrams with internal fermionic lines. The
particular case shown in Fig. 1 is a scattering of
two bound states via the simplest nontrivial re-
arrangement diagram.

(iii) We assume that if we have a process involv-
ing N external “bosonic” legs (N —1) which lie on
the mass shells of the bound-state poles (m,2) and
the internal fermion lines are on the mass shell so
that the Nth line has an invariant mass squared
Sy<4M?, then Sy ought to equal one of the bound-
state values m 2.

Essentially the motivation for the last assump-
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FIG. 1. A simple scattering diagram for mesons.
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tion is that one can write diagrams for such a
process as that of Fig. 1 with the fermion lines on
the mass shell which have a priori no reason to be
canceled. Consistency would then demand that
they be interpretable as a scattering of the known
states in the theory. The unkown missing system
in Fig. 2 could a priori be some m;m; combination,
but in the spirit of (i) we neglect this possibility
and since S, < 4M* the only remaining option is
some of the bound states m;. Stated differently in
terms of the m — m rearrangement diagram of
Fig. 3, assumption (iii) amounts to the require-
ment that if we chose three fermion-antifermion
pairs to be on some bound state’s mass shell so
will be the fourth. We will retrun to assumption
(iii) later.

Let us denote by k; ¢; the momenta or boost
angles of the fermions (external in Fig. 3 or in-
ternal in Fig. 1) with momenta going on-shell. We
take odd 7 (even) to correspond to fermion (anti-
fermion). Typically the invariant masses are
(By +ky)? =2M? +2M% cosh(¢, — ¢,) = 4M?. However,
we will be interested in the regime where we have
a bound state (k, +k,)? < 4M?. This corresponds to
continuation to purely imaginary boost angles
¢; = i¢; so that (choosing ¢, =0) our assumptions
are

(ky +ky)* =m; * =2M*(1 +cos¢,), (4a)
(ky +kyf =my,? =2M?[1 +cos(, — ¢5)], (4b)
(ky +k3)* =my,” =2M[1 +cos(o; - ¢,)], (4c)

and our “consistency” or “closure” assumption
(iii) amounts then to the demand that also (see
Fig. 3)

(ky +R,)* =2M*(1 +cos¢,) =m, (4d)

where m; ?, ...,
states.

Since we have four masses appearing in (4a)~—(4d)
but only three independent relative boost angles,
a constraint on the spectrum (m;?) is implied. In
principle we can envision more complicated scat-
tering processes involving more external bosons.

m;,” belong in the set of bound

FIG. 2. Illustrating the closure hypothesis.

In all cases all invariant pair masses involve
various differences of “boost” angles.

The simplest choice of boost angles which will
satisfy the closure assumption is

0,=n6,, n=1,2,... (5)

since then all the differences 6, - 6,, = (n — m)6,
also belong in the same family of integer times 6,,.
(Negative integers are equivalent to positive in-
tegers because cosé is even.) In particular if we
want to have only a finite number of bound states
then we have to adopt the choice §,=7/N, as in
Eq. (3). We note that the “closure” property could
be ensured by more complicated choices for the
boost angle, e.g.,

Onyny =1, 6, +1,6, ,  6,, 6, noncomeasurable, (6)

etc. The choice of (5) is dictated by our assump-
tion that the bound states are to be characterized
by one quantum number, and (5) with 6,=7/N
follows from demanding a finite number of bound
states. Thus we conclude that

m,’ =2M*(1 +cos#,)
=4M? cos?(36,n)
=4M? cos?(nb,), (7

where we rescaled 6,~ 6,/2. Clearly for 6,=(n/2)/
N the spectrum deduced from (6) and the spectrum
(2) are identical. This is not the case for Eq. (1).
The set 4M? cos?(nf,) can be made to overlap with
4M? sin®(n6}) by choosing 6,=m/2 — 6/ only for odd
n. We find the fact that the simple ansatz on the
“closure” of bound states in multiple-particle
scattering does reproduce results for the sine-
Gordon and Gross-Neveu models very intriguing.
A common feature of these models is that they can
be (exactly or in a certain approximation) reform-
ulated in terms of bosonic fields only, and it may
well be that it is this feature which is being im-
plicitly made use of in assumptions (iii) and (i).
Clearly it is a very unlikely possibility that in all
two-dimensional field theories® bound-state spec-
tra have always the form of Eq. (2).

