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We discuss semiclassical bound states in a manifestly chiral-symmetric model, the Nambu —Jona-Lasinio
model in 2 space-time dimensions. The mass spectrum of the bound states in the theory is found using the
semiclassical method of Dashen, Hasslacher, and Neveu. We also discuss the connection between the classical
confined solution of the nonlinear Dirac equation and the quantized version of the theory.

I. INTRODUCTION

In quantum field theory we have to deal with
systems with infinite degrees of freedom. For
any realistic model there is no hope of finding
exact solutions. Some approximation methods of
solutions have to be used. The covariant perturba-
tion theory of Schwinger, Feynman, and Dyson
has yielded in quantum electrodynamics many
quantitative results which have been verified ex-
perimentally to a very high degree of accuracy.
Unfortunately, perturbation theory does not pro-
vide a quantitative framework for discussing strong
interactions. The quanta obtained from quantizing
the free fields are too far away from hadrons to
serve as a useful starting point.

The last few years have seen a revival in making
a different connection between field theory and
hadron physics. One attempt has been to associate
particle-like solutions of the classical nonlinear
field equations with hadrons. ' To make such a
connection meaningful, these particle-like solu-
tions should be carried over into quantum field
theory and some calculational schemes must be
developed. The quantum effects' have been studied
by various techniques. These include among
others a (a) functional-integral technique, ' (b)
Kerman-Klein method and Green's-function tech-
nique, ' (c) variational technique, ' and (d) canonical
quantization approach. '

The model that we shall discuss is a two-dimen-
sional space-time version of the four-fermion
interaction studied by Nambu and Jona-Lasinio'
in their classical work on chiral symmetry. Our
motivations for considering this model are two-
fold.

A particle-like solution of a classical field equa-
tion has finite energy. It connects the vacuum
f ield configurations at infinity. In most models
that have been studied, the degeneracy of the
vacuum is either finite or infinite but discrete in

nature. It is natural to ask what would happen if
we have continuous degeneracy of the vacuum.

Another reason to consider the present model
is to try to understand the role of chiral sym-

metry in some quark confinement schemes (e.g. ,
the SLAG bag'). Chang, Ellis, and Lee' have
done work in this direction. They have succeeded
in finding a confined solution of the classical non-
linear equation describing fermions. However,
the connection of their results to the second-quan-
tized version is unclear. It would be nice to find
a model with chiral symmetry whose quantum
effects we would be able to handle.

It turns out that the mass spectrum of the bound
states in our model can be found explicitly in the
semiclassical approximation. We believe that this
is the first chiral model whose quantum effects
can be treated in a consistent way. Since we know
how to treat quantum effects, we can study the
connections between the classical confined solu-
tions of the nonlinear wave equation describing
fermions and the quantum system. Let us describe
briefly our results.

We find that the vacuum field configurations at
infinity are related to each other by a chiral rota-
tion. The chiral rotation angle is quantized and
is proportioned to the fermion number of the bound
state. The mass spectrum of the stable bound
states is found explicitly. We also find that the
solution of the classical nonlinear wave equation
does not help us in understanding the quantum sys-
tem in our model.

This paper is organized as follows: In Sec. II,
we present the model and discuss the semiclassi-
cal method of Dashen, Hasslacher, and Neveu'
to find the mass spectrum of the bound states.
The semiclassical method of DHN' is a version of
the stationary-phase approximation. Section III
introduces the powerful technique of the inverse
scattering method to find the static field configura-
tions satisfying the stationary-phase conditions.
We show that the stationary-phase conditions imply
that the potentials be ref lectionless. The recon-
struction of potentials using the inverse scattering
method is also presented. We discuss in Sec. IV
how to quantize the system. We then obtain ex-
pressions for the mass spectrum of the bound
states in our model. In the last section, we make
several relevant remarks. One concerns the rele-
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vance of the classical solution of the nonlinear
wave equation for the fermion. Another concerns
the problem of spontaneous symmetry breaking
and the Goldstone particle. Appendix A discusses
an explicitly broken chiral model. This is one
example which cannot be treated by the inverse
scattering method in any simple way. The mas-
sive Thirring model in the large-N limit is dis-
cussed very briefly in Appendix B. This is yet
another case in which the inverse scattering meth-
od does not provide any simplification. We pre-
sent the derivation of the trace identities for the
Dirac equation in Appendix C.

