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We study Reggeon field theory in zero transverse dimensions. We calculate the renormalization-group

functions in closed form and show that there is an infrared-stable fixed point. We also calculate the critical

indices exactly. We find that perturbation theory cannot be used directly to calculate the renormalization-

group functions in the neighborhood of the fixed point, but that Fade and Borel-Pade approximants can. We

prove that the only singularities of the partial-wave amplitude in the angular momentum plane are isolated

poles. The intercept of the leading pole approachesunity only in the limit that the bare intercept goes to
infinity.

I. INTRODUCTION

In the study of high-energy diffraction scattering
it is essential to take into account Regge cuts as
well as Regge poles. Gribov's Reggeon field the-
ory (RFT) allows one to do this in a systematic
way. ' Reggeons are treated as quasiparticles in a
space with one "time" dimension, t = iy, where y
is the rapidity, and two "space" dimensions, x,
the impact parameter. The conjugate variables
are E= 1 —J (/= angular momentum) snd k, the
transverse momentum of the Reggeon. When the
intercept of the Regge pole, n(0), approaches the
critical value, n(0) = l, RFT exhibits the critical
behavior associated with a second-order phase
transition. ' ' In particular the partial-wave ampli-
tude satisfies a scaling law with scaling indices
which are independent of the underlying parame-
ters of the theory.

Much of the recent work on the scaling laws of
RFT has made use of the & expansion. One calcu-
lates in a space with D= 4 —E transverse dimen-
sions, rather than the physical number, D= 2. For
small values of E the theory has an infrared-sta-
ble fixed point at which the dimensionless renor-
malized coupling constant, g, is of order c' '.
One can therefore use perturbation theory to cal-
culate the scaling indices as a power series in E.
To date the calculation has only been carried out to
second order in &, and for c = D= 2 the second-or-
der terms are comparable to the first-order
terms. ' It is not even clear whether the infrared-
stable fixed point persists for E = 2.

In this paper we calculate the renormalization-
group functions exactly for D=0 (c =4). We find
that there is an infrared-stable fixed point, which
occurs at g= 2 with our normalization of the cou-
pling constant. We therefore expect that the fixed
point found in the e expansion does persist through

D= 2. We calculate the critical indices exactly at
D= 0.

The D= 0 problem is a good laboratory for test-
ing approximation techniques which one would like
to use in two dimensions, where the fixed-point
value of g is also expected to be moderately large.
For example, we find that perturbation theory ap-
proximations to the Gell-Mann-Low function, P(g),
collapse long before g reaches its critical value,
while Pade and Borel-Pade approximants do con-
siderably better. The failure of perturbation the-
ory is understandable; we find that P(g) is singular
both at g = 0 and g = 2. The bare perturbation series
for the Green's functions diverges, but it is Borel
summable when the bare intercept, e„ is less than
unity. The Green's functions for np)1 must be
calculated by analytic continuation from Qp(1.

In Sec. II we study the exact Pomeron propagator
for D=0. We find that the only singularities in the
angular momentum plane a.re isolated poles. (The
discontinuities across Regge cuts vanish as D-O. )
The renormalized intercept of the Pomeron reaches
unity only as the bare intercept goes to infinity, so
the theory we study does not have a bona fide sec-
ond- order phase transition.

For D= 0 we evaluate in closed form the propa-
gator, its energy derivative, and the three-point
function when the energies of all incoming Pome-
rons are zero. In Sec. III we show that for arbi-
trary D this is sufficient information to determine
the scaling behavior of the theory. We carry out
the calculation of the renormalization-group func-
tions and scaling indices for D=O in Sec. IV. We
also show that P (g) is singular at g = 0 and g = 2

(the infrared-stable fixed point). Section V gives
numerical results for the function g(g). We com-
pare the exact |3 with perturbation theory results
and with Pade and Borel-Pade approximants,
which use perturbation theory to extract informa-

618



REGGEON FIELD THEORY IN ZERO TRANSVERSE DIMENSIONS 619

tion on p(g). We find that at D = 0 the Pads and
Borel-Pade apyroximants converge rather slowly
to the exact answer, but at D= 2 the convergence
of the Borel-Pade apyroximants appears to be
quite xayid. In Sec. VI we summarize our results
and discuss their relevance to the D= 2 problem.

II. GREEN'S FUNCTIONS FOR D=o

In D dimensions the Hamiltonian for noninteract-
ing Pomerons is

H =
Jt dDx[n'Vt!'(x) Vg(x)+n, y'(x)g(x)]

&o k'+ ~0 a' k a k .

H' = (IV+ I)(n +ir x/W2).

Then

G "(E)= i(0
~
(E H—') 'aa"

~

0)

=i(Oj[E/yr+I) n, ir~/~a] '~O&. (9)

By parity we see that the yroyagator is an even
function of r„which we henceforth take to be
positive.

The yropagator is yarticularly simple at E= 0,
where we may use the coordinate reyresentation
to find

iG"'(0) =v '~' dx(n, +ir,x/V 2)-'e ~
a QO

a,' is the bare slope yaxameter, &, = 1 —a, is the
bare intercept gap, and a(k) is the destruction
operator for a bare Pomeron with transverse mo-
mentum k and "energy" E = 1 —d= n,'k'+ n, . g(x)
is the Fourier transform of a(k). In order to study
the infrared (J= 1, I = —k' = 0) behavior of the the-
ory it is sufficient to include only the triple-Pom-
eron coupling. "We therefore take the interac-
tion Hamiltonian to be

+I= —,'iro d x ~~ x x '+~~ x

r, is the bare triple- Pomeron coupling constant.
For D= 0 the transverse coordinates disappear

from the problem and the Hamiltonian becomes

H = Ho+HI

= n, a'a+ —,
' ir, (a"a+a'a').

