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The results for the spectrum of bound states and of solitons first deduced by Dashen, Hasslacher, and Neveu

for a model of interacting fermions by techniques of functional integration are obtained here by methods based

on Heisenberg field mechanics analogous to those applied previously to models of self-interacting bosons. The
method of solution is suggested by a simplified physical picture of the bound states: These are computed in a
Hartree approximation in which the self-consistent potential is a sum of contributions from the fermions (and
antifermions) occupying orbitals in the conventional many-body picture and from the vacuum fluctuations of
single-closed-loop type. In the same approximation the self-consistent field generated by the heavy soliton is a
result of the vacuum fluctuations alone. As the main new technical contribution, we deduce and solve directly

equations determining the self-consistent fields as well as the amplitudes ("wave functions") from which these

are constructed. We comment on the degeneracy of the heavy soliton state.

I. INTRODUCTION

This paper continues our program of studying
the quantum properties of model nonlinear field
theories based directly on the solution of matrix
elements of the field equations. ' 4 Our previous
work has been confined to the study of self-coupled
boson models in 1+ 1 dimension. Here we turn to
a model of self-coupled fermions in 1+1 dimension
and, as in most of our previous work, we have
been guided in the choice of a tractable and in-
structive model by another of the pioneering stud-
ies by Dashen, Hasslacher, and Neveu, ' this time
of the model of Gross and Neveu. '

The specifics of the model will be reviewed be-
low, but let us first try to make clear what we
think we have contributed to the subject. To start
with, we have formulated our approximations in
such a way as to render it transparent that what is
involved for the bound states is a Hartree approxi-
mation, in the sense of atomic or nuclear physics,
except that the self-consistent field is generated
not only by the motion of the particles present,
but also by the vacuum polarization field which
they produce (at the one-loop level). Second, we
have calculated the self-consistent field by direct
construction and solution of an equation for it. We
have then checked the self-consistency by solving
for the "wave functions" which the potential gen-
erates and by which it is defined. The same meth-
od is applied to establish the properties of the soli-
ton, first derived for this theory by Gross and Ne-
veu. '

Moreover, it appears that the same methods can
be applied, at least approximately, to other models
which cannot be solved in closed form, even in the
Hartree approximation. Thus just as we concluded
previously4 that we could in principle solve in a

which we take seriously as a field operator. Here
x is the spatial point and time is fixed, for ex-
ample, at the origin. The operator P(x) has N in-
ternal degrees of freedom so that, for instance,

$(x)4(~) = ft(x)p 4, (x)
1

(1.2)

is a double scalar, under Lorentz transformations
and under internal SV(N) transformations, and o,
P are conventionally chosen Pauli matrices (see
Appendix A). We shall henceforth write

g2 Z- (1.3)

to take care of one of the renormalization require-
ments of this theory; the other is the subtraction
of the vacuum energy from (1.1) (see again Appen-
dix A).

We base our study totally on the equations of mo-
tion

i s,p, (x) = [$,(x),H]

= —i cr a,g,.(~) —2g'z ' (py, (~), tr'(x)p(x) j,
(1.4)

which follows from (1.1) and the anticommutators

systematic way any self-coupled boson Hamilton-
ian of polynomial form in 1+1 dimension, we shall
attempt, in a later work, to show that, based on
the methods of this paper, we can do the same for
any self-coupled fermion field with quartic self-
coupling in 1+ 1 dimension, such as a generalized
class of massive Thirring models.

Turning then to the specific model studied in this
work, it is for our purpose defined by the Hamil-
tonian density

3C(x) = ipt(x) o-s, g(x) ,'g, '[iP(-x)-P(x) ]', (l.l)
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fP, (x), Pt~(x'))= 5,q5(x -x') . (1.5)

In Sec. II, the equations of the Hartree approxima-
tion are derived and shown to be identical to the
equations obtained by DHN using functional inte-
gration. In Sec. III these equations are shown to
have a soliton solution; in Sec. IV they are solved
for the bound states for which they were originally
formulated. Finally in Sec. V, we discuss our re-
sults briefly with particular allusion to degeneracy
of the soliton state. ' Two appendixes complete
this account: In Appendix A, we review the vac-
uum and one-fermion sector of the theory; in Ap-
pendix B some details of the solution of the Dirac
equation in the self-consistent fields are given.
We cannot pass to the body of this work without
reference to several more papers containing some
discussion of fermions related to the present con-
text, ' "and which have provided some stimulus to
the present work. "'

