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We investigate the behavior of massless two-dimensional quantum electrodynamics when the fields are

confined to a static string. Surface modifications of the equal-time commutation relations are studied, and the
generating functional is constructed, consistent with the linear boundary conditions of the theory. It is shown

that massive scalars exist independent of the size of the cavity. The boundary condition of the initial fields

constrain the boson field to vanish at the end points of the bag. We further demonstrate that the short-

distance behavior of the theory is unaffected by the introduction of linear boundary conditions.

I. INTRODUCTION

The MIT bag model of hadrons' treats a strongly
interacting particle as a finite region of space to
which quark and gluon fields are confined. Since
an exact solution to the theory by determining the
surface of the bag from the boundary conditions is
prohibitively difficult even when neglecting the
gluon interaction, one introduces fields confined
to a cavity with static boundaries. This picture
presents a solution only in the rest frame of the
bag. The resulting model does not have transla-
tional invarianee. Despite these obvious limita-
tions it provides a solution for the spectrum of
light hadrons, ' where low-momentum behavior of
the theory is important.

We study an exactly solvable two-dimensional
model of massless fermion and gluon fields con-
fined to a cavity with static boundary and inter-
acting via gauge coupling. The equations of mo-
tion for the system are supplemented by boundary
conditions, identical to the linear boundary condi-
tions of the MIT bag model of hadrons. A cavity
of certain length will provide a natural infrared
cutoff to the Schwinger model' and it is not at all
clear if the old results will hold. For ordinary
two-dimensional QED only a massive scalar field
is present and all degrees of freedom associated
with the fermion field are lost.

As we show, the two-dimensional static bag
model corresponds to an almost canonical field
theory. The canonical commutation and anti-
commutation relations are modified to satisfy the
boundary conditions and differ from the usual
ones by surface terms. It is possible to find the
exact generating functional for the system and in
doing so we introduce the necessary modifications
due to boundary conditions. Again as in the
Schwinger model we find a massive boson field
but with the constraint of a Diriehlet condition.
The current algebra is modified only by surface
terms.

This provides us with an example that the mech-
anism of dynamical mass generation is not af-
fected by the introduction of fields confined to a
cavity of fixed length, at least for the two-dimen-
sional case.

In See. II we derive from a Lagrangian the ap-
propriate equations of motion and boundary condi-
tions for the system. We observe that the rele-
vant object of our investigation is the time-or-
dered product of the electric field strength. We
choose an axial gauge (A, =o) and solve the theory
in the charge-zero sector. In Sec. III we discuss
the almost canonical antieommutation relation,
which is derived for the free fermion fields and
postulated for the interacting fields. We calculate
the free fermion Green's function for the static
bag. In Sec. IV we construct the generating func-
tional. A central part in this calculation is to find
the fermion Green's function in the presence of an
external source. Section V presents a calculation
of the vacuum expectation value of the time-or-
dered product of the electric field which is pro-
portional to the propagator for a scalar field of
mass squared g'/v, where g is the gauge coupling
constant. This scalar field obeys the Dirichlet
boundary condition. We show the surface modifi-
cations to the current algebra and construct the
creation (annihilation) operators for the massive
boson field in terms of the currents. In Sec. VI
we show that the Hamiltonian is in fact diagonal in
the creation (annihilation) operators of the scalar
field. For a better understanding of the cavity
propagator we present a multiple-reflection ex-
pansion.

II. EQUATIONS OF MOTION AND BOUNDARY
CONDITIONS. AXIAL GAUGE.

We consider two-dimensional massless fermions
and gluons interacting with a minimal coupling of
strength g with a dimension of mass. The fields
are confined to a cavity of fixed size. We use the
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metric g" =1, g" = —1. The Lagrangian density
of the theory is

Z(x) = 8, (x) [-,'-iy(x) pl} (x) — F~"(x}F„„(g

present in the interaction and it is determined by
the fermion charge density. The advantage is that
only physical states exist in the theory and there
are no photon degrees of freedom. In this non-
covariant formalism we can write from (2.3)

—g4(x)A(x) 4(x}

+ —,'s "[n„l}'l(x)l}(x)j —8}, (2.1)
&,'&'(x) = —g j'(x),
a,a,A'(x) =gj'(x) .

(2.9a)

(2.9b)

where From (2.5) A' obeys the Neumann boundary condi-
tion

[9'-gA(x)] 4(x) = o..

