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Local gauge invariance and the bound-state nature of hadrons
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We analyze those features of non-Abelian color gauge theories which lead to confinement. A consistent
picture of hadrons as bound states of quarks and gluons emerges when the vacuum is gauge-invariant. The
introduction of a transverse lattice approximation leads to a description of the theory in terms of basic
hadronic degrees of freedom and a tractable method for calculation of properties of hadrons.

Quarks have formed the basis of much of our
understanding of strong- interaction phenomenolo-
gy. Whether quarks may also form the basis of a
dynamical theory of hadrons has become one of the
most important questions in elementary-particle
physics.

The most attractive theory for the dynamics of
quarks is a gauge field theory with a non-Abelian
color gauge group. This theory has been used to
study the short-distance behavior of current op-
erators where the predicted asymptotic freedom'
provides an understanding of the approximate
scaling observed in deep-inelastic electron scat-
tering and e'e annihilation. In this paper we will
show that this theory also provides the basis for
a complete dynamical theory of hadrons.

The color gauge theory is compactly described
by the action

A= dt dx qi —mq —+G „',
where the quark fields, q, carry both color and
flavor indices, D„ is the gauge-covariant deriva-
tive, and G „ is the Yang-Mills field-strength ten-
sor. The quark mass matrix, I, is singlet in
color but depends on the quark flavor.

This theory has been studied order by order in
perturbation theory, and has been shown to give a
consistent theory of quarks and gluons, but not
hadrons. ' Wilson and others' have suggested that
quarks and gluons are the physical particles in

one possible phase of the theory, and that hadrons
are the physical particles in another phase which
cannot be reached from perturbation theory.

Much confusion exists in the literature concern-
ing the nature and existence of such a phase tran-
sition. This confusion can be traced to the fact
that the action is invariant under local gauge
transformations and that the gauge field A (x) de-
scribes two physical degrees of freedom, not
four. We may study the theory either by choosing
a gauge which eliminates the redundant degrees
of freedom, or by considering only gauge-invariant

quantities. To study the continuum theory we
choose the axial gauge A, = 0, and eliminate A, for
each of the color gauge fields thereby eliminating
the two redundant degrees of freedom. The Ham-
iltonian for the system, neglecting quarks, be-
comes

II= dzdx, pP '+ 4G~g'+ p ~,

dz dz'dx, 4g' z —z' J z, x, ' J z', x, ,

Q(*.)= f «&(&,*,*.),
where the charge density is given by

]
g(f, &, x,)=—s P +A xP (4)

Here the term linear in gluon fields is a reflec-
tion that the theory is described by a nonlinear
realization of the transverse gauge symmetry in
terms of the gluon fields. The ordinary (perturba-
tive) phase of this theory with physical gluons re-
sults from a spontaneous breakdown of transverse
gauge invariance in direct analogy to the Higgs
mechanism.

We now consider the possibility that another
phase exists for which the symmetry is not spon-
taneously broken. Since there is a symmetry as-
sociated with each point(x, y), it is useful to intro-
duce a transverse lattice by keeping t and z as
continuous variables but treating the x and y coor-
dinates as a square lattice with lattice spacing a.
The transverse lattice serves two purposes as it

(2)
P

where a, P=x, y. P is the canonical momentum
for the transverse gluons, and J(a, x,) is the local
color charge density. The theory remains invari-
ant under gauge transformations which are local
in x and y but are global with respect to z and t.
The conserved charge which generates these trans-
formations is
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(5)

provides a gauge-invariant ultraviolet cutoff for
the theory, and, at the same time, allows us a
method of studying the gauge symmetry at each
discrete point in transverse space.

The lattice variables are defined in a manner
analogous to those used by Kogut and Susskind4 in
their formulation of lattice gauge theories. The
gauge fields are defined as

A(t (ty z) =AM(ty z nya)a y p = t t z

A:,(t, z) = AM(t, z, na), o( = x, y

where A; „ is identified with the site with lattice
vector n, and A- with a link between n and n+ e.
The quark fields are identified with lattice sites.