II. SELF-CONSISTENT-FIELD PICTURE OF THE
GROSS-NEVEU MODEL

DHN' have shown that the bound-state spectrum
of the model of GN (Ref. 6) possesses a large de-
generacy, the energy depending in their semiclas-
sical approximation only on the total number n(N
of "quanta" (fermions plus antifermions). For
each n the solutions were then ordered according
to irreducible representations of O(2N), the sym-
metry group of the model. Starting from a physi-
cal picture, we shall derive directly from the
equations of motion some"' of the results found

by functional integration.
We understand the O(2N} symmetry to signify

that the force between two fermions (antifermions)
is the same as that between fermion and antifer-
mion. We characterize the states I n) as indepen-
dent-particle states (subject to the Pauli principle).
In more detail n = n&+ n&, where n& is the number
of fermions, n& the number of antifermions. Each
particle occupies the same space-spin orbital,
but the fermions are characterized by a set of dis-
tinct indices from the set 1, .. . , N as are the anti-
fermions (independently). We are then asserting
that the approximate eigenstates are, in configu-
ration space, Slater determinants, or rather a
product of such determinants, one for the fermi-
ons, one for the antifermions.

To calculate the energy and other properties of
this system, we define a set of Dirac "wave func-
tions, " both for bound states and continuum states.

For this purpose, we require, in addition to the
bound states In), the scattering states (with suit-
able boundary conditions) In —1,p & for the scatter-
ing of a fermion (momentum p, mass m) by the
previously defined bound states of n —1particles.
We shall then work with the amplitudes

(n —1I P, (x)In) = P„(x) or 0,
(n+1I $, (x) In) -=X„(x) or 0,
( n —1

I p, (x) In —1,p &
=- g„,(x) or 0,

(n —1,p I p, (x) In —1& =X„~(x) or 0.

(2 1)

(2.2)

(2.3)

(2.4)

The matrix elements are thus independent of the
internal index i and are nonvanishing if, in (2.1),
the state i is an occupied fermion state in n and
unoccupied in n —1, in (2.2} if i is an unoccupied
antifermion state in In) but occupied in I n+ 1), in
(2.3) and (2.4) if i is the index characterizing the
particle of momentum p.

In the Hartree approximation valid for N» 1,
these amplitudes will be solutions of a one-particle
Dirac equation in a self-consistent external field.
The form of this equation, and of its adjoint, to be
derived, is

~„q„(x)= —ioa„q„(x)+m(x}ply„(x),

$„(x)e„=—iap„(x)a + $„(x)pm(x) .

(2.5)

(2 6)

Here A =n or (n, P). For A =n, e„—=to„=E„E„„-
where E„is the energy of the state n; for A = (n, p),
&„=E(p)=(p'+ m')'~', the energy of the physical
fermion. The self-consistent field m(x) is

m(x) =Z-'go(x),

where

o(x) = —g (n
I p(x) y(x) In&

(2.V}

(2.8)

will turn out to be the self-consistent field defined
by DHN. Furthermore, the amplitudes X„(x)de-
fined in (2.2) and (2.4) satisfy the same equations
as X„(x)with e„-—&„.It follows that we may
choose

and

X~ =zpnp„, (2 8)

IAAF XAXA

We illustrate the derivation of these equations
with (2.5). Forming a nonvanishing matrix element
(2.1), we derive from the equation of motion (1.4}
the equation

u&p(x) = —ins, p(x) ——,
' g' 2 ' g [ (n —1

I g;(x) I
f & (f Ig(x) $(x) In) + (n —1 g(x) g(x) I

I) (I
I pp;(x) I n) ],

(2.10)
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where if) is any intermediate state .To simplify
(2.10), the relevant observation is that
(ng(x) P(x) in) is of order N (see below), whereas
any other choice of intermediate state I4n yields
contributions down by N '. (The detailed consider-
ations needed to substantiate this assertion will be
omitted and no such small contributions will be in-
cluded. ) To the same order, we can replace (n —1)
in (n —1

~
P(x) P(x) in —1) by n T. he result is Eq.

