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Chiral-charge conservation and gauge fields*
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An example of a gauge field theory with classical dyon solutions which violates anomalous chiral-charge
conservation is presented. We also show that the pseudoparticle solution to the four-dimensional pure Yang-
Mills equations is equivalent to a kink solution in one dimension. The net change in chirality, the Pontryagin
index, and kink number are equivalent. This suggests an intimate connection between the spherically
symmetric four-dimensional Euclidean gauge field theory and one-dimensional scalar field theories.

I. INTRODUCTION

II. DYONS AND THE UA (1)PROBLEM

One of us has recently proposed as a solution
to the U„(1)problem the existence of gauge-theory
magnetic monopoles. As an illustration of this
possibility, we will consider an SU(2) gauge field
interacting with a massless fermion isodoublet.
The symmetry of this model is SU(2) x U(1) x U„(1),
corresponding to the gauge symmetry, baryon-
number conservation, and axial-vector baryon-
number conservation, respectively.

The gauge-invariant axial-vector current,
A„=gy„iy,g, associated with U„(1) will exhibit an
anomalous divergence in the quantum theory,

2

where F&, is the gauge-covariant curl of the gauge
field G„(x)= G'„(x)7 /2 and g is the coupling constant
of the model. Equation (1) also specifies the rate
of change of chirality, since

q„= d'xe,

d xB~Ap, (2)

assuming that there is no contribution from the
surface terms due to+. To understand how a

Recently there has been a revived interest in
classical solutions to scalar and gauge field theo-
ries. Among the most carefully examined solu-
tions are the kink, ' vortex, ' magnetic monopole, '
and pseudoparticle. ' These exhibit the common
quality of topological stability for one, two, three,
and four spatial dimensions, respectively. In

addition, all are static, finite-energy, dynamically
stable, nondissipative solutions to classical field
equations. A comprehensive review of these de-
velopments has been given by Coleman. ' Here,
we will make a few remarks concerning some not-
so-well-known aspects of these solutions.

dyon solution can lead to a nonvanishing Q„and
thus overcome the U„(1)problem, consider the

decomposition identity

Tr(F»*F&,) =8&(„—2Tr(G„*J'„),

where

264 xsTr G BxG6+3 G GxGh
2g

*J~ =D, *F~~ .
(4)

For Abelian dyons, *J& is necessarily nonvanish-
ing because of a string singularity in the potential.
However, in the case of non-Abelian theories,
the existence of string singularities in the fields
depends on our choice of gauge. ' For the model
under discussion, this can be clearly seen by
making the string-free classical ansatz

G', = ', J(r), Gf = e„, ', [1.-K(r)], r' =gx, '

1 J(1-K') "
(6)

The classical field equations provide a nontrivial
family of solutions

J(r) = const, K(r) = 0.

Unfortunately, the singularity of these solutions
at the origin manifests itself by yielding infinity
for both the energy and Q„, just like the dyon of
Abelian electromagnetism.

These deficiencies can be overcome if we are
willing to amend to this model an isotriplet of
scalar fields which spontaneously break the gauge
symmetry. The addition of these scalar fields
leads to a new family of solutions free of singu-

where J and K are determined from the field equa-
tions. ' Putting this ansatz into Eqs. (1) and (2),
we find

1 " d J 1-K
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larities and for which both the energy and Q„are
finite and calculable. These classical solutions
are the Julia-Zee dyons, ' generalizations of the
topologically stable 't Hooft-Polyakov magnetic
monopole. ' Asymptotically and at the origin they
are of the form'

J(r)~ const xr', J(r)~Mr+b+ ~ ~

F~O r~~

such that M& pg/MA.

(8)
K(r)~ 1+const xr ', K(r) „= 0, -

J(r) = sinhy[Cr coth(Cr) 1], -
K(r) =Cr/sinh(Cr),

(10)

where C sets the mass scale and y is an arbitrary
constant. These exact solutions are convenient
for examining the general properties of the dyons;
however, because of the required limit [Vg&) = 0],
they exhibit neither topological nor dynamical sta-
bility. The dynamical instability of their monopole
is easily seen, since the energy is proportional to
the mass scale C and goes into the vacuum solution
in the limit C-0. (This is just the Derrick-Cole-
man argument. ' ") One may wonder what happens
to the monopole if the solution is unstable. To
define the monopole one requires a closed surface
beyond which the gauge field is asymptotic. In the
limit t-~, the energy dissipates (i.e. , C-0) and

where the mass Msets the scale for J and b de-
termines the electric charge of the dyon. From
Eq. (6), we find for these cia.ssical solutions

1
Q = —M.A (9)

It is important to notice that the large asymptotic
behavior of j(r) leads to a surface term in this
example and thus provides the nonvanishing re-
sult of Eq. (9). We shall return to this point later,
but now we briefly discuss the quantum version
of this model. Since the anomalous divergence of
Eq. (1) is a quantum result, the legitimacy of
our nonvanishing Q„requires the existence of
dyon solutions in the quantized theory. Such an
occurrence is indeed the case; their appearance
and stability have been rigorously verified for this
model. " As expected, they exhibit only discrete
electric charges q~„,„=-,'ng, n= integer. (This re-
sult is intuitively seen by applying the Saha-Wil-
son" argument of angular momentum conservation
to two widely separated dyons. )

In the limit where the scalar mass p-0 and the
quartic coupling P. -O [i.e. , V(Q) =0], Prasad and
Sommerfield" have obtained exa.ct analytic solu-
tions to the classical field equations studied by
Julia and Zee. They found

this surface becomes infinite; the monopole oc-
cupies all of space.