a and c~ satisfy the usual harmonic-oscillator
commutation relations. The Heisenberg field op-
erators g(t) and iPt) satisfy the boundary condi-
tions $(0) =a, $(0) =a~. The bare vacuum ~0&, which
satisfies a ~0) = 0, is also the vacuum of the full
Hamiltonian, H

~
0) = 0. The propagator is

G"(E)= «e*"«~T[e(f)e(0)]
~

0&
mOO

dt(0~ac ""E"a'~0&
a CO

dg exp —&DO —ro2O2 8

with

= (2v)'~ 'r, ' exp(+ h ')erfc(h '),

h=r, /v 2no. (10)

iG"'(0) = n -'g(2n) ~ (n~)-'(- h'/4)"

This divergent series has a Borel sum which
agrees with Eq. (9) only for n, &0. In analytically
continuing G"'(0) to n, &0 we must distort the con-
tour of the x integration in Eq. (9) to avoid the pole
at x=ih '. One never sees such a distortion in
perturbation theory. %'e can derive an asymptotic
expansion for n, &0 by using the fact erfc( y)-
= 2- erfc(y). We find

In deriving Eq. (9) we assumed that h was positive.
We take the view that the theory is initially defined
for n, &0 (n, &1), and then determined for n, &0 by
analytic continuation. Our assertion is based on
the observation that the path integral defining
G"(E) is convergent without distortion of the con-
tours of integration only for &,&0. In addition,
only for &,& 0 are the individual terms in the per-
turbation expansion of G"(E) free of unphysical
singularities.

The formal perturbation expansion for G"'(0)
gives rise to the asymptotic series

=i(o~a(E-H) 'a ~0&. (4) iG' ~ '(0) = (Bv)'~'r, ' exp(h ')

Introducing the usual harmonic-oscillator opera-
tors

N= fata,

x= 2 '~'(a+ a~),

Eq. (4) can be simplified through the identity

a(E H)=(E-H')a,

where

+ n. 'g (2n)! (n!)-'(- h'/4)".

So in continuing to &0~0 we pick uy an extra term
which has an essential singularity at ro 0.

From Eq. (9) we see that G"(0) is finite for all
finite values of 4„r,WO. The Pomeron pole can
approach E = 0 only in the limit &0 —~, i.e. ,
n, -+ ~. To investigate the spectrum of G"'(E)
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we make use of the linear integral equation

G(E) = [n + 6',x/0 2 —E(N+ 1) '] '

= G(0)+ G(0)E(N+ 1) "G(E).
(13)

Equation (13}is originally defined for n, & 0 and
then analytically continued to &p& 0. In the Appen-
dix we show that G(E) has a Fredholm solution and
that G "(E) is given by the ratio of two power se-
ries in E, each of which is an entire function.
Thus the only singularities of G"(E) for finite E
are isolated poles. For 4p&0 and rp-0 these
poles are located at the points E„=n&„n=1,2, . . . .
As rp and 4p vary, they never move off the yositive
real E axis.
It is temyting to associate the n ~ 2 yoles with the

t= 0 intercept of the branch points of the Hegge
cuts, but this is incorrect. For rp 40, the poles
are not spaced by integers. One can check in
second-order perturbation theory that for D&0,
where the cuts are present, the poles remain,
but we expect that most of them will not be on the

'physical sheet of the E plane.
For He E&0, &p&0 the perturbation series is

again Borel-summable and uniquely determines
G"(E). In continuing to n, &0 it is essential that
t'p +Op for we must not miss the contr1butlon from
the pole in G(0) at x= i/h in the coordinate repre-
sentation of Eq. (9). Indeed in the limit n, ——~,
this yole gives the dominant contribution. As a
leading approximation we drop the integrals along
the real axis in Eq. (13) and find

G(E) „=[8 ' ' 't, —E(x= h '~(N+ I) '~ = 'h ')] '~x= 'tt ')(x= 'h '~. (15)

Here the state
~

x= xtt ') means that we must evaluate for real coordinate eigenstates ~x) and then analytically
continue. Using the identity'

1

(x~(N+I) '~x')= ) de(x(8" (x')

de(1 —e') '~'exp —— (x+x')' —— (x- x'}2,41+x 4 1 z (16)

'G"'(E)=(0iG(E)i0) -„—2tt '[E —(2v) 'i'r, h 'exp(-IE ')] '.
%e see that the pole position, or renormalized Pomeron intercept gap, is

n= (2v) '~'r, h 'exp(- I&. '),
so the renorrnalized intercept approaches unity very rapidly as h -0-, the infrared- stable fixed yoint.

In our renormalization-group work we shall need the Green's function G'""(E„E,), in which one Pome-
ron of energy Ey+E2 is dissociated into two Pomerons of energies E1 and E2..

G"(E„E,) = dt, dt, e" ' ' 2'2'(0~T[&t(t, )g(t,}$(0)]~0)
«c&o

roc &&0

dt (()
~
a e 48& t2 t&&a e i e-kyat

~

0)e&&E&t&+ep&2&+ (E E )
t&

=( i)'(oia(a-E, —ie)-'a(a-E, -E, te)-' a'i 0) +( E,- E).

We use Eq. (6) and its adloint with f'&& —'ro to obtain

G ' ' (E„E,) = (- i)'(0
~

(O' —E,—ie) 'aaa'(O' —E, —E, —ie ) '
~
0) + (E,—E,).