(2.5) for A =n. A similar consideration in which
we assume

Here

o, = —g (vac g(0) P(0) i vac)

m
gN ~ (0) (2.14)

and the superscript on E~"' is used to distinguish
the discrete values of P assumed by a free particle
confined to the line of length L as opposed to the
values for an interacting particle. The approxi-
mate connection'

(n I, , p g(x}y(x) i
n —1, P) = (n i P(x) q(x) in) p=- p'" -(».V )/Lj, (2.15)

yields (2.4) with A =n, p Fu. rthermore, it appears
that a less cavalier treatment of the sum over
states would allow consideration of corrections to
the present treatment.

The physical picture underlying our treatment
and its implementation by simple but approximate
completeness arguments lead directly to expres-
sions for the self-consistent field and for the ener-
gy of the state in). Thus utilizing (2.1)-(2.4) and
subsequently (2.9)

+-,'Z ' dx[cr'(x) —o,'] . (2.16)

It is finally noteworthy that (2.13}is stationary
with respect to variations of o(x),

where 5„(P)is the phase shift which will be deter-
mined from a. study of the amplitudes g„~(x),per-
mits (2.14) to be rewritten in the form

E„=(n N) ~„+— —5„(P)
N "Pdp
W ~on P

5E„/5o(x)= 0 . (2.17)

=~@.(x) 4.(x)+(N- n&) X.(x) X.(x)

+N X„pxy~x

=(n-N) q„(x)y„(x)-N g Ir„,(x) y„(x).

E„=(n N) a&„Ng(E~ —E-~"'—)

+ 2 Z dx G x —0'0 (2.13)

(2.11)

In this expression the part proportional to n is the
self-consistent field generated by the "real" par-
ticles present in the state n, whereas the remain-
der is the contribution of the vacuum polarization.
For purposes of actual computation, the decom-
position in (2.11) into bound-state and continuum
contributions is the convenient one, as we shall
see.

From the Hamiltonian (1.1},we compute the en-
ergy E„,

E„=(n iH in) —8„,L, (2.12)

where 8„„is the additive constant computed in
Appendix A and L is the size of the system. Util-
izing the Hartree approximation explained above,
we find straightforwardly and with the help of Eqs.
(2.5) and (2.6}

This is verified by noting first that (2.17) applied
to (2.13) yields the condition

5(d„
Z 'o(x) = —(n N) " ——N

5o (x ~ 5o'(x
(2.18)

III. THE HEAVY-SOLITON SECTOR

Further study of the problem defined in the pre-
ceding section will be deferred until the next sec-
tion. It is a remarkable fact that the equations for
the self-consistent field possess a solution cor-
responding to n =0 and v„=0 in (2.11) and (2.13).
We are dealing here with a sector of Hilbert space
completely orthogonal to the space built upon the
vacuum with the addition of any finite number of
fermions and antifermions. Tentatively we find
this portion of Hilbert space to consist of (i) A

heavy particle —the soliton, (ii) other states of the

Furthermore, from the integrated form of (2.5)
we conclude that

5e„/5o(x)=Z 'gP„(x)g„(x), (2.19)

which together with (2.18) yields (2.11).
Equations (2.11)-(2.19), derived as Hartree ap-

proximations in this section, agree in all partic-
ulars with corresponding equations in the work of
DHN. These equations were solved in the latter
work by invoking the techniques of inverse scat-
tering theory. In the succeeding sections we shall
obtain all required results by straightforward cal-
culations.
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rr „$„=-(x)P„(x), (3.1)

(3.2)

With the help of Eqs. (2.5) and (2.6), we derive

d
dx
—c„(x)= 2i& „P„(x)o.'g„(x}. (3.3)

d
dx, c„—(x)=- 4e„'c„(x)+4&„m(x)p„(x), (3.4)

same energy (2" such states in all; see Sec. V)
but differing from the soliton by the value of fer-
mion number —loosely speaking, fermions of
zero-energy bound to the soliton, and (iii) scatter-
ing states of normal fermions and the solitons. In
this section we shall develop the theory of this
sector.

Let us define the quantities

where ma=m(+~) is the mass of a fermion. This
equation has the solutions

m(x) = + m, tanh m, (x —x,). (3.12)

d 4 —m(x}4 = —cs&a4 ~ (3.13)

For &A =0, the bound state, we find

For definiteness in the following discussion, we
choose the plus sign and x, =0.