II. THE MODEL AND THE SEMICLASSICAL

APPROXIMATION

The model that we shall consider is the famous
model of Nambu and Jona-Lasinio' in one space
and one time dimension. It is described by the
Lagrangian

& = gi A+ 'it' [(00-)' —(4r,4)'],
where g is the N-component, massless fermion
field. This Lagrangian is invariant under the
chiral transf ormation

dP exp i dI; dx$ I, —g a+i vy,

=exp —,'s a, i+e-'~ "~, 2.6

where e, is the Floquet index defined by

P, (x, t+T) =e '"
~g, (x, t), (2.V)

and g, is the solution of the Dirac equation with
periodic & and 7:

(2.8)
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Once the integrations over g and g are performed,
Eq. (2.4) can be written as

Equivalently, the theory can be described by the
following Lagrangian:

&(&, w, f)=4[tH'-Z(~+i', )]4-k(0'+w') (2 3)

Gross and Neveu'o have investigated this model
in the limit of large N with ~ =g'N fixed. They
found that gg develops a nonvanishing vacuum ex-
pectation value so that chiral symmetry is broken
spontaneously and the fermion becomes massive.
In this paper we are interested in finding the mass
spectrum of the bound states.

Our starting point is the functional integral rep-
resentation of tre '"~,

tr e '~ ~ = dg dg der dr

xexy i dt dxZ(o, w, g)
p ~ 00

(2.4)

where the integrations run over fields with the
periodic conditions

(r(t+T) =v(t),

w(t+T) = w(t),

and + and —refer to positive- and negative-energy
solutions of the Dirac equation. We remark here
that because m is odd under charge conjugation,
the positive- and negative-energy solutions are
not related to each other.

Our main interest is the mass spectrum of the
bound states. Therefore, we can restrict our-
selves to cases where n,'" and n,' ' are nonvanish-
ing only when they refer to the discrete states.
From now on we use n,',",n,'; ' to remind us that
they refer to the discrete states.

So far we have not taken into account the fact
that S is divergent. A renormalization process has
to be carried out. First we subtract the vacuum
self-energy. " Next we have to renormalize the
0'+@2 term. The result is

S„,((n,",. '), (n,', '))

= -~Z dt dx(v'+ w' —(r,')
0 ~ 00

4(t+T) =-4(t). + N 0' '+ Q ' —e'+'0 —Q' '0'

Following DHN we first integrate over g and g
fields. The following result is useful: nps +oi nof +ok ~ (2.11)
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In the special case of time-independent solutions,
we have the simplification

S'" =--'Z dx(o'+)&' —o ')
T

+ p pl] (d) + (d j (d$ o'p (d$ o'p

(2.12)

and N is the normalization factor for the wave
function of the discrete state.

We can also establish the trace identities'4 con-
necting integrals of o, m to the reflection coeffi-
cient r(k) and k«. One relevant identity for our
discussion of S is

oo 1
((T' + )&' —o,')dx = , In[1 —lr'"(k)l']dk

2 7'

The stationary-phase approximation (also re-
ferred to as the semiclassical approximation) to
tre '"r amounts to approximating f[do][d)&]e'«(
by e' '", where

~s ~s
$ ff —S ff evaluated at o, ~ where

&
= 0,

&
= 0

(2.13}

The stationary-phase conditions 5S/&v=0, ~S/5»
=0 can be written as"

&~+ (7(&(+)y(+) 7(&(-)y(-))

+, ln1 — r( 'k 'dk

, Q k,",. ' +, Q k,',. ' .

(3.1)

In evaluating S, we have to know
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(I)
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=--&g(4'"i1 0'" 0' 'i-1 0' ')
i

(2.14)

It turns out that this can be expressed in terms of
the phase shifts. One finds that

(d) —(dq O'p + (d] — (d] O'p

iI()(+) + g(-) + ~(+) m

(2.15)
(d(, ) —m . (3.2)

The method of finding o, m, satisfying the sta-
tionary-phase conditions, consists of the following
processes:

(i) Guess a pair of a and v.
(ii) Solve for the Dirac equation

[i)((' —g(o+ i)&y, )] g) =0.