Let us in any case list the mass and electric
charge of the dyon implied by their solution:

4x
%yon =

2 C cosh y,

4n
slnh+ .

Calculating Q„ for this sdlution, we find

g' 1Q~=. 2C — edy..4K g
(12)

(13)

can be written as a surface integral. The dyon is
an example for which this surface integral does
not vanish. However, the integrand of the surface
integral is gauge dependent and indeed can be
gauged to zero, but such a gauge transformation
introduces singularities into the gauge field and
D„*I'~&becomes singular -5'(x). Of course, the
integral of Eq. (13) is gauge independent and its
value will not be influenced by our method of
evaluation.

This result explicitly demonstrates the dependence
of Q„on both the magnetic (1/g) and electric
charges of the dyon.

Before leaving these exact solutions, let us dis-
cuss another quality they possess. Because they
were found under the assumption V(P) =0, they
are also static solutions to field equations cor-
responding to a pure SU(2) Yang-Mills theory in
four spatial dimensions and one time dimension,
with cylindrical symmetry about the additional
spatial dimension. This is easily seen by making
the identification G,'= P'. Then because the fields
are assumed independent of x4, the equations ob-
tained for this pure Yang-Mills theory are identi-
cal to those solved by Prasad and Sommerfield. "
Unfortunately, the same instability arguments
given above also carry over to this cylindrically
symmetric theory.

Several remarks about the above development are
in order. We have shown that the existence of dyon
solutions to the classical theory implies a non-
conserved Q~. This is evidently a general feature
if monoples are present. A characteristic of gauge
theories supplemented with symmetry-breaking
scalar fields is the existence of gauges in which
the fields are singularity free and yet one has
monopole solutions. In such gauges D~ *F„q= 0
and the integral
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G4 = '
[ I -K(r)],

I K(r)-
gj 2

(14)

i,j 1, 2, 3, a =SU(2) index=1, 2, 3,

'+x '
for the SU(2) gauge fields in Euclidean four-space
reduces the field equations

D), F~v =0 (15)

to one nonlinear second-order differential equation

III. THE PSEUDOPARTICLE AND THE KINK

In this section we will discuss some interesting
properties of the pseudoparticle. ~ " This is a
topologically stable classical solution to the four-
dimensional Euclidean SU(2) Yang-Mills equations
(the exceptional dimension of the Derrick-Coleman
instability argument). Whereas Ref. 4 stressed
the topological aspects of the pseudoparticle, we
will point out some of its analytic properties. It
turns out the pseudoparticle is equivalent to a one-
dimensional kink.

The classical ansatz"

d'K(y)
dy' (23)

which is the kink equation. Its solutions are the
vacua (pure gauge) K=z 1 and the pseusopa. rticle
(or kink)

K(y) =w tanh(y —y,), (24)

which interpolates between the vacua as y-+~.
Scale invariance of the four-dimensional pseudo-
particle manifests itself as translational invari-
ance for the kink. For the spherically symmetric
ansatz (14) the energy of the gauge field (19) is
equivalent to the energy of the kink

E =E„,„,=, dy —+(1 —K )' . (25)

Because of the scale parameter A. introduced by
the pseudoparticle solution it can provide a mass
gap in quantum chromodynamics. " The pseudo-
particle is also an example of a topological solu-
tion to the U„(1) problem, like the dyon; however,
in this case scalar fields are not required.
't Hooft" has observed that for the pseudoparticle
the net change in chirality is related to the
Pontryagin index,

r'K" +rK' = 2K (K' —1), (16) d'x Tr(F„,~F„„)=2q =2,
where a prime means d/dr This .equation admits
the solutions

X'-r'
K(r) =+

A. +r (17)

FQ +F0
PV PV

so that the energy

(18)

E =~ d'x Tr F»F„v (19)

and the topologically invariant Pontryagin index

(20)

are related:
2q=~ E.

871'
(21)

The change of variable

where A, is an arbitrary scale parameter. Asymp-
totically r-~ and at the origin r =0 (17) is a pure
gauge corresponding to different vacua. This so-
lution is called the pseudoparticle (the solution with
the minus sign is the antiparticle. ) It implies a
self -dual solution

and is therefore integer. Evidently the net change
in chirality, the Pontryagin index, and kink num-
ber are all equivalent. In 't Hooft's treatment the
violation of chiral charge conservation due to the
pseudoparticle is explicitly in the boundary con-
dition placed on the gauge-dependent vector g„,
given by Eq. (4), as r-~. Alternately, by a sin-
gular gauge transformation one may transform
r'(„-0 as r-~ but then the gauge field becomes
singular at r = 0 and Tr(G„*J&)-54(x).

In the four-dimensional classical theory one may
add the fermion doublet and this corresponds
(again with spherical symmetry) to a fermion-kink
coupling problem in one dimension. Exact clas-
sical solutions are known" and one finds a zero-
energy nondegenerate ground state. Properties of
the one-dimensional kink-fermion quantum theory
have also been studied. " The possible relevance
of the one-dimensional quantized kink-fermion
system for the four-dimensional pseudoparticle-
fermion system is presently under investigation.
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