At zero energy and positive &„we have

(20)

G"(0, 0) = 2(0
~
(t, + e,x/W2)-'(N+ I)-'a(n, + ir,x/W2)-'~ 0)

kp

OQ }L

de, dory, e ~o" "2'
~ de(0

~
e "0 &~~'e" a e '"0 ~t~'~ 0).

dp
(21)

Using the 1dentlt1es
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exp(aaI+Pa) = exp(aaI) exp(Pa) exp(al3/2)

= exp(Pa) exp(aaI) exp( —aS/2) (22)

exp(aa) z"= z"exp(oza}

Eq. (21) reduces to
oo

G, (p p) d d &-(s1 +s& ) 11
/s -( 1+ss)s1s1~ d Z ss ssIss/4

0 1 2 2
0 Pp

(23)

This integral can be simplified by the substitutions o, = Wv 8 /r„a, = (x+ y)v 8/r„z = x/(x+y). The inte-
grals over y and 8' can be evaluated leaving

3/2 OO

G' '(0, 0) = h 'e" due" [erfc(u)]'.
~0' &a-~

(25)

The last Green's function we shall need is the derivative

(0) =(pi(ff )- ip)

1 1 1

&,+ir,x/v 2 N+1 &,+ir,x/&2 (28)

Using the techniques applied to the vertex, this is

BG'' OO 1

(P) t I da da &-tsI +ss &ro /s &s1+ss~/1o dZ e "0 ss1ss/42 2 2 2

BE g
1 2

0
(27)

Comparing with Eq. (24), we see there is a simple relation between this derivative and the vertex

B BG&"&G'* (o, o) = —' (0)
2 B&, BE (28)

We collect these results together by defining functions A, B, and C through

I 1, 1 (p)
~ BG '

(0) G1, I (p p) o (29)

Convenient expressions for A, B, and C are

A(h) =2k 'exp(h ') due ",

C(h)=2h 'exp(h ') t duu 'e "[A(u ')]',
a-~

(30)

B(h) = 2h ' du@ SC(R 1).
h-~

The equation for B follows from integrating Eq.
(28). These formulas are used in Sec. V, where
A, B, and C are evaluated on a computer by inte-
grating down from h '=+ ~. Notice that in this
form the analytic continuation to &,&0 is auto-
matic —there is no singularity of any of the inte-
grals at h '=0.

For 4, &0 it is also desirable to have the pertur-
bation series for A, B, and C. A(h) can be read
off from Eq. (11). For the other functions we have
from Eq. (30)

C(h)=, Jt dh' exp( —h' ')[A(h')]',
0 (»)

B(h) = —, t dh' h' C(h').
0

C(h) is developed as a power series by integration
by parts after Eq. (11) is substituted for A(h). A,
B, and C are all unity at h = 0.

It is clear that by these methods closed expres-
sions can be derived for any derivative of any
Green's function at zero energy. These three suf-
fice for the renormalization-group studies which
are our central concern.

III. RENORMALIZATION-GROUP FUNCTIONS

AND SCALING EXPONENTS

In Ref. 4 RPI' is studied for general values of the
Pomeron intercept. A complete set of scaling laws
and scaling exponents is obtained for small values
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of E, k2, and 4. In that work the renormalization-
group functions and scaling exponents are calcula-
ted in terms of the Pomeron propagator and three-
point function evaluated with 4 =0 and with the en-
er gies of the exter nal Pomerons different from
zero. We have just seen that for D=0 the Pomeron
propagator and three-point function can be evalu-
ated in closed form for E=0 and &w0. We now
show that this is sufficient information to deter-
mine whether the theory has an infrared fixed point
and to calculate the scaling exponents. Thus we
can determine the behavior of the Green's func-
tions for 4«E«r4 'n' ' in terms of critical in-
dices which can be calculated for E =0 and AWO.

We wish to develop a formalism which will be
applicable for all transverse dimensions in the
range 4~ D~ 0, since we would eventually like to
be able to study the renormalization-group func-
tions and scaling exponents as a function of D. As
usual we introduce a renormalized field operator,
Ps(x), coupling constant, r, and slope parameter,
n', through the relations

,„,ir,"(E,)'), , = n',1 1
8y2 R & E2 EN (38)

1L'.=0

These normalization conditions are a generaliza-
tion of the one used in Ref. 4 in that we do not re-
quire that p, =0, i.e. , ~=0. It is convenient to use
p, or p.o as an independent variable rather than go
=—n„—a„as was done in Ref. 4, because at D =0,
n„=. Note that p. is not the physical Pomeron
intercept gap.

Making use of the fact that'

~p oc
E(n n )

&&-))' (&-c)
oc

(40)

the scaling law for the unrenormalized Pomeron
propagator can be written in the form4

E Q'k(Ek') ', K, &
&' K, , l „.„,IC, „.„,„.„)~

k2~ 0 ~0 ~o

g„(x) =Z, "'g(x),

r=Z 3/2Z
3 1 0~

n'=Zg, 'n,'.

(33)

(33)

(34)

(41)

The K's are constants and y, 7, and w are the sca-
ling indices. It follows from the results of Ref. 9
that

Zn, m Z (n+m)/2I n, m
R 3 (35)

We shall work in terms of the single-particle-irre-
ducible proper ver tex functions. The renormalized
vertex function for n incoming and rn outgoing
Pomerons is denoted by I'~ and the unrenormal-
ized one by I'"' . They are related by

8
y = lim E„ lnZ,

EN-0 N

8
rlim E„ ln(Z, Z, '), ,
E -0 8 NN

(43)

(43)

We impose the normalization conditions

il s (E&" ) Iz=&.o=o= —&= —Zo&o&

—iI'„''(E, k') s s =1,
k2 O., N

(36)

Thus in order to calculate the scaling indices y and
v it is sufficient to calculate the renormalization
constants Z, and Z3.