(iii} Check if the conditions 5S/5o =0 =5S/5v [Eqs.
(2.14) and (2.15)] are satisfied.

This is in general a very complicated and almost
hopeless task. Fortunately, for the time-indepen-
dent case, there is a better way. In the next sec-
tion, we shall use the inverse scattering method
to simplify the task of finding o, n' which satisfy
the stationary-phase conditions.

III. THE INVERSE SCATTERING METHOD

The inverse scattering method for the Dirac
equation with scalar and pseudoscalar potentials
has been studied by Frolov. " He establishes a
1 —1 correspondence between o, n and the set of
scattering data (&'"(k), ko,",N,'"j, where r(k) is
the reflection the coefficient, kp,

" is related to the

energy of the discrete state by Eo, =+(m' —ko,. ')~',

It can be shown that &"'+&' ' is expressible in

terms of r(k) and k„ through the dispersion rela. —

tion"

(I)
(+ ) + g (- )

27r

"
in[1 —lr"'(q)l']+In[1 —lr' '(q)l']

k —q

k(+) k(- )

++2tan ' " ++2tan ' 0
k k

(3.3)

Equipped with Eqs. (3.1)-(3.3}, we can express
S in terms of &(k) and k«. To find the stationary-
phase point, all we have to do is look for r(k) and

k„. such that 5S/5r =0 and 5S/&k„. =0. It is easy
to see that &S/6r =0 implies r(k} =0. Namely, the
stationary-phase conditions require that the po-
tentials o, n be ref lectionless. The inverse scat-
tering method allows us to find o and n once k,',-"
are given.

Frolov" has shown how to reconstruct o and m.

One solves the Gel'fand-Levitan equation"
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2(*,)') P(x ~1)+f If(*, t)F(t+y)d(=0,

where

(3.4)

and

1+(x) =Q A„exp(-k„x), when 2 =0
n n

(3.5}

A n

m+(-m' —k 2)'+ 2 m+(m2 k 2yk

k„ k„

m+ (m' —k 2)'+

k n

for positive-energy solutions

m+(m' —k 2)'~

k„

m+(m' —k )~' ' m+(m' k ')'
kn kn

for negative-energy solutions (3.6)

in the representation

O },I'0 2 l t'0 -2 &

(0 -1) (z o) (z o)

have

(a2 a l . m + (m' —k„2)'~'
with (2 =

(3.7) A simple calculation gives us the following results:

The summation in Eq. (3.5) is over all discrete
states. The Dirac equation in the representation
(3.7) can be written as

(0 I} df tm Ol
(-I o) (0

and

g(o —o ) =go —m

2k 2 1
m 1+exp[2k, (x -x,)]

2k, (m' —k„2)~2 1
m 1+exp[2k, (x —x )]

'

(3.11)

ff =~f, (38)
1T —O' - O'0

where m =go,. The potentials o, n are then given by

fg —o2 v } f 0 I)
g~

' ~= ~,Kx, x
(.—.,)) ( 1 o)

(3.9)

For illustration, let us restrict ourselves to the
case where there is only one term in the summa-
tion in Eq. (3.5). The solution of the Gel'fand-
Levitan equation" [Eq. (3.4)] can be written down
explic itly:

K(x, y) =2k2
1

1 +(A/2k2N) exp(-2k x)
-1

(3.10)

Consider the following two subcases:
(1) The potentials o and m allow only one discrete

state which has positive energy. In this case we

We remark that although g(&r —o2) and gv approach
0 when x-+~, they approach nonvanishing values

2k 2g(o-o)--0 m

2k (m2-k 2)2~
gr['- when x - — .

m

k2
2 g2+7r2 =m2 0

cosh2k (x —x ) ' (3.13)

we see that it approaches m' at +™.We realize
what happens is that we indeed have a free Dirac
equation with mass m at x =+~ except that the
mass matrix has been rotated by a finite amount
at x= —~.

