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Intercept of the Pomeron

Henry D. I. Abarbanel~
Fermi National Accelerator Laboratory, Batavia, Illinois 60510~

and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

J. B. Bronzan&

Department of Physics, Rutgers University, New Brunswick, New Jersey 08903

A. Schwimmer~

Department of Physics, California Institute of Technology, Pasadena, California 91125

R. L. Sugar~

Department of Physics, University of California, Santa Barbara, California 93106
(Received 22 January 1976)

We show that in Reggeon field theory the intercept of the interacting Pomeron must be less than or equal to
1. The intercept is equal to 1 only when the bare intercept has a critical value. When the bare intercept

exceeds the critical value a Pomeron field operator acquires a vacuum expectation value, and a discrete

symmetry of the Lagrangian is spontaneously broken. It turns out that symmetry breaking is unacceptable

even though a(0) & 1. Therefore, Reggeon field theory appears to be valid only when the bare intercept does

not exceed the critical value.

I. INTRODUCTION

Reggeon field theory (RFT) permits one to cal-
culate Regge-cut corrections to Regge-pole ex-
change. ' Such a procedure is essential in the case
of the Pomeranchuk singularity which has an in-
tercept, o.(0}, either at or very close to 1. The
Pomeron has been studied extensively in RFT for
a(0) = 1.' However, the physical intercept of the
Pomeron is exactly equal to 1 only when the bare
intercept, o.„ takes on a certain critical value,
Qp In this ar tic le w e s tudy the behavior of RFT
for general values of Q.p.

We are interested in studying the behavior of the
theory as the bare intercept is varied for two rea-
sons. First, because of the small magnitude of the
triple-Pomeron coupling constant, we are not in
the asymptotic domain at present accelerator en-
ergies. ' As a result, we can conclude from the
near constancy of cross sections at present en-
ergies that ap is near its critical value, but we
cannot conclude that Qp Qp Second, we would

like to explore the range of validity of the theory.
The most obvious potential sources of difficulty
are the constraints of direct-channel (s-channel)
unitarity, such as the Froissart bound. Although
cross-channel unitarity is built into RFT, s-chan-
nel unitarity is not, and one must verify a Poste-
riori that it is not violated. For np= n„, the theo-
ry has been put to a, number of tests and it has
passed all of them. ' In particula. r, Cardy and Sug-
ar have argued on general grounds that the Frois-
sart bound is satisfied in this case. ' A central re-
sult of this paper is that o.(0}& 1 for o.,4 o.„, so

there is no violation of the Froissart bound for any
value of the input parameters. However, the situ-
ation is less satisfactory than this statement im-
plies. As we shall see, considerations other than
s-channel unitarity restrict the range of np to Qp( 5—atpc.

The Lagrangian we study is that of a self-inter-
acting Pomeron with only a triple-Pomeron coupl-
ing. The triple-Pomeron coupling is known to be
sufficient for the study of the infrared (J'= 1, f =0)
behavior of the theory when o.(0) is near 1.' The
Lagrangian density is

The field g(x, y) destroys a Pomeron with impact
parameter x and rapidity y. g(x, y) is the field
canonically conjugate to P(x, y}. Forthefreetheory
g= g, but since the interaction term is anti-Her-
mitian, this property is not maintained in the pres-
ence of interactions. Later we will encounter some
calculations in which the distinction between g and

is obvious, and we have set up our notation ac-
cordingly. The impact parameter, x, is a two-di-
mensional vector which is conjugate to the trans-
verse momentum of the Pomeren, k. (The invari-
ant momentum tra. nsfer is t = —k'. ) The rapidity
is conjugate to the Pomeron "energy", E, which
is related to the angular momentum by E = 1-J.
bp= 1 —np is the bare-intercept gap, np' is the
slope of the bare Pomeron, and rp is the bare
triple- Pomeron coupling constant.
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We shall focus our attention on the complete in-
verse Pomeron propagator I"'(E,k'). It is a key
Green's function because it exhibits the spectrum
of the theory, including the renormalized Vomeron in-tercept+n(0)

= 1 —a. In addition, the sum of graphs ex-
hibited in Fig. 1 gives the dominant contribution to
the total cross section at high energies, and this
contribution depends on the Pomeron propagator
alone. Our objective is to calculate I"' for all
values of ap and determine the range of values
taken on by a(0). For o.,«o.„we can use pertur-
bation theory and see directly that o.(0) «1. As o.',
increases, so does o. (0). By definition n(0) reach-
es 1 when np= n„. When np is slightly less than
a„, the renormalization group can be used to ob-
tain I'"' in the infrared domain. In Sec. II we car-
ry out this calculation and derive the scaling law

Z'~(E y2 7/) ~ g q
&'-& ~"-"'

E, k, f)p" P2

E n 'k'
pF C, , /(, „)~ C2 z/(1 x)

~p ~p

(2)

where gp-=n„- Q.p +p +p y and z are the criti-
cal exponents which control the infrared behavior
when np= np K is a new critical exponent which
equals e/12 in the lowest order of the e expansion.
(e =4 —D, where D is the number of transverse di-
mensions. Of course, physically D =2.) Theparam-
eters in the Lagrangian affect the constants C„
C„and C„but not the form of F. F is a universal
function which, like the critical exponents, depends
only on e. Equation (2) is a generalization of the
scaling law previously obtained for ap = n„,"and
reduces to it for this value of np. That is,

n 'k'r"(E,A, ', rl,
,

=io) c', ( E)' "F' c', ', . (2)

In Sec. II we calculate F to first order in E and
find that I"' has a singularity at np = n„as one
would expect from the form of Eq. (2). Since we
have no instruction on how to pass this singularity,
it is an obstacle in the way of our continuation to

Such a singularity is not an unusual oc-
currence, and it has a simple physical origin which

FIG. 1. Pomeron graphs giving the leading contribu-
tion to the total cross section at high energy.