To study the renormalization constants we in-
troduce a set of renormalization-group functions

8
yE -E„ lnZ

8EN ro, eg, ~f ixed

8
y„= po lnZ,v 8p rp& %p& ENf ixed

(44)

8 8'
v' =E ln(Z, Z, '), r = p, ln(Z, Z, ')

8EN rp ato ~fixed 8pp ro, alp, ENfixed
(45)

8
PE=EN

8EN rp, ap, p f ixed

8
PI =PP g8Pp rp Rp ENf ixed

(46)

r
+)D/4 6/4

0r
ID/4 &/4

Qp Po
(47)

Here g is the dimensionless, renormalized cou-
pling constant

where z = Z3 Z1 Z2 . Notice that our definition
of g differs from the conventional one' by a factor
of (E)&/)))' '

Since the Z's and the renormalization-group
function are dimensionless, they can be expressed
as functions of g and the dimensionless parameter
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x=—=Z —=Z x-iEN
3 3 0'

P Pp
(48)

Bine &
~P

Blnx 4 p
' (57)

Equa. tion (44) can therefore be written in the form

B
yz (g, x) = Pz —ln Z, (g, x)

Bg

Let us begin by integrating Eq. (56) with respect
to g for fixed x. Using the fact that Z, (g, x}i~=,= 1,
we see from Eqs. (47) and (56) that

+ (1 —yz) ln Z, (g, x),
B

Blnx

B
y,(g, x) = P,—ln Z, (g, x)

(49)
+0

Rp r D/4 &/4
0 0

4 P(g', x)

B—(1+yg ln Z, (g, x). (50)

Bln Z3 yE+ y„
Bg P

BlnZ3 yEp„—y pE
B lnx P

with

(51)

(52)

The partial derivative with respect to g is to be
taken with x fixed and vice versa. Equations (49}
and (50) ca.n be inverted to give

P( g; x),-„P'(x)[g —g, (x)]. (59)

(58}

We are interested in the limit p, 0-0 for fixed x,
as we shall verify in a moment, so we must de-
termine how the integral in Eq. (58) can diverge.
For small values of e this happens because
P (g, x) has a simple zero as a function of g. We
shall show shortly that this is also the case for
D=O. Therefore, we shaLL assume that for a
general value of D there exists a g, (x) such that

P(g, x) =P, (I+rg+P„(l -rz).
Similarly from Eqs. (45) and (46) we find

18(n,z,z') rz(1+y )+r (1 —yz)

(53)

(54)

Then

lnz(g, x},~ C ln[g, (x) —g]

+InZ(x)+O(g-g, ),

where

(60)

and

&&In(z, z, -') 7,P„T„P,—
B lnx JY[

(55) z 1 —yz(g, x)
4 P'(x) e=z()

(61)

Bins, ~ j.-yE
Bg 4 P

(56)
Sinceg-g, (x) as 1&0-0, we learn from Eqs. (47)
and (60) that

g, («} -g ~ Ig, /z(x)g. )"'=~.""[g,c&o'"/z(x)r. ]"' (62)
gp» p

It is crucial that C is independent of x. To see this we substitute Eq. (60} into Eq. (57}. Unless sC/s«=0,
the left-hand side of Eq. (57) will have a logarithmic singularity at g=g, (x) which is not present on the

right-hand side of the equation.
We can now integrate Eqs. (51}and (54), and find

Z (g, x) Z (x)[g, (x) —g] = p
' Z ( )x[gn' i /z(x)r ]

»p0

(63}

Z Z - ~ Z (x}[g (x} g] '
1&,sc2y4cz»(x}[gc&,' l4/z(x)r, ) '

p, p» p

(64)

where

C, = [rz(g, «)+ r, (g, x))/P'(x) ~,=„&.&

C, = [ra(1+y, ) + r„(I-yz)]/'P '(x)
i g g, &„&.

(65)

(66)

The absence of logarithmic singularities at g
in Eqs. (52) and (55) requires that C, and C, be
independent of x.

The limit 1&,-0 in Eqs. (62)-(64) is to be taken
for fixed x. From Eqs. (48) and (63) we see that
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(g x) =g3 (x) y c /4c (6
3

so fixed x corresponds to a fixed value of E„/
We can therefore rewrite Eq. (63) in

the form

as the dimensionless renormalized coupling con-
stant. ) The corresponding renormalization-group
functions are

8
Pg=&g @ g

rO, I0& uOT i@ed

uo. &X"o
~ ec3/4cf (E /~ 1+sc~/4c) (SS) =Pm"" - -(1 -ys) g, (79)

If we now set p, o
= 0 for small but finite E~, Z3

neither vanishes nor blows up, so

g ( k, E (e C3/4C) /(x+e C3/4C)
3)u00 ~ 3

Eg 0

Similarly
(e C2/4C) / (1+eC3/4C)

N
Qg» 0

Here k3 and k» are constants. Comparing these
results with Eqs. (42) and (43) we see that

(70)

eC, /4C ye+ y„
1+eC, /4C 1+y„

1

eC, /4C
1+cC,/4C

(71)

(72)

Since y and v' are independent of x the right-hand
side of Eqs. (71) and (72) can be evaluated for any
convenient value of x. To all orders of perturba-
tion theory the Z,. are finite if either E„or i/, (but
not both) are set equal to zero. If one takes
p=0 as in Ref, 4 then y„=r„=O and Eqs. (71}and

(72) become

8
Pu= Po 8 ~0 r0, 0, 0& EZ&ixed

=P„x '/'+ —(I+y„)g.