The solutions in the continuum can be obtained
from the equation"

In other words, the potentials g(o —o2), gv are not
localized in space. At first sight this seems puz-
zling. However, when we consider the combina-
tion
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f(x, x) =e(x, x) e f tt(x, t)e(tx), dt, (3.14)
From Eq. (3.13}, we have

where ~ = +1 for positive and negative solutions,
respectively, and

e(x, +1)= ()t)t =
/ [

i)tx

eC2)

(3.15)

( +g P= hk( )
~

Therefore, o'-0 at x =+~.
Ne find, after some algebra, that the wave func-

tion for the rotated scattering state has the follow-
ing asymptotic behaviors:

e(x, -1)=
. m+(m'+k')'+ ~

k )
[1+(k/m)']'~'k, + ik[1- (k,/m)']'+ ~

ik —k e (2)

From Eq. (3.14) one obtains (3.20)

ae(1 ) + a2e(2)

/a'e"'+ ae")'((
a + +ae")+e"

X
2k 1 eklfx

ik —ko 1+exp[2k, (x -xo)]
~

(3.16}

f(x, +1)e ' */,—, / e(1) }
e(2)

Thus, the phase shift is given by

, (;(+) [1+(k/m) ]k +ik[1 —(k~/m) ]'k
jk k,

or

(3.21}

t" I 0

There is no reflection in the scattering states.
Therefore, the potentials o, w in Eqs. (3.1) and
(3.2) are indeed reflectionless. We would like to
point out that, besides the physical cut, f has a
kinematical cut in the complex k plane owing to
the presence of the function (k'+m')'k.

To simplify the interpretation, it is useful to
make a local chiral rotation such that

m2 + k2 1/2

m2 —k 2
0

We would like to remark that here 5")$0 as k- ~
in contrast to the nonrelativistic potential scatter-
ing problem where &-0 as k- ~ when the poten-
tial is square-integrabl. "

By exactly the same method, the phase shift for
the negative-energy solution can be found. It is
given by

m I—+0'

The necessary local chiral transformation is

/cosign —sin2n)f=Gf, ( =i
i, sin -,' n cos-,' n /

where

(3.1V)

7r
tana = ——

/ 0 1} df m+go'

(-1 0) 0
f

—(m +go')

1 dQ
(t) + — f . (3.19)

2 dx

(m2 k 2)1)2
3.ism'(1+exp[2k, (x -x,}]}—2k, ' '

The new Dirac equation is

k(') =k(-) =k„n(') =n(-) . (3.25)

This differs from &") only by the sign of the sec-
ond term on the right-hand side. It is a reflection
of the fact that the scattering amplitude in the
complex k plane has a two-sheet structure corre-
sponding to the double-valued structure of
(k'+ m')'~'. Although &") and &( ' do not approach
zero individually, nevertheless their sum ap-
proaches zero in the limit of k-~.

The wave function for the discrete state can
also be found. It is, up to a normalization factor,

m+ m2

3.24
coshko x —x~

(2) 8'e consider here the case cohere the poten-
tiars a/low both positive- and negative-energy
bound states such that
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We can proceed as before to find the potentials
using the inverse scattering method. It is found
that the potentials are

0 0 (1 y2)1/2

1
cosh'k, (x -x,)+-,'[I/(I -y'}~—1] '

(3.26)

S n 1=-~ cos8 ——(sin8 —8 cos8).
TNm N r (4.2)

Ngvo - no

The stationary-phase condition 5S/6k~ =0 can be
expressed as dS/d 8 = 0, and this implies that
8=n~v/N. The mass spectrum of the bound states
corresponding to this case is

where

Nm . nr
sin (4 3)

and

m=0. (3.27)

where no is the number of fermions occupying the
state ko. The condition that 0 & 8& v/2 requires
no ~&N. The chiral rotation angle introduced in
the preceding section is also quantized. In fact

k
(3.26)

Equation (3.26) has the same form as the o in the
Gross-Neveu model. The fact that @=0 agrees
with the prediction of the charge conjugation. The
phase shifts in this case are given by

y=2e=
N

(4.4}

We would like to remind you that n, is the fer-
mion number of the bound state which is a con-
served quantum number. The stability of the
bound state against decaying into two lower-lying
states is guaranteed by the elementary inequality

We shall not attempt to solve for the potentials
o, n for the general cases. In the next section, we
shall show that the results we obtained in the special
cases considered in this section are sufficient for
the purpose of finding the mass spectrum of the
bound states in our model.