is well known for Euclidean Q' field theory. This
theory has been studied extensively in connection
with the problem of second-order phase transi-
tions, and we pause to discuss its properties. The
Lagrangian density is

g= —VQ ~ VQ+ —m Q +—P (4)

where P(x) is a real scalar field, m, is the bare
mass, and Xp is the bare coupling constant. m, '
is ordinarily taken to vary linearly with the tem-
perature, T. The phase transition occurs when
the renormalized mass, m, vanishes. This only
happens for a certain critical value of the tem-
perature, T„or of the bare mass, m„. For T
&T, (m, '& rn„') the system has a nondegenerate
ground state and m'&0. For T & T, there are two
degenerate ground states. In one the field Q has
a positive vacuum expectation value and in the
other a negative vacuum expectation value. For
example, if the system undergoing the phase tran-
sition is a ferromagnet in which spins can only
point up or down, the vacuum expectation value of
Q is the spontaneous magnetization. One cannot
study the behavior of the theory for T &T, merely
by continuing in the temperature. The indeter-
minancy in the ground state gives rise to singu-
larities in the Green's functions at T =T, which
prevent such a continuation. However, if an ex-
ternal magnetic field is present, the degeneracy
of the ground state is removed, as are the singu-
larities at T = T,. One can then freely continue T
below its critical value. If the external magnetic
field is then turned off, the sign of the vacuum ex-
pectation value of P (the spontaneous magnetiza-
tion) depends upon the sign of the external mag-
netic field during the variation of T. This means
that the external field performs the function of
defining a direction in space and selecting one of
the two possible ground states of the system. The
external field is indispensable both physically and
mathematically.

In this paper we shall verify that Reggeon field
theory exhibits all the features found in Euclidean
P' field theory. This means, first of all, that we
are dealing with a critical phenomenon when we
study the problem of the Pomeron in RFT. The
analogy with the phase-transition problem was not
fully brought out in Refs. 7 and 8 because as long
as n(0) = 1 one does not move off the critical point.
However, Eq. (2) is an example of a generalization
of the scaling laws to a neighborhood of the critical
temperature. (g, is the analog of T —T,.) In the
present paper these extended scaling laws will be
derived together with the full complement of crit-
ical exponents analogous to those found in the
problem of the ferromagnet. We shall find that the
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analogy with critical behavior is complete.
We now return to the problem of continuing I"'

to n, & n„. We see that a generalization of our
program is required; we must introduce sources
S and S coupled to f and P, respectively. These
sources have no direct physical meaning in RFT,
and all physical amplitudes are taken with S and S
zero. On the other hand, they must be nonzero for
the continuation through a., = a„. They serve the
purpose of selecting one of two possible ground
states for the system when n, &e„. In one of the
ground states (g) WO a.nd (&t) =0, and in the other
Qr) 4 0 and (g) = 0. Here we must recall that g 0 5~

((P ) =(|t)*.) When g or g have nonzero vacuum ex-
pectation values we must distinguish between the
Pomeron Green's functions, Gn™,and correlation
functions, G"', which have all terms independent
of x and y subtracted out. When (g) and QP are
nonzero the Green's functions acquire additional
terms which are independent of x and y. If the
par tial-wave amplitude were constructed by coupl-
ing the external particles to the Green's functions,
then in momentum space the amplitude would have
6 functions which violate its known analyticity
properties. In order to obtain a satisfa. ctory par-
tial-wave amplitude it is necessary to couple the
external particles to the corre1ation functions.
For S=S=O and n, ~ o.„„(P)=(t/r) =0 and G™=G"
and the distinction disappears.

When Qp~ Qp we find a, unique Pomeron corre-
lation function l"''. The renormalized intercept
is less than 1 so there is no violation of the Frois-
sart bound. However, for Q.,& Q.„the symmetry
of the theory under the substitution g(x, y)—P(- x, —y) is spontaneously broken. We call this
rapidity reversal invariance, and a simple argu-
ment shows that its breaking is a disaster.

The action fd~xdyZ is invariant under rapidity
reversal with 2 given by Eq. (1). This imme-
diately leads to a symmetry of the complete corre-
lation functions in momentum space,

where n, m stands for n Pomerons in and m Pom-
erons out. For na&o!„, where (g) = pig =0, the
Green's functions are symmetric, and when we
attach them to fast particles A and B, the partial-
wave amplitude is independent of whether A is the
source of the Pomerons and B the sink or vice ver-
sa. On the other hand, for n, & o.„g)W(g&, so Eq.
(5) no longer predicts symmetry, and in Sec. 111

we shall exhibit diagrams which show that the
Green's functions are in general asymmetric. We
have been unable to find a way of producing a. sym-
metric partial-wave amplitude when the va, cuurn is
asymmetric as our calculation shows it to be. Of

course, it is nonsense for a partial-wave ampli-
tude to change when projectile and target are ex-
changed, so we apparently require that n, ~ na, in
order to have a sensible theory. Perhaps it is
worth stressing that this restriction is not related
to s-channel unitarity in any obvious way.

In Sec. II we carry out the calculations which we
have just described. When g, = n„—n, is small
we can use the renormalization group to obtain all
quantities of interest. We also use the & expan-
sion, and while we think that the E expansion is
quantitatively dubious at E =2, we also think it is
qualitatively correct. In the text we give direct
calculations of the Pomeron propagator and of the
vacuum expectation values of the fields g a.nd g. In
an appendix we give an alternative approach to the
problem of spontaneous symmetry breaking by
constructing the effective action to first order in E.

We also discuss the case n, «a„. Here one can
use perturbation theory directly because quantum
corrections to the mean field approximation are
small.

In Sec. III we summarize what we have learned
and fill out the discussion of the analogy with a
magnetic system near its critica, l point. We also
discuss the energy scales which are present in
Reggeon field. For g, c0 the renormalized Pom-
eron pole will dominate the scattering amplitude
at the very highest energies. However, for small
values of g, there is a range of energies in which
all of the cuts must be taken into account. The
scattering amplitude then has a scaling form sim-
ilar to that found for g, =0. At even lower energies
the bare Pomeron dominates.

Our results differ from those reported for BFT
with a triple-Pomeron coupling and a„&n,, '" In
Ref. 10 a class of leading graphs was summed,
while inthepresentpaper theuse of therenormaliza-
tion group a, llows us to avoid such an uncontrolled
approximation. We are confident of our results
when e is small. Abarbanel originally pointed out
that HFT can a,cquire a vacuum expectation value
for n, & e„, thereby ensuring that the gap in the
expectation spectrum remains non- negative. "

The calculations presented in this paper were
summarized in our recent report. " The present
paper contains much more detail and reaches dif-
ferent conclusions. We still believe that sponta-
neous symmetry breaking imposes o. (0) &1, but
that it introduces the other problems we have men-
tioned.