There are technical difficulties associated with
the description of fermions in lattice theories.
The approximation of the linear derivative in the
Dirac equation by finite differences leads to an

increase in the number of fermions in the naive
continuum limit. ' We partially overcome this
problem by splitting the four components of the
fermion spinor, placing the spin-up quarks on even
lattice sites and spin-down quarks on odd lattice
sites. The remaining spurious degree of freedom
could be removed by adding a second-derivative
term which vanishes in the naive continuum limit,
or by further splitting the fermion components.
This has not been done here. The spin-projected
fermion fields are given by

1+ ogx;(t, z)=v 2a '(t)(t, z, na), n even
(6)

}t;(t,z) = &2ai p 2
'(t)(t, z, na), n odd.

The gauge theory action of Eq. (1) when written in

terms of lattice fields becomes

A= dtdz —&G;„„' + dtdz tr D„M, D M. + dtdz —,tr M M„- zM»„z M~
nuu nay na8

+ dtdz y;iy"D, —m y; — dtdz —y;S; iy,MI y;,-+X;, S,.*iy,M- y;,
~e ~i

(7)

where G-,„„is the longitudinal field-strength tensor,
y; is written as a two-component spinor, and y
and y, are the two-dimensional y matrices. The
field M; is related to the transverse gauge fields
by

MI = —exp(iagT'A; ). (8)

The fermion spin factors are given by S,»„-=i,
d);;= (-1)". The covariant derivatives are defined
by

g gD M =8 M +i —T'AI„Mg„—i —M~ T' AI

(9)

g ~
D g-=~ y-+i —T A-y-.u n u n a n n'

This completes the definition of the lattice gauge
theory. The naive continuum limit is recovered
by taking the limit a-0, making the identifications
g- g, H- g', G -g, and using the field identifica-
tions, Eqs. (5), (6), and (8).

We would now like to discuss some of the prop-
erties of the lattice action, Eq. (7). The action is

invariant under the complete set of local color
gauge transformations. It also preserves the
global flavor symmetries of vector and axial-vec-
tor charges; only the quark mass term breaks
these symmetries. The transformation properties
are Vy;V '=e' X; for vector charges and

Ay„A '= e' "~5y, for axial charges where F is
the matrix representation of the transformation
which only acts on the flavor indices of the quarks.
The lattice theory clearly breaks many of the
space-time symmetries; however, Lorentz trans-
formations and continuous translations in the lon-
gitudinal direction are clearly preserved. We be-
lieve these features to be advantages of the trans-
verse lattice.

To study some of the implications of the trans-
verse-lattice theory, we again wish to focus our
attention on the physical degrees of freedom by
eliminating redundant degrees of freedom. For
this purpose the light-cone gauge A-„= 0, where

A;, =(A;, sA„,)/v 2, is a convenient choice. We

may then eliminate the field A;, using the equa-
tions of motion. In terms of the physical degrees
of freedom, the lattice action of Eq. (7) becomes

tr e„M- B„M; + dx, dx g, i

dx,d* E —(x;dt yM;y;„+;.; (yM)t.„'td;)yt,J d. *,d* p , t (M;M; ,M;,;, Md—), „. ,~ ~

na nag

+ dx dx, dx.' g g, ix. —x.'i J; (x, x. ) ~ JI (x, x.'), (10)
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where x, —= (t+ x)/v 2 and the charge density
J; (x, x, ) is given by

only as a linear realization of the symmetry, with
a full degenerate multiplet of massive scalars gen-
erated as bound states of the nonlinear degrees of
freedom. In the closely related nonlinear O(N) o
model with gauge fields in two dimensions a sirni-
lar result is found, ' except for the existence of a
nonlinear Higgs phase with a first-order transi-
tion to the linear phase which again describes a
full multiplet of massive excitations generated
dynamically from the nonlinear degrees of free-
dom. The longitudinal dynamics of the transverse
gluons is precisely of the latter form.

With the above motivation we will assume that
hadronic physics is described by the symmetric
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Z;= tr TM-i8 M; +M,»- i~ M;"

—XP' TXE ~

As in the continuous case the action is invariant
under a set of gauge transformations whose gen-
erators are the conserved charges

(12)

~t
na

The linearized transverse-lattice theory is a
two-dimensional continuum field theory in the
longitudinal direction with quark fields associated
with each site and meson fields associated with
each link of the transverse lattice. If the vacuum
is invariant under transverse gauge transforma-
tions, the linear "Coulomb" potential generated by
integrating out the longitudinal gauge fields will
confine the local color charges. States which are
not locally color singlet are completely decoupled
from the spectrum of physical states. We empha-
size that the states must be singlet with respect to
color rotations at each transverse site.