Ng' dkz= k'+m»»
0

which also makes S finite. In terms of 8

(k = m sin 8), the action S is

(4.1)

IV. QUANTIZATION AND MASS SPECTRUM

In the preceding section, we showed that the
stationary-phase conditions require that the poten-
tials v, n be ref lectionless and we indicated how to
solve for o, n' using the inverse scattering method.
Up to now we have not used the second stationary-
phase condition 6S/~k„=0. We shall show that this
leads to the quantization condition on k,. This in
turn gives us the mass spectrum of the bound
states.

The calculation of ko,. such that 6S/6ko, . =0 pro-
ceeds exactly as in DH¹ We shall not repeat
their calculation here. It suffices to write down
the results in the following cases:

(1}The potentials o' and v allow only one discrete
state with positive energy.

It is clear that o =a'~ and n =0 is a solution of the
stationary-phase conditions. The renormalization
constant Z can be determined by Eq. (2.14). One
finds that

sin ' 'w &sin ~n +sin ~m (4.5)

2AN . mn
(4.6)

where n =n,'"+n,' '=2n,"'. These states have
zero fermion number. This result is similar to
the result of DH¹ It is worthwhile to point out
that although the mass spectrum in Eq. (4.6) is of
the same form as in DHN, the quantum number
content as well as the degeneracy of states are
different.

(3) The general time-indePendent case. Here,
although the potentials o, n are more difficult to
find explicitly, nevertheless, we have the follow-
ing relations:

(4.7)

Here sin[(n, /N}v] and sin[(n, /N)v] are positive.
Likewise, for a, m allowing only one discrete

state with negative energy, the energy of the bound
state corresponding to the fermion number -no
is also given by Eq. (4.3}. In other words, the
energy of the bound state is invariant under charge
conjugation.

(2) We consider the case that the potentials allow
both positive- and negative-energy discrete states
such that ko" =ko '=k'o and no" =no '.

In this case the mass spectrum of the bound
state is
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and

a&+'+e' ' =2 tan ' " +2 tan 'y(+ )

k

nonlinear wave equation

iA —m4. +g'(4. 4. )4.=o .

One sees readily that the action is given by

(4.8)

S =g S(k,',")+g S(k&;&). (4.9)

In other words, it is additive. This implies that
the mass spectrum of the bound is additive. To
find the mass spectrum for the general cases,
all we have to do is find the mass spectrum of
case (1).

Up to now we have restricted ourselves to the
time-independent solutions in most parts of our
paper. It would be nice if we can say something
about cases corresponding to time-dependent solu-
tions. Unfortunately, we no longer have the
powerful tool of the inverse scattering method.
Ne have to find the potentials o, n by trial and
error. For case (2) which allows both positive
and negative solutions with k"' =0' ', n"' =N' '„
the solutions can be found along the same line as
in Sec. IV of DH¹ However, we are unable to
make any progress for the other cases.

V. CONCLUDING REMARKS

Before we conclude this paper, we mould like
to make some remarks:

(I) Relevance of classical solutions of the non
linear wave equations corresPonding to fermions.
Fol the boson fields, it is well known that the
classical solutions of the nonlinear wave equations
provide first approximations to the quantum sys-
tem. For example, to calculate the energies of
the quantum system, we calculate the energies
corresponding to the classical solutions and then
calculate the quantum corrections. For fermion
fields in general we do not know whether the clas-
sical solutions of the nonlinear wave equations
play any role in our understanding of the quantum
system.

In the Gross-Neveu model discussed in DHN,
the field o corresponding to the stationary-phase
point of S 1s given by

oo = oo (I 2)vm

1
cosh'k, (x-x, ) + -', [ 1/(1 —y') v' —1]

(y =k,/m).

This happens to agree exactly with -gP, g, ,"
where P, is the static confined solution of the

In this sense the classical confined solution of
the nonlinear wave equation for the fermion may
be relevant to the understanding of the quantum
system including the problem of bound states. It
would be nice if this connection were a general
one.