II. POMERON CORRELATION FUNCTIONS

Our starting point is the path-integral represen-
tation of the Pomeron Green's functions. In the
presence of sources
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&e m/~G ' ~x&,y „.. . , x„,p„;x~,p g ~ ~ ~ x,g; S, S)

=(O~T p(x„y,) T()(x„,y„)&(x,',y,') (1)(x',y')]~0)

=z(s, z)- ) sdsdd("„s, ) d(*„y„)d(*',,sl) St*„',s„')sm(]'d *ds(z ~ sd sd), (s)

where Z is given in Eq. (1) and U, = 60gd()', + ,' i r—ovid'+ ', i r()-vp, '+ ,' z r, (g, 'p—,+ tI),gd') )

Z(S, S)= )Sdddssd J d'. dd(zS. Sd ~ Zd) .
(7) where

(12)

q, (-.,y) = &(-.,y)—

T(),(x,y ) = T()(x,y ) —v,

(8a)

(8b)

where v and v are values of (() and $ at which the
classical potential

U, (y, 7(') =q,T()g+ ,ir,qq((I)+-q) —S7- Sp

is stationary. In defining the classical potential we
have written the terms in the Lagrangian density
proportional to T()p in the form n, (I)(I) =q,$g+ a„7()i().
Lakp Pf does not appear in U, because it plays the role
of an intercept renormalization counterterm. 6p,
is determined by the requirement that the inverse
Pomeron propagator vanish at E = k'= 0 when gp = S
=S=O. v and v are the classical approximations
to (g) and (Qg. Since we do not wish to consider the
possibility of spontaneously breaking the invariance
of the theory under translations in x and y, we
shall assume that v and V are independent of these
variables. It will therefore be sufficient to take S
and S to be constants. v and v are solutions of the
equations

9U,/sf~& „& —„=q,v+ir, vv+ zr, v' —S

We have chosen to work in terms of the rapidity
variable, y, rather than the "time" variable, t=iy,
introduced in Ref. 8 because with this choice the
functional integrals in Eqs. (6) and (7) are well de-
fined for ~p&0. The free fields can be written in
the form g = P+ iX, g = ft) —iy. Then for 6p& 0 the
functional integrals are over all real values of g
and X. In order to continue to 6p& 0 the contour of
the g integration must be distorted into the com-
plex plane as is discussed in Ref. 4.

Our first task is to rewrite Eq. (6) in such a way
that G" will have a well-behaved perturbation ex-
pansion in powers of rp. To this end we introduce
new field variables

6, =q, +ir, (v+v) (13)

is the bare-intercept gap for the quanta of the field
In Eq. (11) we have omitted an irrelevant term

which is independent of g, and g,.
Before considering the solutions of Eqs. (10) and

(11) for general values of S and S, let us discuss
some special cases which are of particular impor-
tance. The Pomeron Green's functions which en-
ter the physical scattering amplitude are to be
evaluated with S=S=O. In this case the four sta-
tionary points of U, are as follows:

I. V= V=O) 5p='gp~

IL v=v=2iq, /3r„6, =-q,/3;

IIIa.. v=O, v=2jrj, /r0, 6 = —))0;

IIIb. v=2i)7,/r„v=0, 6, = —)7,.
(14)

For 'Q
p )0 only solution I leads to an ace eptab le

perturbation expansion of the Green's functions.
In the other three cases the individual Feynman
diagrams have unphysical singularities in the an-
gular momentum plane: singularities which are
arbitrarily far to the right of J= 1. If one attempts
to develop the perturbation series by expanding the
integral of Eqs. (6) and (7) in power series in r„
then the resulting functional integrals a,re not well
defined.

For gp & 0 it is solutions IIIa and IIIb which lead
to acceptable perturbation expansions. Solution
IIIa will have a term in U, proportional to g,

' and
solution IIIb one proporational to (])','. These terms
can be included in the interaction Lagrangian since
there can only be a finite number of g,

' or g,
' ver-

tices in any graph of finite order in ra. (From Fig.
2 it is clear that each additional P,

' or g,
' vertex

in a diagram requires two additional triple-Pom-
eron vertices. ) As a result, for both IIIa and IIIb
the bare propagator for the g, field will be

=0
7 (10) G,"(E,k') =i[E —o.,'k' —( —q, )+is]

6 U,/sg~~ „& -„=g,v+ ir, vv+ ,'ir, v' —S-
=0

In terms of these new variables the classical po-
tential becomes

For gp & 0 solution I leads to a perturbation ex-
pansion with unphysical singularities in the angular
momentum plane and ill-defined functional inte-
grals. The same is true for solutions II despite the
fact that Op&0. It gives rise to terms in U, propor-
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tional to both g,
' and g,', and it is clear from Fig.

3 that one must work to all orders in g,
' and g,

' at
any finite order in r,. However, including the g,

'
and g,

' terms in the free Lagrangian leads to all
of the difficulties found when 5,&0. This is most
easily seen by working in terms of the real fields,
P, and y, (g, = @,+iy„g, = Q, —iy,). The term in
the classical potential quadratic in the fields is
36,P,' —6,}(,', so a series expansion of the Green's
functions in powers of xo will again lead to ill-de-
fined functional integrals.

In order to simplify the algebra in our later cal-
culations it will be convenient to keep either S or
S fixed at zero. Let us start with S=O. For qo&0
we must choose the solution which goes over into I
for S-O. That is,

v = [—q, + (q, '+ 2i&,S)'~']/ir„v = 0,

6, = (q, '+2ir, s)'~'. (16)

We start on the sheet of (g,'+2ix,S)'~' such that at
S=O, 5, =q, &0. Then, taking S to be positive, the
branch cuts can be drawn as in Fig. 4. If we now
continue to negative values of g, without passing
through the branch cuts, then upon setting S = 0 we
arrive at solution IIIb with 5, = —q, & 0. It is now
clear why the continuation to negative go must be
made for a nonzero value of S. In order to have a
well-defined perturbation expansion at each step we
must pass between the two branch points of 5, which
coalesce at S=O.