K.F"'(.) =gj"(-'),

(2.2)

(2.3a)

ga(x) ts 1 inside the tlag and zero elsewhere. 8 is
a parameter of the theory and represents the con-
stant energy per unit volume introduced by Chodos
et al. ' and it accounts for the confinement of the
fields inside the cavity. n„ is a normal to the sur-
face of the bag pointing inwards, n'= —1. The to-
tal divergence that we have added to the usual ex-
pression in the presence of Ga(x) will introduce a
surface term. When varying the action one should
keep in mind that for the static cavity approxima-
tion 58a(x) =0, and we do not get the second-order
boundary condition characteristic of the MIT bag
model. Inside the cavity we have the equations of
motion.

n's, A'(x) $ „=0 .
If we integrate (2.9a) over x between the end

points of the cavity we get

Q n'S, A "(t, x;) =gQ, (2.11)

Q (physical state) = 0. (2.12)

We must stress that this is not a subclass of all
solutions but the only solution consistent with the
boundary conditions of the static cavity. From
(2.9a) we find for 2 "(x)

where Q is the charge operator and [x,,~ are the end
points. For (2.10) and (2.11) to be compatible we
must require that the charge operator acting on
all physical states give zero, i.e., we are looking
for a solution in the charge-zero sector:

where

j"(x)=: 4(xb "4(x}:

On the surface we get

-i' 4(x, ) = g(x, ),
npF""(x, ) =0.

It immediately follows from (2.4) that

(2.4)

(2.5)

~'(.-) = -g V(x, y)i'(I, vs,
where

(2.13)

(2.14)

V(x, y) = —
41 g 2&, [f.(x)f.'(y)+ (flax.(y)j.1

"
1

n=$ f1

n„j"(x, )=0 . (2.6) f (y} elllgx y( ] )8 e lllgx (2.15)

F""(x) =e""E(x),

where e" = — "=1. From (2.3) we find

(2.7)

In two dimensions the em field tensor is simply
related to the electric field The modes f„(x) from which V(x, y) is constructed

obey the Neumann boundary condition 8,f„(x)=0
for x =+ /. The Green's function V(x, y) satisfies
the equation

&„c"'F(x)=g j"(.~) . (2.8) a, 'V(x, y) = o~(x, y}=—5(x-y)+5(~x+y (-2I) (2.16)

E(x) is a scalar field and from (2.5) it follows that
it obeys a Dirichlet boundary condition, i.e. , it
vanishes on the surface.

We take a cavity with end points at x= k/. For the
normal to the surface n" =(0, n') we have n'(al)
= + 1. One should remember that there are no

photons in two dimensions and the Schwinger model
is a theory of self-interacting massless fermions.
To make this point clear we choose the axial gauge
in which A. , =0. We have only a Coulomb potential

and the boundary condition

n'B, V(x, y) $ „=——,
' . (2.17)

We have adopted the following prescription for
handling the surface terms:

E

= lim —,
'

0
(2.18)

We leave it to the reader to convince himself that
(2.13) is also a solution to (2.9b). The identity
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which is helpful in proving this is

—s„s„V(x,y) = 5D(x, y) —= 5(x —y) —6( ( x+y
~

—2I).

(2.19)

il'+g'y' dy j'(t, y)V(y, x) 4(x) =o (2.20)

Using the symmetry of the kernel V(x, y) we can
write the equation (2.2) in a form which explicitly
shows the self-coupling:

(0) e - (n '
m( t —x) / 2)

n~0 t i xn -in'x(t+x)/ 2l)

luff 'ff(t-X)/2r
dJ' r

] f1+ lean
'n'(t+X)/2l

(3.1)

where n'=n+ —,
' and d„, b„are the usual creation

and annihilation operators. They obey the well-
known algebra

The interaction Hamiltonian is

Hz ——~g' dxdyja(t, x)V(x, yj)(t, y). (2.21)

III. ALMOST CANONICAL ANTICOMMUTATION RELATION
AND T8E FREE FERMION GREEN S FUNCTION

We turn our attention to free massless fermions
in a static cavity. We would like to find the pro-
per modifications to the equal-time commutation
relations (ETCR's) that arise in the presence of
boundary conditions. Obviously the well-known
canonical form

(g(x, ), (i) (x,)}.. ., = 5(x, —x~)

does not meet the requirement (2.4}. We shall
find that the relation for fields in a cavity is also
local but has additional surface terms. For the
y matrices we use the representation

(3.2)

All other anticommutators are zero. We assume
the same algebra for the second-quantized ampli-
tudes, but modify the first quantization to be con-
sistent with the surface conditions imposed on the
fields. For the ETCH we find

(0(Tg' (x, )g ()( x)) 0)=iS "()(x„x,), (3 4)

and from (3.3) one can check that it satisfies the
equation

(~(0) (x ) ~t(0)(x )}

= bt (x„x,) —= 5(x, —x, ) + in'y'5(
~
x, + x,

~

—2l}.