If the fact that Eq. (2) is reproduced is not a
mere coincidence then one conclusion may be that
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FIG. 3. A contribution to 4-4 scattering of fermions.
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S-matrix methods may be a useful approach to two-
dimensional field theory. Thus for the sine-Gordon
theory the infinite number of classical conserva-
tion laws resulting in the separation of degrees of
freedom into the soliton and pair variables prompt-
ed conjecturing a particular simple form for the
Thirring model S matrix.> The S matrix is assum-
ed to be diagonal in soliton (fermion) number and
in their momenta as well so that (apart from
permutations) it is just an overall phase shift. A
particular simple way in which this could arise is if
the connected part of any n—=n amplitude vanishes
and the complete S matrix reduces to the products
of 2 -2 S matrices as illustrated (Fig. 3) for the

4 - 4 amplitudes with all the intermediate quark
lines on the mass shell. For the particular case

of 3 -3 scattering in the tree approximation this
conjecture (i.e., the vanishing of the principal-
value contribution) has been directly verified.®

If this conjectured S matrix is indeed correct then
one could proceed to directly compute the S mat-
rix, by using an appropriate S,_, (see Ref. 10)
which has to be iterated in a multiple scattering
series only a finite number'! of times to yield

Spon-

Using the last comments let us return to the
crucial assumption (iii) in an effort to clarify it
and its relation to the spectrum of Eq. (2).

Consider meson-meson scattering M, +M,~M,,
+M, in the sine-Gordon or the equivalent Thirring
model.

Following the indications of Ref. 9 and Faddeev’s
general conjecture we assume that in the Thirring
model Feynman diagrams for this process (e.g.,
the diagram of Fig. 4) all internal fermion lines
have to be on their mass shell.

The fact that the “mesons” is a bound state of
4,9, (soliton-antisoliton) suggests that the four
M =q;q, vertices appearing in this diagram are

nonvanishing. However, we neglect higher order
M=q,9,9,9,, etc., so that the diagram of Fig. 1
will be the only relevant diagram. Now we have
the following two possibilities:

(a) The kinematics is such 8o as to disallow re-
arrangement collisions (Fig. 1) with the four in-
termediate fermions on the mass shell. This would
mean that the meson-meson scattering amplitudes
vanish.

(b) The choice of meson masses m, is such that
rearrangement scattering will in general be pos-
sible. It is this last case which corresponds to
our assumption (iii).

The result that we presented here is that such
nontrivial meson-meson rearrangement processes
will be nonvanishing [for “excitation” quantum
number (n) conserving process [+k=n+m] if the
spectrum is of the form of Eq. (2).

Note added in proof. J. F. Schonfeld has ob-
served (private communication) that the sequence
0=n6,+ 7 satisfies our closure conditions just as
well as 6=n6,. This choice has the following ad-
vantage: The bound-state squared masses are
now

2M?+ 2M? cosf=4 M? cos?(36)
=4 M? cos®(n36,+ 3m)
=4 M? sin*n39,.

Thus (replacing 36, by 6,) we reproduce the formu-~
la M, =2M sinn6, without the even-n gaps that fol-
lowed from our original ansatz. Of course, neither
ansatz tells us what should be the largest admissi-
ble n, when 6, is nof a rational multiple of 7. We
thank Dr. Schonfeld for these remarks.

I would like to acknowledge discussions with R.
Dashen and A. Mueller which prompted this work.
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