We shall now check that Eq. (3.12) does indeed
provide a solution to the problem posed. We shall
do this by finding the solutions of (2.5) in the po-
tential (3.12) and checking that they regenerate
m(x) by using (2.11). Toward this end we utilize
the representation n =o„P=o, . We thus look for
solutions of

p„(x)=m(x) —„&r„(x),

m(x) =- Q g'Z 'c„(x), (3 6)

and we also define the weighted sum utilized below,

(coshm, x) '

(-.h,.)-

44=0.
For the scattering solutions, we write

z =m~, p=m k, E =&m

(3.14)

(3.15)

(3.16)

s(x) = —Q g'Z '
A A

(3.7)
,, f(z)

P~(x) = e'~'
g(z)

(3.17)

As we shall see below, oA= 0 for A =bound state,
and, by def inition, since &„=0 for this case, we
exclude this term from the sum in the definition
(3.7).

From (3.3) to (3.'7}, it is straightforward to de-
rive the equation

Then f,g satisfy the coupled equations

-ikg- ef+ (tanhz) f——=0,dg
dz

d
ikf+ ag+ (tanhz—)g ——= 0 .

dz

(3.18)

d's(x) d d's(x), ds(x)

ds(x) dm(x)
dX dX

(3.9)

(3.8)

This equation also holds for the bound-state prob-
lem of the preceding section, where the sum (3.7)
now includes the bound state, though for reasons
to be seen in the next section we have found it to
be useful only for the soliton problem.

We shall now prove that (3.8) admits a solution
of the form

The reader will then verify that the (unnormalized)
solution to this equation with a definite phase shift
1s

f=1+(e —ik) 'tanhz,

g=(c —ik) '(e+ik —tanhz) . (3.19)

Since m(x) ~+~ P~(x) g~(g), the elementary verifi-
cation that

yp(x) yp(x) ()f ~

—~g~ ) tanhz, (3.20)

independently of p, completes the proof that (3.12)
is indeed our self- consistent potential. Further-
more, we have

With this ansatz, (3.8) becomes

d
(

d'm(x) dm '
f (~) 2k

f(-~) (e —1)'+ k'

g(~) 2k
g(-~) (~ + 1}'+k ' k+i

(3.21)

d'm(x) dm '
m(x) ~ — —m'(x) = m 4

dx dx
(3.11)

6(k) =-.' tan-'(1/k) . (3.22)

demonstrating that the phase shift 5(k) is given by
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We shall finally use our results to calculate the
energy from (2.16) with the first term of the latter
absent. Since

equation for r~(x),

,~ —4pzr +(4E /L) p, (x)

o(x) =o, tanhZ 'go, x

(m, =Zgv, ), we calculate

p Z .dX O' X —0'0 = —0'0 g,

Ng A mdp
2m ~ Ep

(3.23)

(3.24)

(3.25)
p, (x) =ms(x)+Z 'g'N Q~~(x) . (4.6)

+8m, p, (x)v~+4p, '(x)r~ 4[m, +p(x)] r~(x') dxI

(4.5)

Equations (4.2) and (4.5) are to be solved in con-
junction with the definition

where A is a cutoff. Adding this to the integral
over the phase shift, we obtain for the energy, i.e.,
the mass of the soliton after integrating by parts
in a way familiar from previous work

From (4.5) we see that for large p

rp=(LE/) ' p(x)+O(P '). (4 I)

M = (Nm/w), (3.26)

the result quoted by DHN. Further discussion of
this state and of the states degenerate with it is
delayed until Sec. V.

IV. BOUND STATES IN THE GN MODEL

We now return to the problem posed in Sec. II.
The method found to establish the existence of the
soliton sector is not directly useful here because
Eqs. (3.8)-(3.11) contain only the scale associated
with the fundamental fermion, its Compton wave-
length. In the present problem we need a formula-
tion which brings in the scales associated with the
bound states proper.

Toward this end, we utilize Eqs. (3.4) and (3.5).
Let us write

m(x) =-m, + mz+ mo

ms(x) o- p, (x) . (4.8)

The assumption (4.8) would, in any event, present
itself as the natural starting point for an iteration
procedure from the mere examination of (4.2). In
the present instance we are grateful to find it to be
exact.