The confinement of quarks is a direct result of
this Coulomb potential. For quarks at a given site
the binding in the longitudinal direction comes di-
rectly from the potential. Bound states of quarks

separated in the transverse direction must include
enough link mesons so that the state is color sin-
glet at each site between the quarks. The energy
will depend on the minimum number of link mesons
needed to form a color singlet state, and will grow
with the distance between the quarks. The actual
energy of the state will depend on the mass of the
links, and the energy associated with the binding
of neighboring links in the chain.

While the theory clearly confines quarks, we
must see if it really makes hadrons. The Harnil-
tonian for the theory may be constructed by stan-
dard methods. Since we have chosen a light-cone
gauge we use light-cone quantization for the
quarks and link meson fields. The Hamiltonian
for the system becomes

I

H = Ck Z p,* tr(M M )+ Cx+x, -im+2 Q 2.8 im+& & xz Ch ~Nxx 2 8 xj.
+2 t+~ na na 20 2$8 2a

In the continuous case a linear term in the charge phase and a linear realization of the trans
density signaled the spontaneous breakdown of gauge symmetry. Therefore, we modify t
transverse gauge invariance. Here there are two by allowing all of the degrees of freedom o
possibilities. If the operators M», have a nonzero complex matrices M; to be dynamical. W
vacuum expectation value, as one would expect also add a local potential in the fields M;
naively to recover the continuum limit, the trans- action. The role of this linearization is to
verse symmetry is spontaneously broken, and the ly describe the important degrees of freed
theory would describe quarks and gluons as physi- the lattice spacing is large. A further adv

cal excitations. If M,a has zero vacuum expecta- is that we may study both phases of the sy
tion value, the vacuum remains invariant under adjusting the parameters of the local poten
transverse gauge rotations. It is clearly the These parameters and the parameters of t
second possibility which must obtain if the theory are not really free parameters but must b
is to describe hadrons. The mechanism which mined by a renormalization group from th
generates the second phase is analogous to that of tinuum limit. This subject will not be disc
the nonlinear o model in two dimensions studied here.
recently by several authors. ' It is shown that the The potential which must preserve the lo
nonlinear O(N) o model exists in two dimensions gauge symmetries has the general form

I

V= dx dx, p, 'tr M,» M, +X, tr M» M; M- M; +X, tr M; M; '+ detM; +detM,»

~
~

2

d*, I t (M M- . M- M-—)
—f-f ( I,).,-*; )Z-„(*.)) .S (*.):

nag

(14)
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Not all of the terms in the potential have been in-
dicated. g, is a single-component Dirac field
given by the projection y~ =2 (1 —y5))t, T =C&I,
and K is a matrix in color and lattice indices
given by

SR -, =g(5 .S M +5, S* M ).
(15}

The correction to the quark mass term comes
from normal ordering the Coulomb interaction.
The link meson mass p.* is the renormalized
mass. The fields have the plane-wave expansions
and commutation relations

M(x, ) = —[A,f,(x, )+B,'f;(x, )],
"dk

0

[A)„A)t ] =[B)„Bg~] = 2kb(k —k'},

Xi(x, ) = [uafa(x,

)+buffa*(x,

)],
" dk

o 2k

{a„a~t}={b„b~t}= 2kb(k —k'),

f(» ) s -(llxy1

27r

where we have suppressed the site and color
labels.