For some purposes it is convenient to take 5, to
be the independent variable and write

q, = (6,'- 2fr,S)'~'.

Then starting on the sheet of the S plane for which
TJ 0 '5p at S = 0, we can continue in S through the
branch cut in g„and arrive back at S = 0 with g,
= —60. From Eqs. (12), (16), and (17) we see that
for S =0, the classical potential can be written in
the form

U, = 6@,IIt, + -,
' [6,—(6 ' —2i& )'S~'P, '

FIG. 3. Pomeron graph illustrating that one must
work to all orders in fIt and g when both are present.

manner. In this case the appropriate solution is

V=0, V=I -n. +(n.'+»rP'~']/&~„

6, = (7I,'+ 2frP)'~'

U, = 6P,q, +-,'[6,- (6,' 2srS)'-~']q, '

+ piro(g, g, + g,g,'). (20)

Starting with solution I for qo& 0, one arrives at
IIIa for go=0.

In order to study the continuation in g, for gen-
eral values of S and S, we introduce the variables

v, =-,'(v+ v), S, = —,'(S~ S)

and rewrite Eqs. (10) and (ll) in the form

v (q, +ir, v, )=S,

(21)

(22)

Z'rov = —233)0+ 2 8+ [(33}O+ze) —
~2 +f]

where

(24)

8 = (f'go + 3f roS+ +7 )

f = —wax/e,

(25)

v, (g, +is,v, )'+ ir, v, '(q, +is,v, )' —S, (rI, +ir,v, )'

=-,'ir, S '. (23)

The solution to Eq. (23) which reduces to ?for S
=S=O and qo&0 is"

+-'f&.V.'4. + 4A.')- (18)

For S=0 one can proceed in exactly the same

P I/2
Po- ( Qq-Fir()S)

FIG. 2. Pomeron graphs with a g2 vertex, showing
that it must be accompanied by two triple-Regge ver-
tices.

FIG. 4. Singularities of u and &0 in the qo plane when
S& 0, S=o.
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y =( — q+A. )' '+( ——,'q-X)' +v('g, ' —2iroS, ),
(27)

(1 2 1p3)1/2 (28)

q = —~r3'S '(q3'+2ir, S+)—
( ), (2)3' —2ir3S+)3,

(29)

r2' S '- '(q, ' —2ir,S,)' (30)

i2),/r, -S /2), (S )0),
(31)

21, ~ irl3/r3+S /2)o (S &0).
$+, S

Making use of Eq. (22) we see that we arrive at
solution IIIa if the continuation is made with S &0
and at solution IIIb if it is made with S &0. Since
the result depends only on the sign of S, it will
be sufficient to consider the two special cases S=0
and S = 0. This will lead to a considerable simpli-
fication in our subsequent calculations.

For S =0 the branch points in A. coalesce, and
one can no longer continue between them. If one
insists on decreasing gp through zero for S =0,
one arrives at solution II after setting S, =0. This
is just as unacceptable as attempting to perform
the continuation with both S, and S equal to 0.

We are finally in a position to begin our study of
the Pomeron correlation functions. We shall gen-
erally work with the single-particle irreducible
proper vertex functions I'"' and I'"' constructed
from G"' and G"', respectively. Notice that for
the classical potential of Eq. (18) (g) =(t),) =0 to
all orders in perturbation theory, while for the po-
tential of Eq. (20) (|))= (g, ) = 0. In either case

P 1~ I P121 (32)

For general values of n, m the Green's functions
differ from the correlation functions only in that
the G" contain disconnected graphs in which one
or more external particles disappear into the vac-
uum, while the G" do not. It is possible to cal-
culate the correlation functions perturbatively
without evaluating (i() or (g). One need only cal-
culate the Green's functions of the fields g„g,
omitting all disconnected graphs.

Let us imagine making a perturbation expansion
of the correlation functions. For S = S = 0 and gp & 0

All of the branch cuts in gp are to be drawn so that
they run parallel to the imaginary axis and do not
intersect the real axis. (See, for example, Fig. 4.)
With this convention e andy are even functions of
7), for 2), real, and f is an odd function. As a re-
sult, if we continue to negative values of pp without
passing through any of the cuts, we find

Z -IZ 312
1 3 p &

Q = Z2 Z3&p,

5=Z~ 'Z36p.

(34)

(35)

(36)

The proper vertex functions for the renormalized
field are related to those for the unrenormalized
field by

I a (E„k„r,n'', 5, S11,3„,E„)
=Z, "' 'I'"' (E, , k, , r„n,', „5,S )S,

I'a' (E(, k;, r, n', 5, Sa, Sa, E„) (37)

=Z ~+ "2f" (E, k&, r, n ', 5„S,B).
Here E, and %, are the "ene. rgy" and momentum
of the Reggeons and E„ is an arbitrary renormali-
zation energy. The Z, are determined by the
normalization conditions

each successive term in the perturbation series
will have an extra factor of r,', three extra prop-
agators, and one extra loop integral over E and 2
Thus each term will be down from the preceding
one by a factor of r, '/n, 'D~'5, 2 D~2

(.For simplic-
ity we have taken E, n, 'k2&5, .) For 2), &0 there will
be g,

' or g,
' vertices which are proportional to 53.

However, each of these vertices requires two ad-
ditional triple-Pomeron vertices, four additional
propagators, and an additional loop integration.
(See Fig. 2.) As a result, the perturbation series
will again be an expansion in powers of the dimen-
sionless parameters =r, '/n, 'a~'5, ' D~'. When this
parameter is small the leading J-plane singularity
is a pole with intercept 1 —5, + O(X) independent of
the sign of qp. So for small values of A, our contin-
uation procedure does lead to n(0) & 1 for 2), &0.
Notice that for 2), & 0 the intercept shift, n(0) —n,
= 22i, + O(X), cannot be calculated in perturbation
theory without first shifting the field. This is be-
cause the bare vacuum is unstable for gp& 0, and a
perturbation expansion about an unstable vacuum is
meaningless.