With the help of (4.8), (4.2) is now transformed
into the simple equation

d'p, x +4P'p(x)+6m, '
p, '(x)+2p'(x) =0. (4.9)

With z = Px, (4.9) has the solution

Since ms is O(Z '), Eq. (4.V) verifies (4.6} to or-
der unity in Z ', but still leaves us without a meth-
od of solution for p, (x). The limiting form (4.'I)
suggests, however, that quite generally v~ might be
proportional to p, (x), and consequently we must also
have

-=m, + p, (x), (4.1)

where the subscripts distinguish bound-state and
continuum contributions. We first consider (3.4)
and (3.5) for A =B and eliminate ps between these
two equations by integrating the second of them.
We thus find an equation to characterize mz(x),
namely,

0 = s
+ 4P 'mz(x) + Gm, y( )mxz(x)+ 4P'(x) mz(x)

d'ms(x)
where

)
-2P'

~ cosh2z+ m

-2P'
2&@ cosh'z+ (rn —&u)

= P [tanh(z —b) —tanh(z+ b)], (4.10)

(4.11)

—4 [m, + p, (x}] ms(x'), dp, (x')
m oo

(4.2)

rp, ( )-xp, ( )= p, L'-, -
rp = o~(x) —o~(-~) = o~ (m/E~L) .

(4.3)

(4.4)

Eliminating r~ between (3.4) and (3.5), we find an

where p =m —co determines the size of the bound
state.

For the scattering states, in order to integrate
(3.5), we define the amplitudes

The last form is exhibited because it is the one
given by DHN.

To calculate the energy, we need, according to
Eq. (2.16}, the potential derived above and the
pha. se shift. From (2.3) and the representation

( t(z)

('1
(4.12)

where all momenta and energies are measured in
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units of P, we derive the coupled equations

1' 1 1 1
'k d (8 — ) cosh'*+ b)

(4.13)

a=k '

a2 =[2(u(E+ m)] '

5, = [2(u(E —m)] '.
In verification of (4.7), we find exactly

(4.17}

(4.18)

(4.19)

1d) 1 1 1
—. —+ ($ - rt)+ q=0ik dz (8+m) ~ cosh'z+b

(4.14)

ia sinhz coshz a,+ +
gogh z+b cosh z+b ' (4.15)

ia sinhz coshz b,+ +
cogh z+b cosh z+b ' (4.16)

where

where b = (m —ur)/2&v. With the definitions (4.12)
$ and q become equal for large ~z ~. We find that
Eqs. (4.13) and (4.14) possess the exact solution

Lre= (E~) 'p(x)[1+ (u'/(p'+ P')] . (4.20)

Equations (4.15)-(4.17) imply the phase shift

5(k}= tan '(1/k) = tan '(p/p) . (4.21)

(4.22}

On the other hand, for the integral over the phase
shift, we obtain after integrating by parts

The bound-state wave function, not required for
the energy calculation, is given in Appendix B.

The calculation of the energy now parallels pre-
cisely that given by DHN: We first calculate

2a,P 20 sine
gm g

g z v „(v'+1)(v'+ csc'8)'i'

20'0 . 2N p 2Nmsin8+ + cos8(z z —8) .
7r

(4.23)

The energy, Eq. (2.16), becomes a~= dxP~ x P~ x, (5.1)

2Nm . 2NE„=nm cose+ sine ——e cose.
7r 7r

(4.24)

This expression is still variational with respect to
choice of e.
We find s, a,. s, a& a, s, . . . , a, . . .a„s (5.2)

where the caret indicates the field operator, where
ambiguity exists. If ~s) is the soliton state, then
the ensemble of 2" states

—= 0 - 8 = (nv/2N)
dE
de

(4.25)

V. DEGENERACY IN THE SOLITON SECTOR

Let gz(x} be the normalized version of the zero-
energy bound-state wave function (3.14). Follow-
ing Jackiw and Rebbi' we define the mode opera-
tors a~&, i=1, . . . , N,

E„= sin —. (4.26)

This formula suggests a connection with the sine-
Gordon model, but we shall make no effor to pur-
sue this matter, which is under study elsewhere. "

As has been discussed, ' when n=N, we obtain a
limiting bound state which can decay into a soliton-
antisoliton pair. Thus such objects must exist
with fermion number as large in absolute value as
N. This point is explained in the next section.