In our model we find that the fields cr and m cor-
responding to case (1}, where only one positive-
energy discrete state is allowed, are

2'' 1
m 1+exp[ 2k, (x —x,)]

'

2k (m' —k ')'~'
0 0 1

I + exp[ 2k, (x —x, )]
'

It is obvious that

4(m —E)n tanhPx

g cosh'px(1+ a' tanh'px)2 '

m-Z ~'
a = P =(m' E')"-

rn +E

These bear no resemblance to 0 -a„m obtained
in our model. %e therefore conclude that, in
general, the classical confined solutions of the
nonlinear wave equations for the fermion are not
useful in understanding the mass spectrum of the
quantum system in contrast to the boson case.

(2) SPontaneous symmetry breaking and the
Goldstone theo+em. The Lagrangian in our model
is manifestly chiral-symmetr ic. The symmetry
is broken spontaneously so that the fermion be-
comes massive. The Goldstone theorem" im-
plies the existence of a massless particle. Un-
fortunately, in one space one time dimension,
the infrared divergences forbid the existence of
a spin-0 meson (Coleman's theorem'0). Since
our results depend crucially on the idea of spon-
taneous symmetry breaking, we have to under-

o —co~-gled'4~

&~-g ~c~r54c y

where g, is the classical confined solution. This
is because g, is localized, therefore, i]t), |t), and

P, i y, g, -0 at + ~ contradicting Eqs. (3.11) and
(3.12). In fact, I.ee and Gavrielides" have solved

P, explicitly. According to them

-2(m —E) 1 —a tanh Px
g cosh'Px(1+ a' tanh'Px)' '-g4, 4, =
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stand what happens in our model.
By looking at the expression for the energies

of the bound states, we realize that we cannot
get a massless particle because in the expression
for E, all n have to be greater than zero.

We must answer the following questions: (a)
Is there any massless particie? (b) If such a
massless particle exists, how can we reconcile
it with Coleman's theorem?

It turns out that the massless particle decouples
from the rest of the system. Therefore, we evade
the conclusion of Coleman's theorem.

The following argument concerning the decoupling
of the Goldstone boson is due to Dashen. " We
include it here for completeness. For this pur-
pose, it is convenient to express our model in
terms of boson fields. This can be done along
the lines of Halpern. " The result is

g =Q —'(8 „p,)' +C Q cos[ 2'�(y,—(t),}], (5.4)
a a, b

where a =1,2, . . . , N, and C has the dimension
of (mass}'. We can express P, in terms of other
bases (4„4,):

(5.5)

with

is independent of C, .
It is now obvious that 4, corresponds to the

massless Goldstone particle. However, it de-
couples from the rest of the system and causes
no infrared divergence.
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APPENDIX A: AN EXPLICITLY BROKEN CHIRAL MODEL

We have been discussing a model with manifest
chiral symmetry. In this appendix we discuss
briefly a model with partial symmetry. The sim-
plest way to break the chiral symmetry explicitly
in the Lagrangian [Eq. (2.1)] is by inclusion of
a mass term

(Al)

or, equivalently,

2 ((f, ff, g) =&[i&' —m —g(o+iffy, )] {{)—2(o'+ ff ).

(A2)

D., =0,

(5.6)

We no longer have conservation of the axial-vector
current. Instead, the following partial conserva-
tion law for the axial-vector current (PCAC) ob-
tains:

Now the kinetic terms can be expressed as a t"J'„=mQiy, P. (A3)

g(a, (.)'=I ~ a„a. I:D., a,e,)
2 2= (a„e,)*+~ aaa. g gaa. ,) ~ 'a. ,

b a

+ Da~a "C»D„B 4,
a, b

(5.7)

Therefore, the Lagrangian ean be written as

This model has been discussed by Lee and
Gavrielides. " They start with the classical con-
fined solution of the nonlinear Dirac equation and
use the semiclassical method to find the mass
spectrum of bound states. As will become clear
from our discussions, we believe that their con-
clusions and results are, unfortunately, wrong.

It is instructive to see whether we can say any-
thing about the mass spectrum of the bound states
in the theory described by 2 .