From Eq. (53)

F(g, x) = [Ps(I+y.)+P.(I ys)—k '" P( g=-, x}x'"
(81)

From simple power counting we see that P(g, x)
is finite in the limit x- ~. If P(g, x) has a zero
at g=g, (x), then P(g, x) must have one at g=g, (x)
=g, (x)x '/'. It is g, (x) which approaches a finite
limit as x- ~, whereas g, (x) approaches a finite
limit as x —0. For p. = 0, Pu = 0, so

p(g, x)I -. .=P.I. -. (82)

8P
8g

Thus we can determine whether the theory has an
infrared-stable fixed point by asking either whether

PsI„-&, or P~I, , has a zero with a positive slope.
The approach-to-scaling index of Frazer and

Moshe is defined to be'0

y y I...„„-. (73}

~E g-g ~ um-1 (74)

On the other hand, if we set E„=0 as is conven-
ient for D=O, then ye=7'+=0 and we see that

g=g~,-x"&=0

e/4C
I+~C,/4C

' (83)

Yu

1+@ Z'=SI t S~X=O
(75}

For E„=x=0

(I +y„)8g g=gi iX=0
(84)

T

1+@- u Z=t l,.'E =x=0 (76)

We must now investigate whether p has a zero
as a function of g. When E„=O, P~=O, so

P Is„==.= p. I s„==o~

With this normalization we must study p„(g,x = 0).
In order to study P in the alternative limit, p-O,
it is convenient to introduce the more convention-
al renormalized coupling constant

g-1 iFl1(E+~)8
4 8X g- g

(85)

xs =E„ ln(Z, Z, ')
rO, CO, PO fixed

y, 7, and ~ form a complete set of exponents which
can be constructed from C, C„and C,.

Finally we turn to the scaling exponent & defined
in Eq. (40). Following Ref. 4 we write

(78)

(For general values of x either g or g can be used
In(Z, Z, ')

8P, o

(86)
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Proceeding in the usual way we find that

z z -& ~ + Ec4/4cz (+}[g + DI/4/z (+)y ]c4/c
Pp 0

(s7}

where

C, =[~,(I+y„)+~„(l-y, }]/p'(z)~, =, &„&. (SS)

Again C4 is independent of x. Now for E„=O

For general couplings the function y is

Po
Z '8p,3 0

ppszp /sh l~p

Z, '6)&.,/Sh I„

hA'(dldh)(B/A )

B(d/dh)(hA)
(94)

so

Bb,p. ' =z.l.=. ,
BP.O

(89)
Similarly, « is given by Eq. (91), where

hAB d I d

[(dldh)(hA)1 dh Bdh- (95)

1- & ( C3- C4 ) /4 Cy (90)
0

Comparing this result with Eq. (40} we see that

e C, /4C
1 + ac,/4C

E g=g1; p=x ~=p

To evaluate these functions at g=g„we note that
this limit corresponds to h going to zero from be-
low (ro&0, n.o--~). For this limit Eqs. (12) and

(30) give

2& x/r.
A(h)- e' "'+a(h) (~h

~

-0, Reh(0},

K~

g=g~i E@=x=0
(91) B(h)-2&&e' " b~(h)+ —e' " b, (h)+b (h),

C(h)-=, e' "'C,(h)- —,e' "'C,(h)+C, (h),

(96)

&~-7) / (~-~)

~0 - &oc +oc +0
(92)

At D=0, I/6„=0. Since po goes to zero faster
than any power of I/A, as A, --~, «must be
unity. The fourth exponent v, which controls the
shrinkage of the diffraction peak, is not defined
at D=O, so we cannot calculate its limit as D-O.

These results can be calculated from our solu-
tion of the theory at E =0. Equations (36), (37),
(3S), and (47) give

g= —Z '/'Z

a ' 1 G«"(0, 0)
sE G«e»(E) [C«.»(0)]3

~hC
WB'/" (93)

in the notation of Eq. (30). This gives g as a func-
tion of h and can be inverted to give the mapping
h(g). The exponent y is calculated from Eq. (75).

IV. INFRARED SCALING IN THE D=O THEORY

The scaling exponents introduced in Sec. III can
be inferred by what we know about the propagator
in the D= 0 theory. We can adjust the renormalized
Pomeron gap to be zero by taking --~ for fixed
r, This p.ole is isolated, so iI's& '

(p, =0) =aE
+bE'=aE' "[1+(b/a}E ]. From this we read off
the indices y=0, X=1. The total cross section is
constant at high energy which is the maximum al-
lowed by unitarity. The index ~ is unity. This is
seen by rewriting Eq. (90)

where

3I4
«(h) = 1-—+ + ~ ~ ~

2 4 )

b, (h) = [C,(h)]',

b, (h) = 4«' 'C, (h)[]+In(- I/h)]

13h'—m"9P 1+ + ~ ~ ~

4

51' 8h'
b(h)= —+ 1- + +h' 2 3

(97)

3pg4
C (h) =1+—+ + ~ ~ ~

2 4

h 3h
C, (h)=4&&'/ (+In(-I/h)+ ——

I
+' ' '

5h'
C (h)= I — +8h +

2

The expression for A in Eq. (96) is valid when

Reh &0. The remaining expressions are obtained
by treating the rest of Eqs. (30) as differential
equations in h '. $ and q are integration constants,
and q is actually zero. This can be shown by using
Eqs. (11) and (31) to develop the analog of Eq. (96)
for Reh &0. No integration constant appear, and
matching asymptotic formulas along the imaginary
axis yields g =0. The imaginary axis is a Stokes
line across which the asymptotic behaviors of
A, B, and C change.