Experimentally we know that 5p is small, i.e. , np
is close to its critical value. Furthermore, since
we are interested in studying the large-s, small-t
behavior of scattering amplitudes, we need to know
the behavior of the correlation functions for small
values E and k'. It is clear from our power-count-
ing argument that for 5„E,n, 'k'

& (r,'/
n, 'D ')' ' D ' we cannot truncate the perturbation
series. In this domain the renormalization group
is the most convenient tool for studying the struc-
ture of the theory. We now turn to a discussion of
it.

We introduce a renormalized field and a set of
renormalized parameters through the relations

gjx, y) =Z, '~'g(x, y), Sa——Z, "'S, (33)
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S= -Eg ~

= 6= Sg= Sg= 02

(38)

= 6 = Sg= Sg=02

(39)

Z= -Eg,
= 6 = Sg= Sg=O

r„"(E;,k(, r, n', 5, S„,Ba, E„)
Sf ——2E2 = 283 = -Eg,
kg= 6 = Sg= S~=O

and the parameter ~~ by

i=r/(2v )+"I',

(41)

(42)r"(E, 0', r„n,', S, S)
~ s,2 ~, —, , = 0 .

In Eqs. (38)-(42) the vertex functions are to be evaluated on the sheet of S and 3 for which q, = 5, when
8='3= 0. Kith this normalization the g,. are independent of 5, S, and 3. They depend only on the dimen-
sionless coupling constant

r/(nl)DI4E (4 D)14- (43)

The renormalization-group equations for the F"' follow from the fact that the 1"" are independent of E~.
Differentiating both sides of Eq. (37) with respect to E„gives

8, 8 8 8E„+P(g)—+ r(g)n', + «(g)5 —--,'(n+m)y(g) I'"„ (44)

where

P(g) =E«z
N rO, txg, 60, S,S tlxed

(45)

T(g) =E„ in(Z, 'z, )
N rO f)10 ~ ~0~ S, S fixed

«(g) =E„ in(Z, 'Z, )
E rO, Df0, 60, S, S fixed

(47)

)'(g) =E«sz
N rO, cf0, 60, S,S fixed

(48)

The renormalization-group equation can be written in a more useful form after some dimensional analy-
sis. Using the fact that the action is dimensionless we see that (the square brackets denote the dimension
of the quantity enclosed)

[q]=lq]=u ", [S]=[a]=zu"' [n ]=E)
[r]=za-"', [5]=[r,'']=Z. (49)

Let us concentrate oux attention on I"„". It can be written in the form

f''(E, k', g, n', 5, S,Z~, E ) =E„4(E/E„,n'k'/E„, 5/E„,g, (S /E„)(n'/E„), (S„/E )(n'/E„) ). (50)

This scaling law tells us that

r,"(Z, ) ',g, n', g5, S„3„,Z„)= ~r,"(E/g, ) ',g, n'/~, 5, S,/g, S,/g, E„/g) 1

so

(51)
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(52)

Combining this result with Eq. (44) and writing t = In)' gives

(» —«(4&& ——n(t& —(1 —«(4» ', E 3— 3„3 —(& —«(t&&)r"(3, «*,t, ', nn, «„3„,3 &=n.

(53)

The solution to this equation is standard and is given by

I'„''(E, k', g, a', 5, S,S~,E„)=r"(E,(-t), k', g,(-t), a', (-t), e '5, S,(-t), S,(-t), E„)
0

xexp dt'[1-y(g, (-t))]/[1 —t((gt(-t))]

where with

dg, (t) = —P(g t)/[1 —I((g 4) ], (55) p =C—

d lna', (t) = [1 —3.(g,)]/[1 —I((g,)],

d lnE, (t) d InS,(t) d InS, (t)
dt dt dt

with boundary conditions

(56)

(57)

n'k
p, =C, E EN N

&P D/4 g
-(l+ I D/ 4)l (l-K)

p, =C,~—
EN EN EN

D/4 g (1 + sD/4)/(1-K)

p =C
EN EN EN

(63)

g, (0) =g, a't(0) = a', E,(0) =E,

S,(0) = Stt Bt(0) = S
(58)

The C, a,re constants and y= y(g, ). For the phys-
ically interesting cases, $=3= 0, we shall write
Eq. (62) in the form

gt(t) t~ g1 «

where g, is the position of the zero of P(g)
Similarly,

at(t) C atetzl(1 K)-s~" 7

(t) C~e tI(1 K)-
with analogous expressions for S,(t} and St(t).
Here C and CE are constants and

(59)

(60)

Equation (54) will be useful for the study of the
small E, k', and 5 behvaior of the theory provided
t3(g) has a zero for which d p/dg& 0. We know that
such a zero exists for D near four" and we be-
lieve that one also exists in the physical number
of dimensions, D = 2. Assuming this to be the
case,

tr,''(E, k', g, a', 5, E„)
(l -y)/(l- K)~ E„C3 — C& (p„p,). (64)

N

The same scaling law holds independent of the
sheet of the S,3 plane one is on, i.e. , independent
of whether q0=+50. However, in general 4 will
have a different functional form for the two cases.

In Eq. (64} the limit 5-0 is to be taken for
fixed values of the scaling variables p, and p, .
It is equivalent to

tr„"(E,k', g, a', 5, E„)
E 1-y

, E„C' 4'(p'„p', ), (65)

with
z =1 —3(g,) =1 —3. ,

t( = K(gn) ~

Setting t = ln(5/E„) we find

(61)

(66)

tr,"(E,k', g, a', S„Z„,E„)
(X -y)/(1- K)

t E C @(P&r P2« P3« P4) n

(62)

This result can also be obtained directly from
Eqs. (44) and (50) by scaling E rather than 5.
Equations (64) and (65) are the natural generaliza-
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tions of the scaling low of Refs. 7 and 8 and re-
duce to it in the limit 5-0 for fixed E, k2.