(3.3 }

One can check that this expression satisfies (2.4)
for our cavity and we postulate the same equal-
time anticommutation relation for the interacting
fermion field. The free fermion Green s function
is defined as

i(t, S ')(x„x~)= y'5t'(x„x~) y',
where

(3.&)

In our cavity with end points at x~ l and conven-
tion for the normal to the surface (Sec. II) we find
the solution to (2.2) and (2.4) for g = 0:

From (3.1) and (3.4) we find for the matrix ele-
ments of the free Green's function

2l 2 2l

~—t)(-t)e ( ) —, + 5 1+ —2k + —,i cot — 1+k7((t-y)/4r t —y t-y
4l ~ „2l 2 2l

(3.6)

where t =t, —t„y=x, +x,.
From considerations of symmetry we get

S"..'(t, y) = S",,'(t, —y). (3.7)

Similarly one also finds
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t —x
iS",,'(x„x ) =—8(t)e "~' *'~"

—,'+P 6 —2k —,'i—cotv

~o

——6(-t)e" ' *
—,
' +Q 6 —2k + zi cote (3 8)

where x =x, —x,. To find S» one uses again the symmetry properties

S",,'(t, x) = S",,'(t, —x).

A formula helpful in deriving (3.6} to (3.9}is (3.9)

e'""= —', +vP 6(a —2wk) +—', i cotza.
0 0=»

(3.10)

Even though the expressions for the matrix elements of the Green's function look very complicated we
show (see Appendix B) that the relevant equal-time and small-distance behavior for the free Green's
function in a cavity is the same as the behavior for a free Green's function of pointlike particles. We shall
find in the next section that this property turns out to be of fundamental importance for the theory to be
solvable.

IV. THE EXACT GENERATING FUNCTIONAL OF THE THEORY

To find the generating functional we use the Symanzik construction. For a discussion of this method we
refer the reader to Ref. 4. The functional is defined as

OO

( zilz)= z(D (,expz' dx[ (x) z(*) +Z$(x) (x) z—j (*)B(*)] '0), f ch- f dt d* (4.1)
Qg B

where P is a Heisenberg field obeying the equation of motion (2.20), ETCR (3.3), and the boundary condi-
tion (2.4). We have introduced external c-number sources q, q, B The so.urces q, q coupled to the fermion
field anticommute both with each other and with P, P. The charge density g(x) is given by (2.3b). Using
Eqs. (2.4), (2.20), and (3.3) we find for the functional Z(q, )(},B}

—e, (x) Jt dyl"6, '(x, y)B(V) . —.
)

Z(n, n, B}i6q(x) ' J„, — ~ -'- —i6qo

(4.2)

= 6,(x) (fy V'6„'(x,Z)r'n(Z)Z(n, 6,B)+gV',.6-( )
dy V(x, y) .6Bb,)

Z((},n, B)
Qp Qg

+2 6(x-x,) . Z(q, q, B), x;=el
i6q x

where W'(x, y) =6(x, —y,)V(x, y) and the end-points
convention (2.18) was adopted. The details of this
calculation are presented in Appendix A. The solu-
tion to Eqs. (4.2) is

5
Z(R, )},B)=Nexp zig' dxdy .6B( )

V'(x, J) .6B)Q~

x Zo(q, rl, B), (4.3)

where Ss(z, z') is the fermion Green's function in
the presence of an external B(x) source satisfying
the equation

i)'Ss(x y) y' dz 6„'(x,z)B(x)Ss(z, y)
Qg

= ~'6~'(x, y)~'

(4.5)
where N is a normalization constant such that
Z(0, 0, 0) =1. For the free functional

Z.(n, 6,B) =Z(n, n, B;x=0)
we get

and the boundary condition

6(x —x;)[in'Z'S (x, y) —S (x, y) ] = 0.
The equation for Z, (B) is

(4.6)

z, (z, i), z)=z, (z)ezz (I d z*'il( )z (, ')z(*'),
Qp

(4.4)

(4 f)6B(x) lnZO(B) = —8s(x)Tr[yoSs(x, x)].