To answer these we proceed as before. We
begin with the effective action

g = —,'(a „c,)' +g', (5 8) S,ff (m)
T

—= —2 d)f((f'+ ff'+2bo}

where

2' =-,'Q(s)'4, )'+C Q cos[2v ff (D„—D„)C,]
a a,b

(5.9)

+ 'Np [(d,+
+LU)( )( —(a)f(+)((f )——)(d( )(o ))]

(A4)
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FIG. 1. The tadpole diagram. FIG. 2. Two possible one-loop divergent diagrams in
the massive Thirring model.

The linear counterterm —bZcr is needed here be-
cause, in the g, g integrations, there is a diver-
gent term corresponding to the tadpole diagram
in Fig. 1. The renormalization constants Z and
b can be determined from the effective potential

V,« = —,'Z(g'+ «'+ 2b«)

dk[ k'+ (m +go)'+g's'] 'i'+ c,
7T p

(A5}

where c is an infinite constant. We do the re-
normalization on the mass shell. The require-
ments that

~Vf~ 0
e=p

to be compaxed with the results of Lee and Gav-
rielides. " They found no need of renormaliza-
tion for the o'+ m2 term, i.e., Z=1. The con-
tradicts the result obtained from the simple one-
loop calculation of Z. One source of error is the
mistaken belief that the o and m they obtained
were ref lectionless. Indeed, it can be shown
that their o and w are not reflectionless.

Since o'+ 7) + 2bo is not equal to «'+ «'+2(mjg)o,
we cannot use trace identities to evaluate o2+ p2

+2bo. The condition BS/Br =0 no longer implies
r =0. Therefore, we cannot follow Secs. III and
IV to determine the mass spectrum using the in-
verse scattering method. In other words, the
inverse scattering method does not give us any
simplification. We have to resort to solving Eqs.
(2.14) and (2.15) directly. We shall not attempt
to do it here.

and

9 V
28o

determine Z and b uniquely. One finds that

Ng 2AZ= 1+ ln ——1,r m

(A6)

(A7)

APPENDIX B: MASSIVE THIRRING MODEL

IN LARGE-N LIMIT

In this appendix, we mention another model
which cannot be treated by the inverse scattering
method in any simple way. The model is the
massive Thirring model with N species of fer-
mions. The theory is described by the Lagrangian

bz= ()n ),

V« =-, (o'+ «'}+ g o

+ —[(m + go)'+ g 'w ']
47t

(A8)

2 = (|)(i$—m)p+ —,'x'j)'j „,
where

N

a=

An equivalent description is by

Z(A, P) = P(i' —m +1.A)g - -,'A'.

(B1)

(Bs)

(m +go)'+g '«'
X

m
(A9)

We can proceed as before. When the integrations
of g and P are performed, we obtain

"dPdP . d, P( P, &A)~
.Det[ & (iP —m +X+)]

Det[~'(iy'- m)]

Qc$ ic t i pl(TI-'e&g( ' ~ I&, '- I"(0) —
I ', '(0)ll

Oi Oi

Qp COp ~ — Pl() i COO ~

j
(B4)
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It is easy to see that the only possible divergences in Eq. (B4) are from the diagrams in Fig. 2. A little
thought convinces us that they are in fact finite. The i'initeness of diagram 2(a) is related to the fact that
(j„)„„=0.The finiteness of diagram 2(b) is due to the current conservation. These can also be verified
by direct calculation.

Equation (84) tells us that

Ql: ~'('+ Iu';'I-~' (0) - I ~» '(0)lf=- J"(~"+~' '), +Q (&4'-m)+Q(l~oi'I-m)

is finite. This implies that k(5t'+5t ')-0 as k-~. We recall that 5" +d ' satisfies the dispersion re-
lation (3.3). We are led immediately to the following conclusions:

(i) It is impossible to have r 'l—= 0, r '—= 0 simultaneouslywhen these are discrete states.
(ii) The condition k(b' +d )-0 as 0-~ implies that r"' (q) and r (q) can no longer be treated as in-

dependent variables. In other words, to find the stationary-phase condition, we cannot have independent
conditions

The inverse scattering method is no longer a useful tool in the massive Thirring model.