The behavior of the physical Pomeron trajectory
function, nD(-k'), for small values of 5 can be
read off directly from Eq. (64). The pole arises
from a zero of C (p„p,). For k'= 0= p, the zero
will occur at p, = p„where p1p depends only on D.
Expanding about this point for small k', the tra-
jectory is given by

2

Z2=1+ (g)D„r(2 D-/2),

2

Z, =1+
( )

„r(2-D/2),

y(g) = —
12 (g'/g, '),

(75)

(76)

(77)

P1= P10.
P2-0

84
(p -p,.)+ „9p P1= P10 ~

P2-0

p, =0,

(67)

2(g) = —
24 (g'/g, '),

x(g) =12 (g'/g, '),

where

(78)

(79)

from which we see that

5 1/(1 K)

~=1 —n/2(0) ~ — E//p, o/Ci,
N

(68)

2

(8 )D/2 6
+O(f ) . (80)

Furthermore, from the study of the theory with

/), = 0 (see Refs. 7 and 8) we know that to order

ac
1

P1 P1= P1P,
P2-0

(69)

For small values of e = 4 -D, g, is of orderE, so one can use perturbation theroy to calcu-
late the critical exponents and scaling functions.
For definiteness let us set S=O so that the classi-
cal potential is given by Eq. (18). The diagrams
which contribute Z to order r, 2 are shown in Fig.
5. Writing the unrenormalized correlation func-
tion in the form

ir"(E,k', r„n,', S) =E —n, 'k' —6, —Z, (7o)

we see that

P(g) = -4 g(1 -g'/gi'),

so to leading order in e

x= —y= —27 = e/12.

We can now explicitly integrate Eqs. (55)-(57)
and find

g, '(&),„„g'+ (g'- g, ')(g, '/g')"'"'

)( -& /2(1+ 6/12)f

c (&
= (g, '/g')' ', c, = (g '/g') ' '

—(g 2/g2)-&/& C = C =(g'2/g2)&/&

(81)

(82)

(83)

(84)

2„ /, I'(1 -D/2)( —' n 'k'+ 25 E)-
2 87TQO )

2

(8v )
/ r(1 D/2)

&& [6 (5 2 2ir S)1/2](25 )D/2-2 (72)
2

Z, = —
(

'„D/, I'(2 -D/2)[52 —(50' —2iroS)'/']
85&0 )

In obtaining Eqs. (83) and (84) we have taken the
limit t - ~ for fixedg, which cannot be inter-
changed with the limit g-0. In fact setting
t =In(5/Ex) we see that our expressions for the
C, are valid only for (5/E„)(g,2/g2)2/e «1. In the
limitg-O, for fixed 5, perturbation theory be-
comes applicable.

For g =g„ the scaling law is exact for all values
of 5. As a result, for S =0 the scaling function,

1

x dx[250+ no'k'x(1 —x/2) —Ex]D/' ',
0

(73)

where the subscripts refer to the diagrams in
Fig. 5. For S= 0 and 7)0 + 50 only Z, is nonzero.
Using Eqs. (35)-(41) we find that to order g' (a)

2 I/2
~p (~p 2l p S)

(b)

I/2
irpS)

fo

(c)

2

22= 1+
( )D/2 r (2 -D/2), (74)

FIG. 5. Lowest-order graphs contributing to the
Pomeron se1f-energy when S &0, S =0.
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4, can be obtained from the relation %'riting

EE@(P12P22P3) [)-2s/ 2]2)) ~

P2= Cf'If2/EN,
P3 = (~R /& N) ('/S'N)

(86)

C =4, + e4, + O(~')

we find after a little algebra that

(86)

@0(P2)P22P2) =P2 P2

@1(P1 P2 P3) 22 (2 P. —+ 2 P.)[1—&(2 P.—+ 2 P. )]

--', [1—(1 —2(p, p, )'n]I1-ln2+ I pxln[2-p, xxp, x(( —-', x)]I.

The square root is defined so that (1 —2ig2P2) ~ = 1

fox' 8 = 0 and 'g 0 = 50.
%e can read off most of the x'esults quoted in the

Introduction from Eqs. (62), (64), and (86)-(88).
Let us start with 8 0 and &0 Qp&0 Then
5 =Z4 'Z, q„and Eq. (64) is clearly equivalent to
Eq. (2). (Recall that with our renormalization
procedure the Z's are independent of q„S, and
S.) I" Z I'" has a branch point at)10=0. If
we now take 8 to be different from zero,
6 =Z4 'Z, (q,'+ 28,S)')", sothereisnolonger a
singularity at q, = 0, snd we are free to continue
to negative values of g0. Then setting 8 = 0 we find
that for 10~0 10= &0= ~4~3 ~& and

(1 —2ig, p, )'~'
~~ ~, ,=-l. [The simplest way to

keep track of the phase of (1 —2ig, p, )'~~ is to per-
form the continuation before going through the re-

normalization-group analysis. ] Alternatively we
can continue in 8 for fixed values of 50 and 5.
Starting at 8 = 0, q0 = 50 we move thx ough the cut
in (1 —2ig, p, )' ' and arrive back at S = 0 with q,
= —50. Although the critical indices are the same
for either sign of qo, the scaling function 4 (p„p, )
is not. For the different signs of g0 we evaluate the
generalized scaling function C (p„p„p,) at p, =0
on different sheets of the p, plane.

lt is left as an exercise for the reader to show
that if one takes 8 rather than 8 to be different
from zero one obtains the same expression for
p„' with p, replaced by p4. Thus the physical
correlation frunction (S =S =0) is independent of
the path of continuation. Our final result for it is
that to leading order in c

l,l 2 pfr„(Z,u, g, o(', 6,E„), , 6
N gI j

&&
I p. p. I+ -(2 —pi+5 p2)[-I &(2 p. -+l p2)]-

with

1—((-2) 1 —ln2+ nx)n[2 —p, * ~ p, x(1 ——,'x)]I),
0

(89)

2/e - -q/X2

Pl g E g2

2/~- -&/8+IP2=
5 E g2

d =sgn(q, ) .