The solution of (4.5) and (4.6) will constitute the
major part of our effort to construct an exact
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generating functional. Let us write 8 (x, y) in the
form

(I)B(x) e i {){x}y{0}(x) (4.10)

i5'(x, y) = &o I T4'(x)P(y)
I
o&, (4.8)

where the fermion field with an external source
satisf ies the equation

(4.9)A'(x) -x' f &iX(i)(),*(x,i)()'(z) =0.
Qg

With g (x) obeying the boundary condition (2.4)
and the ETCR (3.3) one can cheek that {}sfrom
(4.8) satisfies (4.5) and (4.6). We write $ (x} 111

the form

(4.11)4(x) =r.A, (x)+ A. (x)

and /{0}(x) is the free Dirac field in the cavity.
We use the identities

y"}(t,2l —x) = —iy'q"'(x), (4.12a)

P{o}(t,—2l —x) =iy'P{o}(x), (4.12b)

which foQow from the solution (3.1). The boundary
condition is a special case for x =l. With the help
of (4.12a) and (4.121) Eq. (4.9) can be written as

(ii'(x)-x'I Xia(z)[))'(x- )e'""-x'e'""x'5(x, -*,)))()~x+~)~-2()]{"'(x)=O.
Qg

(4.13)

One can show that from the condition

4'( x), 0"(y)].. .= 5&(x, y)

and the ETCH fol the free fermlon field (3.3) one
can get the consistency requirement

c{~{~}5'(x, y}e '~{}(}= 5 '(x y)

With the explicit form for 5„ from (3.3) we find
that (t)(x) must have the following properties:

{t),(t, +21 —x) =- P}(x),

(t),(t, +21 —x) = P,(x).

A special case of (4.15a) for x =i is that Q, van-
ishes on the surface. With (4.15a) and (4.151) we
can write (4.13) in the local form

(4.14)

(4.15a)

(4.151)

[i' &So(x)]y'( )»=-0, (4.16)

B(x) = ] dz[52(x - z)
Ag

+ 5(x, —s,)5(I»+ z I- 21)a(s)].
(4.1V}

Using the representation (4.10) for gs(x) we find

that (4.16) is equivalent to

[i)t &08-(x)]c"{~} 0, =

which gives the simple equation

g@(x)+ y'B(x) = 0.

The solution to (4.18) is

(4.18)

4,(x) = 8, D&(», y)&(y)dy,
Ag

(4.19a)

(4.19b)

and the boundary condition

8pA»y}.=,}=o. (4.201)

D„(x,y) is constructed out of Neumann modes in a
similar manner to V(x, y). Its explicit form is

D„(x,y) is the propagator of a scalar field obeying
Neumann boundary conditions in the cavity. It
satisfies the equation

CID„(x,y) = 5„'(x,y) -=5'(x —y)+ 5(x, —y, )6(I»+y I
—2l)

(4.20a)

(4.21)

where f„"(x)= e'""+(-1)"e '"".
One can easily check that (4.19a) and (4.191)

satisfy Eq. (4.18) as well as the functional rela-
tions (4.15a) and (4.151). To prove this one finds
that after one calculates the spectral integral in
(4.21) the modes become

f (x) c{:ikx+ ( 1)nexii)xx

which satisfies the identities

f„(x)=f„(+21—x),

sg„(x)=- 8j„(+21—x).
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From Eq. (4.7) and the equal-time, small-distance
behavior of Ss(x, y), which is discussed in Ap-
pendix B, we finally get for Z, (B)

Z,(B)= exp —— dx dy B(x)S,'(x)D„(x,y)B(y),
Qg

(4.22}

where we have taken into account the symmetry of
D„(x,y). It is worth noting before we close this
section that S (x, y) can be constructed as a peri-
odic function for all x and y. The full periodic
structure of P(x) is given by D„(x,y) for points
outside the cavity. Since by definition all particles
exist in the interval -l ~x~ l we need only consid-
er as meaningful the behavior of the Green's func-
tion in that region.