Using Eq. (96) we obtain
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g, =2, y„=0, v„=1, y=0, tc =1, (98)

hA d vTAC

(d/dh)(hA) dh AB' '

From Eq. (96) we have

(99)

where we have taken B' to change sign at h '=0
where it is linear. The function P is

We now further assume x is small when ih i
is

small, so that iargh i
must be a little less than

3v/4. In this regime, A, B, and C are all well
approximated by unity. The derivatives in Eq. (104)
are due chiefly to the variation supplied by the ex-
ponential dx/dh --2x/O'. Accordingly, A' and B'
are small compared to C', and Eq. (104) becomes
simply

p ~ vii2he ii & (I + 2/2 + ~ ~ ~ )
h

g 2+ p / |M i/h 1+ + ~ ~ ~
3h
2

(100)

(101)

0-1+AC'=I+16xh 'ln(-I/O),

h

161n(-I/h) '

(107)

h -[-In(2-g)] ' ',
g~ 2

(102)

We verify that P(g=g, ) =0, which justifies our
association g-g, with h-0-. Equations (100)
and (101) can be inverted

We see that x is small when h is, thereby justify-
ing the simplifications made in A, B, and C. Sub-
stituting for x and taking logarithms, we find a
sequence of solutions h„:

(g- 2)
p(&) E-~(g 2[ ln(2 )]i&2

+ smaller terms. (103)

1
, = (2n + 1)vi + 6 ln(h„) —In(16 v '

)

—ln In(- I/h„) . (108)

We see immediately from Eq. (83) that X=1, as
predicted. We also see that g=2 is a branch point
of P(g). The second derivative of P is infinite at
g = 2, and P is complex for g) 2. This establishes
that g=2 is a true upper bound on the renormalized
coupling constant. If we try to force g) 2, the
parameters in the unrenormalized Hamiltonian be-
come complex.

We can also show that singularities of P(g), y(g),
etc. accumulate atg = 0 along lines which are asymp-
totic to the rays arg g = +3m/4. We begin with the ob-
servation that the mapping h(g) will be singular
for those g's such that

0=-dg
dh

This equation can be solved iteratively by first
ignoring all terms on the right except (2n+1)mi.
For large n, we find

+3is /4

[(2n+ 1)v+ O(Inn) ]'i' '

The corresponding value of g„ is
%3CF /4

[(n+ ,')v+O—(inn)]'" '

(109)

(110)

At ea.ch of these points P(g), y(g), etc. have a
square root branch point, and these branch points
accumulate at zero. These functions cannot be ex-
panded in a power series in g around g =0, so the
perturbation series for them is divergent.

A = 2h'x+1,

B= 2h x + 8h'x ln(- I/h) + 1,
C =-4k x '- 8x In(-I/h)+1,

where

1/2 1/h2I 3

(105)

(106)

d lng
dA,

1
(ABC h ABC' —

g hAB'C —hA'BC),

(104)

where primes mean differentiation with respect to
h. We look for solution of this equation where
argh = +3v/4. We must therefore retain all the ex-
ponentials in Eq. (96) because e'i"'= O(1) when
argh=+3v/4. On the other hand, we take

ibad

small, so in Eq. (104) we may use

V. NUMERICAL RESULTS AND COMPARISONS WITH
PERTURBATION THEORY

In this section we present the numerical results
for P(g). Having an exact solution and also a sim-
ple perturbation expansion makes the model an
ideal proving ground for techniques of extracting
meaningful information about the fixed point from
the limited information one can get from perturba-
tion theory in a realistic model.

We first turn to the method of extracting numeri-
cal results. We have found that G", G", and
&G '/SE are given by successive integrations on
h ' using Eq. (30). Using the expansions (11) and
(31) for large positive h ' as a starting point, we
may integrate from h '=+ ~ through the entire
range of h, evaluating g(h) and P(h). In Fig. 1 we
show the result for P(g). The curve appears un-
exceptional, a smooth curve just as one would
have sketched as a guess of what P might look like
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0
-0.04

-020

p(g)

-0.36

—0.52

I I I I I I

0.4 0.8 I.2 I.6 2.0

FIG. 1. The p function for Reggeon field theory in
zero transverse dimensions.

TABLE I. The coefficients in the power-series expan-
sion for P(g) through 2i loops. P(g}=Q„OC„gt"+ .

Cp =-1
C( =+ 0.875
Cp = —1.041
C, =+ 2.120
C 4

= -5.849
C 5

=+ 19.875
C6 = -79.037
C, =+ 375.020
Cs= —1796 94
C9 =+ 9944.826

C„=—59935
C g) =+ 390 475
Ci2 = —2 733767
C (3 =+ 20 468 237
C (4 = -163213 379
C15 =+ 1 381 095000
C i6

———12 362 000 000
C f 7

=+ 116724 000 000
C)8 = —1 159499000 000
C g9 + 12 089 607 000 000
C2p = —132 023 649 000 000
C p(

=+ 1 507 057 000 000 000

if the theory had an infrared-stable fixed point.
The fact that P does cross the axis at g= 2 to very
good accuracy provides a check on the integration
procedure.

Actually the graph hides a peculiar effect which
takes place in an exceedingly small region near
g = 2. From Eq. (103) dP(g)/dg = 1 at g = 2, but a
straight-edge fit to Fig. 1 gives 1.08. This is due
to an abrupt change in the derivative within ~
= 0.001 of the fixed point, a sign that the second
derivative blows up at g= 2.