(90)

(91)

(92)

From Eqs. (68), (69), and (89) we can read off the behavior of the physical intercept gap and slope param-
eter for small 5:

1-—[-,' —(1-d) ln2] (92)

2 2/e- -e/24-
l g'z

+R 6~0 ™
6

1+—(1-d) (4 —21n2)
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Although one does not need to know (P„) or (gs) in order to calculate the correlation functions, they are
still of some interest. Their behavior for small 5 can also be obtained from the renormalization-group
analysis. Let us again start by taking S =0. Then (P~) =0, and we may write

(q„) =g, ' '(y) =q„(g, []', 5,S,E„).
Using the fact that (g) is independent of E„we obtain

+P(g) + (g) ', + (g)& +.'r(-g) g (g, o.', 6, S„E )=o.8 8 a 8
N gE Bg BN 2

(95)

(96)

Combining this equation with the scaling law

SR
ks(R'~ [r ~ ~iSsiEN) (97)

gives

[1—v(g)] —ll(g) +[1—|(g)]a', + S ——,'y(g)) ] (g, ', e'5, S,E„)=0,

which has the standard solution

0

gs(g, o]', 5, S+,E~) =ps(g, (-t), n,'(-t), e '5, S,(-t),E~)exp dt' 2r(g, (t ))—/[1 —][(g,(t'))]

(98)

(99)

Again setting t = In(6/E„) we find

(y/2+ D z /4)/(1- K) E D/4

PR(gi + I 61 R&EE) 6~0 Co i X(g|, i~ps) i
N Q

(100)

where to leading order is e, C', = (g,'/g') ' '.
In order to obtain the e expansion for the scaling function, X, we must compute the perturbation series

for

(g) =v+(g. ) .
The leading contribution to (g, ) comes from the diagram of Fig. 6. It gives

r 2

( ) = 0 I- I — I (1-D/2)(26 ) ~ -'

(101)

(102)

[1 —(1 —2ig p ) ] 1 -—(1 —ln2)

Putting all this together we find that to leading order in e

( g 2 2/& —&/6 E D/4

vR 6~0 n' (103)

If we take S rather than S different from zero, then
we find ( g~) = 0 and ( Ps) is given by the right-hand
side of E[I. (103) with p, replaced by p, .

III. SUMMARY AND CONCLUSIONS

The calculations of Sec. II show that for q0 near
zero the inverse correlation function 1 "ex-
hibits all the features of the correlation function
of a statistical system near a second-order phase
transition. There is a scaling law, with the scal-
ing function evaluated in the e expansion in Eqs.
(89)-(92). For ]ID v 0 there are only short-range
correlations in rapidity. By this we mean that the
Pomeron correlation functions and the correlation
functions for particles produced in the central re-

gion fall off exponentially for large rapidity sep-
arations. " A =1 —n(0) is the reciprocal of the cor-
relation length. It never becomes negative, and it
vanishes only at g0=0. Just as in the statistical
mechanics problem, one finds long-range corre-
lations only at the critical point. For small values
of qo the behavior of A is given by E[I. (93), where
5 is proportional to g0. The dependence of the or-
der g correction on the sign of g0 is typical of phase

2 I /2
g -( P -Piro S)

FIG. 6. Lowest-order contribution to (g, ) when S & 0,
S=0.
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transitions; the plot of ~ versus go is not symmet-
ric about g, =0. A similar asymmetry appears
in the scaling function. For large ~ q, ~

our power-
counting discussions of perturbation graphs indi-
cate n =1—

~ g, ~, so the asymmetry dies away when
the renormalized Pomeron intercept is well below
1. In fact power counting merely shows that quan-
tum corrections to the classical potential predic-
tion die away for large

~ q, ~. If we were to cut off
our field theory and take D&4, the classical po-
tential prediction would be correct for any ~ qo ~.

This contention is again verified by power counting
in perturbation theory. Therefore, mean field or
classical results break down only for D ~4 and
small

~ qo~ —the physically relevant situation. In
this regime the renormalization group is indispens-
able for the analysis.

For q, & 0, one of the fields g or g acquires a
vacuum expectation value. This vacuum expectation
value vanishes as g,-0 in the manner stated in
Eq. (103); such a continuous variation at q, =0 is
what makes the phase transition second order
rather than first order. Assuming that it is (g)
which is nonzero, the nonderivative terms in the
Lagrangian density are given by Eq. (18), with
S =0 and (g,' —2ir, S)' ' = —5,. The term 5,g, ',
treated as part of the interaction, destroys the
symmetry of the correlation functions. This is
illustrated for the partial-wave amplitude in Fig.
7, where the lowest-order diagrams are shown for
a process where particle A interacts with two
Pomerons, and particle B interacts with one Pom-
eron. When A is the sink and B the source there
is an extra diagram which is not there when A is
the source and B the sink. The breakdown in time-
reversal invariance for the partial-wave amplitude
leads to a breakdown in Lorentz invariance for the
scattering amplitude, since the amplitude with A
as the target will be different from the amplitude
with B as the target. There are two possible con-
clusions which one can draw from this disaster.
One is that Reggeon field theory is simply not
physically acceptable for go& 0. Unfortunately it
is unclear what mechanism in the underlying dy

namics forces g, ~0. The other possibility is that
there is an alternative way of continuing to go& 0
which leads to physically acceptable results. Our
procedure of performing the continuation in the
presence of constant external sources is open to
criticism. We argued in Sec. II that it was suf-
ficient to take S and S to be independent of x and y
since we expected(p) and g) to be in order that the
translational invariance in these variables not be
broken. This is what is done in statistical mechanics,
and it certainly makes sense to study the behavior of a
ferromagnet in a constant external field. However,
it is the hadrons which are the sources of the Reg-
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"o
~NpA

(a) (b)

FIG. 7. Lowest-order graphs proportional to N2~P &.
(a) when particles emits two Pomerons and particle
B absorbs one: Q) when particles absorbs two Pom-
erons and particle B emits one.

geons, and these are well localized in x and y.
Therefore, it might be argued that one should
really study the continuation to go& 0 in the pres-
ence of localized sources. This is a problem which
deserves further consideration. " We merely note
that it is far from trivial to simultaneously main-
tain time-reversal invariance, translation invari-
ance, and Reggeon unitarity.

We are now in a position to enumerate the pos-
sible high-energy behaviors which can be obtained
in Reggeon field theory. The two quantities which
set the energy scale are q, apd r,'/a, ' (for D =2).
For q, =0 and (r,'/a, ') ln s & 1 we will see the seal-
ing behavior of Refs. 7 and 8. For ro2/o, o'&~ qo~ & 0
we will see approximate scaling behavior for
(r,'/n, ') ln s & 1&

~ q, ~
ln s, but at higher energies

where
~ qo~ ln s o 1 the high-energy behavior will

be dominated by the renormalized Pomeron pole,
which is below 1. For

~ q, ~
& r, '/~, ' we will not see

scaling behavior at all. In this limit one should
use perturbation theory, using experiment as a
guide to the selection of an appropriate finite set
of couplings.