V. TIME-ORDERED PRODUCT OF THE ELECTRIC FIELD
AND CURRENT ALGEBRA

Knowing the exact functional of our model we
can proceed to calculate the relevant Green's func-
tion. Using (2.7}and (2.13) one can write for the
Green's function of the electric field

(0 I TE(x) E(y) I 0) =g'6, 6, dz dw 7(x, z) $ (y, w)

sz(z) 6z(w)&0I &j '(z)j '(w)I0}

6 6
Z( Bli5B(z) i5B(w)

(5.2}

In the limit where g = g =0 derivatives with respect
to B(x) from the factor

exp E dxdy x 9 zy gy
B

will vanish. The right-hand side of (5.2) then be-
comes

x(0I 7'j'(z) j'(w) Io) .

(5.1)

We take derivatives of the generating functional
with respect to the external source B(x). When we
set all sources equal to zero we get the time-
ordered product of jo(x}

6 6 i
}

exp —zi g' dxdy
5B( }

V(x, y) 6 exp —— dx'dy'B(x'), 'D„(x', y')B(y'}
B B

(5.3)

This expression can be evaluated by a well-known trick. Let us write

6 6, . 1
F(X) —=exp —z i P. V 5B exp z i B ——6,'D„B

L m J

=exp 2i B)( A. B+Q A. (5.4)

where X(&), Q(&) do not depend on the source B and
obey the boundary conditions

d4(x) = z»I V'(x, y)x(y, «I&}1 . (5.7)

X(o) = ——6,'D, ,
1

(5.5a)

p(0) =0 . (5.5b)

We differentiate with respect to X (5.4) and from
the coefficients of B we get the pair of equations

We are interested only in the solution for X(X)
since P(X) is absorbed in the normalization factor
N. The result given as an operator statement is

d«'dy'X(x, x'I &)

1 1
X( ) z y N 1+XV(lyv) 6 2D (5.8)

x v(x', y ) x(y, y I &), (5.6) From (5.8), (5.4}, and (5.3) we get finally
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At this point it is useful to introduce the propa-
gator of a massless scalar field obeying Dirichlet
boundary conditions. It is constructed from modes
vanishing at the end points

2

I, = i — dz dz'dw dw'5n(x, z) An(z, z') 5n(z', w)
Qg

x d,n(w, w') &n(w', y)

(x) e)«&)x
( 1) e o«ox

where

(5.10) g 2 2
= i — dz (o ~(x, z) a~(z, y) .

Qg
(5.17)

rn
k = —.

fl 2g

The spectral representation of the Dirichlet prop-
agator is

The same procedure can be carried for all the
terms in the expansion (5.14) and we can write

2g2 g2 -1
(Ol TE(x)E(y)~0) = — i)~ I+—a(& (x y) .

and

"di, e- «&.,—,) ~ )".I( x))).*'(y)

fl= 1

(5.11)

)I«(x) =e' * —(-1)"e "*

(5.18)

It is easy to show that (3' —= nn[1+ (g'/x)hnj ' cor
responds to the propagator of a scalar field of
mass squared M =g'/v obeying Dirichlet boundary
conditions. Formally we have

2

D +D D D+ D D D
7r 7T

This Green's function satisfies the equation

OAa(x, 3') =5n (x 3')

-=5(x.-y.) [5(x-y) -6(lx+yl-2I)) .

In this expansion all the proper integrations are
of course understood. From (5.12) we get

2 2 2

(5.12)

We call the right-hand side of this equation the
Dirichlet & function —it vanishes on the boundary.
We shall use the identity or

g2 g2=5 ——& 1+ —~
m

(5.19)

s. 'DN(x, 3) = s.s, &D-(x, 3), (5.13)

+ ~ ~ ~ (5.14)

which is trivial to prove because

S,)3„(x)=iaaf„(x) .

Now let us formally expand the kernel in (5.9):
2

But this is exactly the Green's function correspon-
ding to a scalar particle of mass squared g'/w.
Obviously from the form of (5.18) &e~ satisfies the
Dirichlet boundary condition. As we stated in the
Introduction the result is that only ma. ssive bosons
with proper boundary conditions are present in the
theory and their mass is the same as the well-
known result for the Schwinger model,

From the expansion (5.14) and the identity (5.13)
we get for the first term in (5.9)

(o(To(*)o(ol(o&=- o o,(o, o;o), (5.20)

$P'I = — 4n(x 3') ~ (5.15)

2 2
= —i — dzdr'dwdzo'&„V x, z)