In order to systematically study the Hamiltonian
of Eq. (14) we must separate the part of the Cou-
lomb interaction which acts as the potential be-
tween particles. This potential acts independently
at each transverse site and is confining, and thus
inherently nonperturbative. This part can be di-
agonalized if one keeps in H, only the longitudinal
kinetic terms and the Coulomb interactions which
do not produce pairs. The remaining interactions
may be treated perturbatively. The states of Ho
are a spectrum of transversely static bound states
associated with each configuration of quarks and
link mesons. The perturbation theory which re-
sults is one of "bare" hadrons and their interac-
tions. At any level of sophistication in describing
the localized states one may compute the couplings
between these states and those of neighboring con-
figurations reducing the problem to one of finding
the normal modes on the transverse lattice. This
generates a continuous spectrum of excitations
with definite transverse momentum and masses of
the form 2P+P =M'+P~'/c' for P~ small com-
pared to the inverse lattice spacing. We expect
this procedure to be highly tractable since we ex-
pect the physical hadrons to be composed of bare
hadrons of approximately the same mass for suit-
able choice of lattice spacing. The full implemen-
tation of the program discussed above will be
treated in a subsequent publication.

The simplest bare hadron is a quark-antiquark

2 1

»up N y p(y I» [2
9

-'C d )
0

(18)

where the renormalized quark mass is given by
m*' =m' -g'C„/ av'. The principal-value integral
is to be taken. 't Hooft has shown that these states
have approximately linear spacing in the mass
squared, 2p+p . The ground-state meson is
pseudoscalar, and its mass goes to zero as the
bare quark mass goes to zero as one would expect
for a Goldstone realization of chiral symmetry.
As we have noted, the transverse-lattice theory
preserves chiral symmetry. Hence in the phase
where the vacuum is invariant under the local
gauge symmetry the vacuum is not invariant under
the global chiral symmetry, and vice versa.

Another bare hadronic bound state consists of a
link meson and its antiparticle. The wave function
for this state is given by

1

~P) = dx C(x)[2 x(1 —x)] '~'AtpBt, „)~~0),
0

(19)
(p'I)»=2) o(p-p'), f d*~~(*)~*=(,

0

and C'(x) satisfies the wave equation

2(")' e(*)= v
'* -+

)e(*), 1 1
x 1 —g

0

(x+y)(2 —x- y)
4[y(1 —y)x(1 —«)]"' '

(20)

We interpret these states as daughters of the bare
Pomeron trajectory. We note that the WEB solu-
tions for the meson and Pomeron bound states
yield a spacing for the Pomeron just twice that of
the meson, i.e., half the slope.

An amusing feature of the local bound states
emerges when we use a 1/I)j' expansion to restrict
the Coulomb interactions to planar topology. A
bound state of n link mesons at a given site is
directly analogous to the longitudinal Virasoro

bound state at a single site. There is a discrete
spectrum of such states, and they are precisely
the states of the two-dimensional 't Hooft model. '
The wave functions may be written as

1

~ p) = dx p((x)[2«(1-«)] 'I's~~b(~, ,)~~0), (17)
0

where (P' [P ) =2P b(P -P'), and f,'dx[(P(x)P =1.
(P(x) satisfies the wave equation

1 12p'p-y(x) =m+' -+ y(x)
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string in the limit that the link-meson mass van-
ishes. Similarly a bound state of n link mesons
and a quark-antiquark pair is the analog of the
n-break longitudinal string with quarks at the
ends. " We note that when we include the interac-
tion terms, the quarks can emit and absorb link
mesons even when we restrict ourselves to one
site for the link. Hence strings with different
numbers of breaks are coupled together.

Other configurations for the bare hadrons may
be studied in a similar fashion. The bound-state
equations follow directly from the application of
0, to the appropriate states. We defer discussion
of these states to a future paper where we will dis-
cuss the formation of physical hadrons.

It is important to note that the bare hadrons can-
not be directly identified with the physical hadrons
as they do not propagate in the transverse direc-
tion. The physical hadrons must necessarily in-
volve those linear combinations of bare hadrons
which have normal propagation in the transverse
lattice.

In this paper, we have focused on the important

physical concepts which result from a careful
study of local color gauge theories. We have clar-
ified the nature of the phase transition which leads
to a gauge-invariant ground state. The confine-
ment of quarks and gluons occurs in the symme-
tric phase and is not a result of an infinite cou-
pling strength, a bag, or a soliton solution to
the field theory. The theory is studied through
the introduction of a transverse lattice and lin-
ear realizations for the gluon fields. The non-
perturbative effects which lead to the forma-
tion of the hadronic bound states are easily iso-
lated. We believe that the transverse-lattice the-
ory represents a tractable method for a syste-
matic study of those features of hadronic physics
which do not involve large transverse momentum.
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