The fixed pointg, =2 is not small. Away from
D = 0, we do not have exact solutions and we usually
rely on results of perturbation theory truncated

-0.2

0.2

p(g)
-0.2

0.2 2I

-0.2

-0.6
0

FIG. 2. The P function for D =0 calculated exactly
and in perturbation theory. (a) The n-loop (g "+')
approximation. (b) The (n —[n/2], [n/2]) Padb approxi-
mant, where [n/2] is the greatest integer ~ n/2. (c)
The (n —[n/2], [n/2]) Borel-Pads approximant.

at some fixed order. We may easily reproduce
these results, as it is not at all difficult to cal-
culate asymptotic expansions for g(h) and P(h) to
very high order. Using Eqs. (11) and (31) we de-
rive a formal power series for A, B, and C.
ThenEqs. (93) and (99) giveg(h) and P(h) as power
series. The series g g(h) can be inverted and
substituted into P to get P(g), as a power series in

g. Truncating after g ""gives the n-loop approxi-
mation to p. In Table I we present the coefficients
involved up to the 21-loop approximation. One can
readily see that the expansion is asymptotic rather
than convergent. In Fig. 2(a), we have plotted the
n-loop approximation for P, together with the ex-
act result. We see that no approximation gives a
good fit anywhere near the critical point, and that,
as we would expect of an asymptotic expansion,
higher approximations disintegrate sooner. That
they are in fact an improvement for small g is
shown in Fig. 3, where we present the error in the
functions evaluated with the 2-, 3-, 4-, 5-, 7-,
and 21- loop approximations.

A popular method of extrapolating a power-series
expansion is to use Pads approximants. That is,
one finds polynomials (in g ) of order m and n such
that the ratio is a power series with the first m+n
+ 1 terms agreeing with the known coefficients for
P(g)/g. We have found that the best results are
near m =n provided there is no zero pole pair on
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Q.4

g(gj

Q

Q. l Q.2
I ( I

Q.4 Q.5
—0.2

FIG. 3. The error in the n-loop (g2" + ~) approxima-
tion for p(g). For sufficiently small g each additional
term is an improvement.

Q.5 &.Q I .5 2.Q

the real axis. In Fig. 2(b) we show the middle ap-
proximant for 2, 3, 4, 5, 6, and 21 loops. We
see that using Pads approximants certainly helps
and that higher-order calculations give better re-
sults in general, but only converge slowly. One
must go to five loops to get 10% accuracy for g, .
The slowness of convergence is due to the rapidity
with which the coefficients blow up. Under such
circumstances it may be better" to write P as a
Borel expansion

The function q(x) is a power series with the co-
efficients divided by n I, and appears to have a
finite radius of convergence in our case. If we do
a Pads approximation to y, and then evaluate P,
we generally get much better results, as shown in
Fig. 2(c) and Table II. Nonetheless, we do not
have reliable good results until we get to 6 loops.
The residual errors for n « 6 may well be due to
round-off errors in our computer calculations.

TABLE II. Values for g& as evaluated by Pads and
Borel-Pads approximants using the information available
from the n-loop approximation. In each case the
.(n —[n/21 fn/2j) approx'~&Fit is used where [n/2] is
the greatest integer ~ n/2.

g/~Per

FIG. 4. The (n, m) Pade approximants to P(g) in two
transverse dimensions. The polynomials (n, 0) resemble
those for D =0 [Fig. 2(a)]. g is normalized differently
than in the D =0 work.

The conclusion is that it is possible, by means
of Borel-Pads approximants, to extract fixed
points at large g from perturbation theory, but
that results from a few loops are not very reliable,
at least at D=O.

The expansion of the renormalization- group func-
tions in powers of g has been done in the physical
case, D=2, through order g' by Harrington. " He

finds that the zero of P in the 3-loop approximation
is not far from that of the 1-loop approximation.
In Fig. 4 we show the 1-, 2-, and 3-loop poly-
nomial expansions as well as Pads approximants
for the 2- and 3 loop results. The polynomials,
(1,0), (2, 0), (2, 0), look very similar to Fig. 2(a),
and we expect the correct P lies between the even-
and odd-loop expansions. Unfortuantely the Pads
approximants do not agree very well with each
other. When we turn to the Borel-Pads approxi-
mants shown in Fig. 5, we find that all the reason-

Q.2—

Number of loops

4
5
6

i0
i3
i7
2i

i.479 25
3.97i
i.709
2.480

2.235
2.i43
i.995
2.0i 5
2.0i3

g&-Borel-Pads

2.7i4
i.836
2.009
i.774
2.095
2.024
2.053
2.065
2.040
2.035
2.044

P(g)

FIG. 5. The (n, m) Borel-Pade approximants to P(g)
at D =2 for two and three loops.
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able choices [excluding (n, 0) and (O, n)] agree well,
with g, = 1.7(4v)' ', which is much larger than the
value 1.17(4&)' ' obtained from the polynomial ex-
pression. ' Using the same Borel approximants for
z(g) and y(g) gives z(g, ) = 1.13 and y(g, ) = —0.20 to
—0.25 for the 3-loop results. These results are
considerably larger in magnitude than Harrington s
values of z(g, ) = 1.07, y(g, ) = —0.13 from the power
series.

VI. SUMMARY

Our principal result is that P(g) has an infrared-
stable zero for D=O just as it does for D near 4.
It therefore seems quite likely that such a zero
exists in the physical number of dimensions, D
=2." ti(g) has singularities both atg=O and at
g=g, =2. The loop expansion gives rise to an
asymptotic series, and we have seen in Fig. 2 that
it cannot be used directly to determine g, . Pads
and Borel- Pads approximants can be used to cal-
culate g, and the critical indices, but the rate of
convergence is disappointingly slow at D=0. For
D = 2, g, /(4v)'~'= 1 —2, and Pads and Borel-Pads
approximants again appear to be useful. The
agreement among the Borel-Pads approximants for
the 2- and 3-loop calculations is very encouraging.
It would of course be desirable to have the 4-loop
results in order to be certain that the agreement
is not fortuitous, but that would require a form-
idable calculation.