O~

The second term in the expansion has the form

where

g2
x y —=——' —' e 16ml

e~ ~ (XO~O)

r"- n.(x)n.*(y)+ n.*(x)n.(y)
(d —R~ + 'LE

(5.21)
x S,'D„(z, z ') V (z ', w)

x 8 'Dz(w, w') V(w', y) S, . (5.16)

and &u„'=k„'+g'/w. From (5.20) we can identify
the massive scalar field obeying the Dirichlet
boundary condition as

Here again we use (5.13), integrate by parts over
dz dz' dw dw', and get from (2.19)

o(")=
o
—o (*:— (5.22,)
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For a multiple-reflection expansion of (5.21) see
Appendix C. It is quite remarkable that the re-
sults of the two-dimensional QED are independent
of the introduction of an elementary length with
appropriate boundary conditions. One might ex-
pect that there is a nontrivial effect on the screen-
ing mechanism and that only as l- can the old
results be recovered. However, it appears that
since the small-distance behavior is not affected
and the theory is almost canonical there are no
additional terms contributing to the time-ordered
product of the electric field strengths.

Now we shall show that the current algebra is
modified only by surface terms, consistent with
the boundary conditions. From (5.20) and (5.21)
we can write

1
1«l n=x ~n

x [n„(x)n„*(y)+ n„*(x)n„(y)]

(5.23)

To find the vacuum expectation value of the cur-
rents we use (2.8) and a/„(x) = ik„n„(x) to get

1
16ml n=l

x &„[f„(x)n„*(y) f„*(x)n„(y)].

(5.24)
Similarly one can find also

(0~j (x)j (y)
~

0& =
18

1

n=l
x &.[n. (x)f.*(y)

—n.*(x)f.(y)] (5 25)

If we exchange x-y in (5.25) and subtract from
(5.24) at equal times we have

j'(y) vanishes on the surface. From (2.8) and

(5.22) we identify

(5.28)

where

s„j~(x)= 0,
2

s,j"(x) = s, j'(x)+ s,j'(x)=,q, pn(x).

+ teide„tn g(x)] (5.30)

From (5.29) it is trivial to show that the ampli-
tudes obey the usual algebra

[a„,at] = 5„„ (5.31)

with all other commutators zero. In terms of the
currents we get for the amplitude g„

1/2 l
2i " a„= dx n„*(x,t)j'(x, t)

+ "f„*(x,t)j'(x, t),

One can immediately verify that the charge

Q= ~[An(x=f, t) -4D(x=-f, t)]
1

is zero, consistent with our initial discussion in
Sec. II.

From the current-algebra relation (5.27) we find
that Qn(x) satisfies the almost canonical commuta-
tion relation, appropriate for a field obeying the
Dirichlet boundary condition,

[Pn(x), PD(y)]„~0= —i5n(x, y). (5.29)

The usual expansion for P~(x) in terms of second-
quantized amplitudes is

1
~D( ) & g (2I )1/2 tan 4(

n=Z

&0~(i'( ), i'(y)]„„I0&

=
8„IQ &.I f.( )nx.*(y) -f.*(x)n.(y)].

(5.28)

where

n„(x, t) = e '"~'n„(x),

f„(x,t) = e-""f„(x).

(5.32)

By using the completeness relation for the Dirich-
let modes we find for the current algebra

(o~f j'(x), j'(y)].. .Io&= ——8,(x)5D(x, y).

(5.27)

The equal-time commutators for the same com-
ponents of the currents are identically zero. One
can observe that the Schwinger term is the same
as in ordinary two-dimensional QED, but there
are surface modifications in the 5 function which
make (5.27) consistent with the boundary condition:

The relation (5.31) can be checked directly from
(5.27). a„,a~ play a role similar to the "plasmon"
operators for the conductive string (see Ref. 5).

VI. DISCUSSION AND SUMMARY

The Hamiltonian of the system is diagonal in the
Fock space of the creation and annihilation opera-
tors of the massive scalar field. Since it gives
the physical spectrum we can assert that only
massive scalar particles obeying a Dirichlet
boundary condition exist in the spectrum. To show
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this we use the relations of time-translational
invariance

(6.1)

The right-hand side of this equation can be re-
written using current conservation and the equa-
tion for the axial-vector current. From (5.28),
(5.30), (5.32), and the orthogonality relations of
the Dirichlet and Neumann modes q„(x) and f„(x)
we get

[a, a„]= —w„a„. (6.2)

The free and interacting parts of the Hamilto-
nian separately are not diagonal with respect to
a„,a„, but the total Hamiltonian is diagonal. For
a clear formulation of the ordinary two-dimen-
sional QED in terms of the currents see Ref. 6.