APPENDIX C: TRACE IDENTITIES FOR THE DIRAC EQUATION

Let us derive the trace identities for the Dirac equation in Sec. III. We start with

onjd. l (-~
~= (y2+m2)»+-I —"

—1 0j df ( 0 -(m+go')j ( f2) 2 dx f,)
Ch

or

df, + m+go'- (k +m ) ~ + ——f, =0,& da
dx 2' (C I)

dx
'+ m+go'+(JR+ m')'~'+ ——f, =0,2' 2

where o', da/dx 0 when x-a~. We define

(C2)

8(x) —=—lnf, —N,dx

f (k'+ m')'~' —m
&u(x) -=~—

1 ik

The phase shift 5 is related to 8 by

(C3)

(C4)

e(x)dx.

It is obvious that g(x) =~ =0 if o'=do. /dx=0.
Substituting (C2) into (C3) and using (C4), one finds that

1 dn (k'+m')'~' —m
g + go' + —

(gp + go' + +[m+(JP+m')'~'](v =0 .2 dx 2 dx ik

Another relation between 8 and + can be obtained by differentiating (C4) with respect to x and using (Cl)
and (C2):

1 df, f, df,
f, dx f,*dx

1 du (a'+m')"- m
&u, +(u(e+ik)+ go'- ——+ g=O.

dx ik
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(gl') gf-)) (~ ~
~tM (~t ~ ) ~l-&) (p ) / ( t ~ ) J-)) gp

Q! -0&de + Q

2 dx k 2dx

(g(+) g(-))+ ~l+ +~ ( (+) ~(-))+(/+~2)i/2( (+)+ (-))+21 d& (u'+ m2)"
2 dx ik

1 dn
gg t+ —0

2 dx

(~(+) + ~(-) )+ [(~(+)y ~(-))(8(+) + g(-))+ (~(+) ~(-))(8(+) g(-))j

+2~(& +)+&(-))+2 ~( + (g(+) 8(-))+ (g(+) + 8(-)) 0~ (+ 1 dc( (IP +I')'~2, im
dx ik k

(C10)

%'e recall that & and 8 have two-sheet structures. Let us use + to denote quantities related to the positive-
and negative-energy solutions. Equations (C6) and (C7) can be written in terms of 8(')+ 8' ', 8"—8(

(+) +~(-) and (+) ~(-).

(~(+) ~(-) ) ~ L[(~(+) + ~(-) )(g(+) g(-) ) + (~(+) ~(-) )(g(+) + g(-) )j
k'+ ~'&'"

+2)&((d(+) ~(-))+ + ) (g(+)+g(-))+™(g(+) 8(-)}

(C11)

It can be easily established that the following
combinations are analytic and can be expanded in
powers of 1/k in the upper half plane in the limit
of k

~(2) + 1~(1)e(2) + 1 (2) e(1) + ~ (2) e(1) ~ e(2) O

(C20)

~(+)+ ( ) n~")(x)
k"

(C12)

From (C11) and (C19), one finds

~(2) e(1)
1 0

From (C15) and (C17), one finds

~(1) 2i~~

(C21)

a(2))t (8(y) g( )) ~ &~ (x)
(12+ I')'"

Substituting these into Eqs. (C8) to (Cll } and pick-
ing up terms of order k and k ', we obtain the
following eight equations:

e(')+ (»=0
0 (C13)

e"+ gc'+- —+m &("+(g")+2im goI+ ——=O
& daf 2 . 1 d~

1 dx 1 2 2 dx

(C14)

(2), 4Q

dx
'

Combining Eqs. (C13}, (C19), and (C21)-(C23},
one obtains

8',"=- i( g2cr" +2mgo').

As our final step, we use the dispersion relation
for the phase shift Eq. (3.3) and the equation re-
lating 5 to 8 [Eq. (C5)j to obtain the trace identity
we used in Sec. III:

+ w —0'0 dx

e(2) + (1) 2 ~i+ O
6fQf

2 dx
1
2 o"+2—o' dx

e(2) + ~(1)
1 2

iu("+2 go'-- ——ie") =e1 da
1 2 dx

&(1) + 1u(2) e(2) + -v(1'e'" + i~'" —ie"'+ ice("= 0

+»[1—I~( )(f )I'j jd12

k(+) + k(-)

i~")- ie'" = o1 0

(C18)

(C19)

The other trace identities can be derived in exactly
the same way by considering terms of higher
order in 1/k in Eqs. (C8)-(C11).
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