We have shown that for D = 0 the only singular-
ities of the partial-wave amplitude in the E plane
are isolated poles which lie on the positive real
axis. The fact that the only singularity for which
ReE = 0 is at E = 0 justifies the renormalization-
group treatment of the Pomeron as an infrared
problem. Because the Pomeron is a simple pole
for D=O, the critical indices take on the trivial
values @=0, v=~ =1. The intercept of the re-
normalized pole reaches E =0 (J=1) only in the
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APPENDIX

We start by showing that iG" (E) has a Fredholm
construction. For this purpose it is convenient
to write

8"(E)= iG"(0)+E iG "(0)
8E

+ Q,
~

(1 -Z)-'Z
~
q„

where

ff = Ee »U~ ~2G(-0)U'~2e»

(Al)

(A2)

(g,
~

=E' '(0~G(0)U' 'e', (AS)

~q) —E' e ~U' G(0)~0). (A4)

Here we have defined U=(N+1), and P=2 '~'i(a
—a) is the "momentum operator. " p=—h ' = &2&o/

r, is the inverse dimensionless coupling constant.
Our first task is to show that K is an L' opera-

tor. We shall work in the momentum representa-
tion where

limit that the bare intercept goes to infinity, so
there is not a true phase transition.

While this work was being completed we received
three reports in which the D=O problem is treated
from a different point of view. ' " Where our cal-
culations overlap the results are in qualitative
agreement with those of Refs. 15 and 16. In these
papers it is also found that the only J-plane sing-
ularities of the partial-wave amplitude are simple
poles and that the leading pole does not reach unity
for finite values of n /r, .

(q )U' '[q') = 2m
'~' do(q [e ' ""[q')

ap

1 1-g, 1 1+@
= z ' dzI(-jnz)(1 -z')] '~'exp —— (q+q')' ——

(q -q')'
p

(z=e'), and

(q
~

e»G, e» ~q') = 8(q' —q) ~v2 W2

p p

As a result

trfffft - I E I tg -2»U'/2G U'&2e'»U'&'G&U'&2]
p 0

2 I E I2

dqdq (qie»U e»U e»iq/) — I I f
rp p

r'

(A5)

(A6)

(A7)
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But

1 — —' -z
&/2 dg dgging )(lng )(1 g 2g 2)]-&/2 exp 1-z, z,

(A8)

I can be bounded by noting that the exponential is
less than e'+. The remaining integral can be
evaluated giving

(A9)

d
dx', -x' —1+2'/'(E/r, )(ix+ p) ' y(x)=0.

(A16)

So

2

t KK'
ro

(A10)

One can obtain considerably better bounds for
~0&0, but this one is sufficient for our purposes.
Equation (A10} tells us that the resolvent of K,
R=(1-K) 'K, is an I' operator for all finite val-
ues of E except isolated points at which the Fred-
holm determinant, I/(E) = det(1 -K), vanishes.

Next we must consider the norms of
I g,& and

We expect one solution to this equation to behave
-x2/2like e " /' for large x, so we write p(x) = e * /'v(x)

and find
n
Cy

dx dx
—2x —2+ 2'/'(E/r, ) (ix+ p)

' v(x) = 0.

(A17)

Equation (A17) has an irregular singular point at
x= ~. One solution has a power-series expansion
of the form

v(x)=QC~ ",
n=1

(A18)

2
rQ w m00

dq«le&e" dq e"(q'I0&f
F00

(A»)

which corresponds to y(x) having the asymptotic
behavior

y(x) ~ x 'e " /'.

The same bound applies to (g, I P,&. As a result,
we know from the standard Fredholm theorems
that G "(E)exists for all finite values of E. Its
only singularities are isolated poles arising from
the zeros of the Fredholm determinant.

What can be said about the position of the poles?
For a, » 0 it is trivial to show from Eq. (13) that
there are no poles in G "(E) in the left half E
plane. The proof is more difficult for negative
values of &,. First we note that a pole can exist
only if K has a normalizable eigenvector with
eigenvalue 1. That is„

(A12)

with

(4I4&&" ~

Defining
I y& = U'/'e"~

I g& Eqs. (A12) and (A13) are
equivalent to

(&,+ imp/W&(P/+ 1}
I ~& = E

I &&

(A13)

(A14)

(9 I(h/+I}"'e "(h/+ I)"'
I && &" ~ (A15)

In the coordinate representation Eq. (A14) becomes
a second-order differential equation

y(x) ~ e""'.
ga 00

As x- -~ there will also be two independent solu-
tions with these behaviors. Of course only for
certain discrete values of E will there be a solu-
tion that goes to zero at both plus and minus in-
finity. Such a solution will satisfy Eq. (A15}be-
cause

(y I)1/2 1 x /2 ~ 2 1/2 -1 x /2

)g) wco
(A19)

It is clear that for any value of E there can be
at most one solution to Eqs. (A14) and (A15). In
other words, it is not possible for two poles of
G "(E)to coincide. Qn the other hand, if p(x)
is a solution to Eq. (A16) with energy E, then
rp*(-x) is a solution with energy E* So, if there.
were any complex poles they would have to come
in complex-conjugate pairs. For 4, &0 and r,:0
the poles are on the real E axis at the points
n&0, n= 1, 2, 3, . . . . As we vary ro and &0 they
cannot leave the real axis because that would re-
quire two of them to coincide, which we have just

Since the Wronskian of Eq. (A16) is a constant, the
second solution will have the asymptotic behavior
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proved is impossible. Since the poles are all on
the positive real axis for &,&0 and no pole passes
through the point E = 0 for finite &, and x,c 0, we
conclude that G"(E} is analytic in the left half 8

plane. We again recall that one can obtain a sen-
sible theory for &, &0 only if one continues from
positive to negative values of 4, with r, different
from zero.
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