Since total cross sections are approximately con-
stant at high energies and r, is small, g, must be
small. The question of why nature chooses 60
4 p remains elusive. In principle it could have

been answered within Reggeon field theory, as in
Ref. 10, and the explanation of 60 60 has slipped
away from us.
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APPENDIX

An alternative method of studying the spontaneous
symmetry breaking is to construct the effective
action"

F(e, @)= g, , (g -&q))"(4 -&$)
num= I

xzT'" (0, 0). (A 1)

F" ~(0, 0) are the proper vertex functions of the
shifted fields, (( —&g), g —&Qg, evaluated at E, = R;
=0, and 0 and 5 are constants. In order to write
Eq. (Al) we have had to redefine iI"' to be minus
the expression given in Eq. (70).

The zero-loop (or classical) approximation to F
is

FIG. 8. One-loop graph for the effective action.

the one-loop contribution to r is'"'
1 dE " dDkI', =—' Q —

2
.

(2 P t (G V)"
1l =2

F,(0, g) = —qP% —,'ir, (—%'0+%4') (A2)

" dE=
G tr dz

J . t, R[(1—zGGV) 'G, V- GGV]
0 27fZ g i v

A typical one-loop diagram is shown in Fig. 8. In
evaluating these diagrams one may think in terms
of a two-channel problem in which channel one
contains a Pomeron propagating clockwise with a
Green's function G0' =E —e0'k'- g0+ ie and channel
two contains a Pomeron propagating counterclock-
wise with a Green's function G, =-E —n0'k'-g0
+ie. The interactions, denoted by x's in Fig. 8
are given by the matrix

egad eq

l
g2U g2U,

9$8$

,2,D (nG'k'+qG+irG(@+5)

—{[nG'k'+gG+irG(~I + T~)]'+ rGVC)'~') (A5)

r '7e
„D&, F(l —Dj2)[qG+irG(4+ e)]R~'-'.

4 4ma0') i'

The —,
' is the usual closed-loop factor and the fac-

tor of I/n a,rises because the graphs are invariant
under a simultaneous rotation of all vertices.

In order to carry out the renormalization of r it
is convenient to isolate the term in I', which is
singular at D = 4. We therefore write r, = r,.+ r»
with

d~k -'r %%
(2w) n kG'+ r+iGirG(%'+ 4)

(gG+irG(0+0) irG%'

i' vyG+ irG(++ %)p

Writing

(A3) Then introducing the renormalized variables

e =z-'~2+

@ =z-'~'e

(A6)

(A7)

(G,' 0 )
0

l0 GGi

(A4)
and making use of Eqs. (34)-(36), (74)-(76), we
see that to leading order in c = 4 —D

1+ ln —1 ——' iW 4' (5 +4 ) I+2 lnR R +
(8z)& E & R R R+ R +

(8z)~
(A8)

In evaluating r» to leading order in c we can set D= 4 before performing the k integration and obtain

I'„=,, [rI+ir(%R+VR)]'(- v+-,'C —-', (1+C)'~'+-,'(1+ C)'~'+-,'C ln[-,'+-,'(1+ C)'~'p,
(8vo' ' (A9)
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where

C = 2'V„g„[)7+ir(C e+0„)]-2. (A10)

Notice that I'» vanishes like (4~4 s)' when either 4'e or 4e goes to zero.
The next step is to write down a renormalization-group e(luation for I'. From E(ls. (37), (96), and (Al)

we see that

E„E +P(g) —+2(g)a', +x(g)6 —— ee +e„r=o.
Since S=B=0, 6= ~2) ~. Now [I']=Ek', so I' can be written in the form

I C)/4 I D]4)
I (g, a', 6,~„,~., E.) =E.(E./a')"'A~ g, E—,~. E

which leads to the scaling law

r(g, a', ~6,e„e„E„)= tr(g, a'/~, 6,e„,e„,E„/g).
Combining this with E(I. (All) gives

(A11)

(A12)

(A13)

(1 —x(g))——p(g) —+ (1 —2 (g))a', —1+—', y(g) 11/e + 11/e I'(g, a', e'6, 11/e, 11/e, E„)= 0, (A14)
8 8 8 8 — 8

which has the standard solution

0

I'(g, a', 6, 4„,C,E„)=I'(g,(-t), a',(-t), e ' 64„,( t), 4-,(-t), E)e xp dt'[1 —x(g,(t'))] ' . (A15)
—t

Here

—in@„,(t) =—ln@„,(t) = -', y(g, )[1 —x(g, )] ', (A16)

with boundary conditions 4 e,(0) =4„1I/e,(0) =0 e. Setting t = 1n(6/E„) we find that

(ga/ 611/ 11/ E)(6/E)[1+(D )(1/2T)](1K)C II E(E / a)D//2A(g 1 xy)
where, to leading order in e,

x -=@,(-t)[a',(-t )/E„] "=+„(a'/E„) "(E„/6)[(6/E„)(g,'/g')'"]"',
y -=~.,(-t)[ ', (- t)/E. ]"'=~,( '/E. )'"(E„/6)[(5/E„)(g,'/g')"'1'",
C// (g 2/g2)-1/3

From Eqs. (A8), (A9), and (A17}we see that

(A17)

(A18)

I

A(g„1,x, y) = -dxy 1+—(ln2 —1) ——,'g, xy(x+ y)-xy — d+i g,(x+ y) ln[d+ig, (x +y)]+0(e2 or (xy)'),

(A19)

with d = sgn())).
The vacuum expectation values of the fields g

and g are given by

function of x and y. For q & 0 the only stable
solution is x=y=0, i.e. , (g)=(g}=0. For ))&0
there are two stable solutions:

8r
+g

Vg- &g &

8r
8+@

T2/g- &T|) &

=0
7

=0.
(A20)

2$
x = ——1 + —(ln2 —1)~, y = 0

2lx=0, y= ——1+ —(ln2 —1}

(A21)

Clearly solving these equations is equivalent to
finding the stationary points of A(g„j., x, y) as a

which lead to the same values of ((t) and (Qg as
found in Sec. II.
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