is degenerate in energy with total degeneracy 2".
Jackiw and Rebbi have argued that to maintain
symmetry under fermion number conjugation these
states should be assigned fermion numbers -2N,
——,'N+ 1, . . . , —,'N. We see no objection to this as-
signment, but on the other hand, there is not,
within the present model, any "experimental" way
of distinguishing between this assignment and that
in which one chooses, for instance, the values
0, 1, . . . , N, as long as for the antisoliton space
[the minus sign in Eq. (3.12)] we choose the re
versed signs of these quantum numbers. This
last assignment does, however, give up fermion
number conjugation symmetry, except in the vacu-
um sector of Hilbert space.
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APPENDIX A

We review briefly the properties of the GN model
for the vacuum and one-particle states needed in
the text to carry out renormalization procedures.
We first study matrix elements connecting the
vacuum to particle and antiparticle states assumed
to be of mass m

1Z=gNQ
( ). (A8)

Npt(p, m)apg (p, m)

—2g'Z '[(vac P(0)g(0)
~

vac)]'. (A9)

Utilizing Eq. (A9) with g, -g, E--E, (A9) is
simplified and evaluated:

Furthermore, the "y," invariance of H reflects
itself in (A7), in that the sign of m is not deter-
mined.

We use the same results and arguments to cal-
culate the vacuum energy

8, =(vac ~36(x} ~vac)

(vac
~
p, (x)

~
p, f(m)) = 6„e'~y,( p, m),

(p, j(m)
~
g, (x)

~

vac) = 6,/e '~"&fan (-p, m) .
(A1)

2

h, = —Q NE(p) c*s z'N'(Q
(Alo}

The spinors p, (p, m) are solutions of the equations
This provides a needed subtraction constant to
render the calculations in the main text finite.

+E(p)y, (p, m) = (ap+ pm)g, (p, m),

E(p) —(p2+ m2)1/2

If we choose the representation

o gl fl o l
a=cr, = /, P=cr, =]

z 0/] ](0 -1/]

then the solutions normalized to gt$=1 are

[(m+ E)/'2E] , ,(
(ipse(m+ E)j

(A2)

(A3)

(A4)

(A5)

os(x) = T((s(x)gs(x) = Cp, (x), (B1)

where C is a (cutoff-dependent) constant. By in-
tegration of Eq. (3.5), we then find, using (4.10),

(dpi'(x}

APPENDIX B

Since the properties of the bound-state ampli-
tudes were not required in Sec. IV, we give here some
details of the calculation of this quantity. From
Eq. (4.8), we know that (B referring to bound
state)

4- = o'x4+ ~

To derive an expression for m, we form the
particle matrix element (Al) in (A3). In a Hartree
approximation valid when n»1, we find

= Cm, p, (x}+—,'Cp, '(x)

-2moP 2P4
2 cosh'z+ ( — ) [so cosh' + ( — )]') .

(B2)

E(p)g, (p, m) = app, (p, m)

g'Z-'&vac P(0)q(0)
~

vac&y, (p, m) .
(A6)

Comparison with (A2) and a consequent sum over
intermediate states yields

m = —Z 'g'(vac
~

({((0)P(0)
~

vac)

=- Z-'g'N g y'(p, m)pq (p, m)

Now write

y, (x) =R{x)~ ~( },R = p'".
(sin(p(x)

The Dirac equation becomes

coR cosP = ——R sin(t) —R cosP—df
dx dx

+ m(x)R cos(P,

(B3)

(B4)

=mz'gNQ
( )

.
p P

(A7) (dR sin(((] =—cos(p —R sin(p ——m(x)R sin(p,
dR . dQ
dx dx

This yields a formula for Z, from which we can eliminate R and obtain
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But

&o=-—+m(x)(cos P- sin Q).
dQ 2 ~ 2

dx (B6) m(x) = m, + p, (x) into (B5), we find the equation

dP —P'(m+ &u)

Cx 2m(m+ &u)cosh'Pz- I8' '

cos'ft)- sin'Q= ~ ~ or
2Ptanh&s

(m + (o)[I+tanh'-,'z]

2&@(m+ &a)cosh z+ P'
2m(m+ &u)cosh'z —P ' (B6)

Inserting the expressions (Bl) and (4.10) for &rz,

the expression (B2) for pz and the expression

m —co 'i'
= —tan ' tanhg .m+~ (B8)

As a check (B6) can be verified from (B8). The
"soliton" behavior of this phase has been empha-
sized by previous authors. "'
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