From (5.28), (5.22), and (5.20) one can write

Z ye vg
(0~ Tj '(x)j "(y) ~0) = ——e" e"zs„&,aho x, y;—

(6.3)

For the time-ordered product of the currents con-
structed from the solution for the free fermion
field (3.1) we have

where &n(x, y) is the propagator for a massless
particle (5.11). The multiple-reflection expansion
(C7) shows that the leading singularity on the light
cone is the same for &D(x, y;g'lw) and AD(x, y) —it
is independent of the mass of the particle. If we
probe the static bag with virtual photons of high
momentum we observe the leading light-cone be-
havior for free quark partons in the cavity, even
though they exist in pairs with strong spin-zero
correlation. This is consistent with our basic
intuition that the short-distance behavior of the
model should be unaffected by boundary conditions
which remove the long wavelengths of the theory.

This example gives us hope that even in the case
of fields confined to a bag in four dimensions it
may be possible for the masses of fermions and
vector mesons to arise spontaneously, without
the presence of primary scalar fields in the La-
grangian. In the ordinary field theory such a pos-
sibility was examined by various authors, for
example see Ref. 8. We believe that a further
investigation along these lines for particles with
structure might prove illuminating.
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APPENDIX A

Here we present a derivation of (4.2), (4.3), (4.4), and (4.7). Let us denote by C,„., (z)

Z,„,(z) =)i(z))i)(z)+$(z)g(z) j'(z)B(z). —

Using (2.20) and (2.4) we can write for the generating functional (4.1)

6 t l 1 l

if), Z(q, 7},B)=i|i 0 Texp i i dzZ, „, (z))8a(x)p(x) exp i dz 2,„,(z)fbi(x

(A 1)

f-t l oo l

0 Texp i ' dzQ, „, O~xg j y Vy xdypx exp i dzZ«,
oo l Og t -l

2 l oo

~ Q 0 peep i d*p„, p)t, ) (*—;)ep i, d p.„)
i =1 oo l t -l

t l- e, (*)e' p pe p( dz (I'.,„,
oo

To calculate the commutator of g and g,„, we use the relation

[a, bc] = {a,b)c —b(a, c].

oo l

p*')p) ), p.„( ', e)) p(i p e.„,)le .
t -l

(A2)

(A3)

Recalling the ETCR (3.3) and the properties of the sources )i, )i we ca.n write

[P(x), &.. (z', f)] = ~,(x, z') [-B(z')0(z')+r'n(z')]

The equation (A2) becomes
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iP, , Z(q, q, B) —6 (x) dyr 5&(x,y)8(y) . Z(q, q, B)

= e, ( x) dy r' 5&'( x,y) r'n(y)z(n, T), B)
~ OB

+&Q 6(x-x;) . -' ' +6()(x)g'r'. — ( dy 1'(x»y) . Z(7}»'T(»a)»
5z(q, q, a)

(A5)

where we have used again the convention for integrating around the surface [see (2.18)]. The solution of

(A5) for g=0 is given by (4.4), where S (x, y) satisfies Eq. (4.5) and the boundary condition (4.6). To cal-
culate Z, (B) we write

6 6

i6)} (x) "'iq ( )
' '"' i6B(x)

With Z, ()},q, B) given by (4.4) in the limit when the external sources q, q vanish we get

Z, (B)Tr[r'S'(x, x)] = —
)

Z,(a).6

(A6)

(A V)

This leads to E(l. (4. '1), where the bag confinement is explicitly shown with 8z(x). The form of the solution
for the interacting functional is derived from the free functional with the usual ansatz (see Ref. 4)

Z(q, q» B)=F . A . ». Zo()},q» B).6 6 6

i6q i6q t6&

If we set

(A8)

F =exp ig' dxdy . r'. P'(x, y) .
6 p 6 6

——ieq(x) i6q(x) -'- i5B(y) ' (A9)

we find the following equation for the generational functional:

i'ii .5-, , —6,( ) dy r'5, '(, y)a(y) .5-(, Z(n, n, B)

2

= »( )f &»,» *»» (*»)»'»»(»)'&(»'(r), »») ~ » g ,(*,-()*,), )
»i(»)»)»»), ,

B i =1

+ gz(x)g' dy r 5&'(x, y), , dz V(y, z), , Z(q, q, B).

(A10)

By using the property

», (*)J d»»»'(*, y)fly)»(y)=», (»)f(»)»(*)
QB

(where f is an arbitrary scalar function), we re-
cover E(l. (A5). From (A8) and (A9) we can write

sz()l, g B) . 5 0 5
ag' „——i' (x) i5@(x)

APPENDIX B

We shall calculate the behavior of Tr[r'Sz(x, y)]
at equal times and small distances. We set xp pp

and perform symmetrically the limit in space
x-x+-,'&, y -x--,'e, and & -a 0 symmetrically
from both directions. From (4.8), (4.10), and
(4.11) we have

S (x+ —,'e, x ——,'z) = [e'@2(cosg, +ir, sing, )]„+,i,

x U(x, y), Z()},q, B). (All)

This leads to (4.3), where we have taken into con-
sideration the symmetry of the expression to ac-
count for the —,

' factor.

x S (x+ ze» x —2e)

x[e '~'(cosy(+ir, sin(f), )], ,i, .

(B1)
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Since e'~ has only elements on the diagonal and y'
is off-diagonal in our representation we find that
only the off-diagonal elements of S'(x+-,'e, x ——,'e)
will contribute to Tr[y'Se(x, x)]. Using the explicit
form (3.11) we get

0, , 1 1
S»(x+ —,e, x ——,e) = —— (B3)

Notice that the free propagator for a theory with-
out boundary conditions has the small-distance be-
havior

( /4$)

Similarly from (3.12) we have

(B2)
So ylF

This behavior is essentially the same as the one
given by (A2) and (A3). Now the relevant contri-
bution becomes

S (x+ —,'e, x ——,"e) = —
2

(1+i,'e 8,-$2)'[cosp, (x+ 2e) + iy, sing, (x+ —,'e)]y'[cosl)), (x —2e) + iy, sing, (x ——,'e)]

(1+i—,es,p, ) (cos[&P,(x+ ~e) —p, (x ——,e)]+iy, si n[g, ( x+; e) —i)),(x —,e)]}—

S means that we take into account only the off-diagonal elements important for Tr(y'S ). By keeping only
the terms at the most linear in e we can write

S (x+ e, x ——,'e) = — (1+i ae,y, )(1 iy+, ee,g, )y'
277'

(B4)

If we take the limit e -+ 0 symmetrically the singular term will go away and we are left with

S'(x, x) = ——(S,y, +y,e,y,)y'. (B5)

Finally we get

Tr[y'S'(x, x)] =-e,y, (x). (Be)

This is the same result as in the Schwinger model, except that p, (x) satisfies the boundary conditions [see
(4.15a,)].

APPENDIX C

Here we shall derive a multiple-reflection expansion of the propagator for a massive scalar field obey-
ingaDirichletboundarycondition (5.21) in terms of Feynman propagators. ' Using the representation

OO

d~ ~$ A(GJ -Q)~ + fE)
(d —(dq + ZE p ()

we find for n~(x, y) [see (5.21)]

(C1)

00 OO OO

n (x, y) = — «u
~

doie'"(~ ' ""e '" *0 '0' [e'""'* ' e ' '~ —(-1)"e"~''' e ' '~ ]. (C2)
8ml „

By rotating the contour by )i/4 we have the formula

im/ -'OA„~ ds (i/a)s 2

g dot
n, (x, y) = — ' —e '"/'-

8ml „n S (i /4n) s -it2/en ~ ~
X 3 S

2 ~
x+$ S

2l 2l 2l 2l

(C4)

We sum the exponentials over n and perform the &o integration by rotating the contour by v/4. The result
for (C2) is
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For the Feynman propagator of a massive scalar
field in thoro dimensions we have

With the rotation k, = —iso, the representation (CI),
and after performing the integration dk,'dk„we
get

If we compare the expression (C6) with (C4) we

get the multiple-reflection expansion

where

Z„'= (x, -y,}'—(4nl —x+y)',

7„'=(x, -y, )' —[2(2n —1)l —x -y]'.
The leading light-cone singularity inside the cav-
ity is seen to be given by the n = 0 term in the ex-
pression. In addition, one can verify that when one
approaches either end point of the cavity there is
a cancellation between corresponding terms in the
multiple-reflection series, consistent with the
vanishing of n~(x, y; g'/w) on the surface.
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