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Yang-Mlls particle in 't Hooft's gauge field~
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We investigate the classical motion of a Yang-Mills test particle in an external field given by 't Hooft's

monopole solution. For large distances the space motion is that of a charged particle in a magnetic-monopole

field. It is different at small distances though. We also find the asymptotic solution for the motion of the particle's

isospin vector and discuss its interpretation.
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and the solutions belong to the general type (of
Wu and Yang' and Julia and Zee')

A;= —' x.J(r), (2)

y' = —x.H(r),
gK

where K(r), j(r), and H(r) are certain functions of
the radius ~. 't Hooft assumed J = 0, while the
original Wu- Yang solution for the pure gauge field
case corresponds to J=H= 0. Many authors' ' have
discussed various aspects of this system. In par-
ticular, Arafune, Freund, and Goebel' have pointed
out an interesting topological property of these
solutions. Furthermore, the original solutions
were found approximately, but then Prasad and
Sommerfield' noted that very similar solutions
existed for the p, = X = 0 case in which the following
exact answer could be gotten (c and y are arbitrary
constants):

K(r) = cr/sinhcr,

Recently, 't Hooft' demonstrated that the system
consisting of an SU(2) gauge field coupled to a. sca
lar triplet has interesting magnetic- monopole- like
classical static solutions. The Lagrangian density
is given by
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with

$(y 8„ igy„A' T'/2+ m)t)I, (5)

where |t) is for definiteness an isospinor fermion.
The T' are the Pauli matrices. A test particle
with an additional Yukawa-type coupling to the
Higgs particle can also be contemplated but we
shall not do that here. To get the classical equa-
tions of motion one can go to the one-particle sec-
tor of the theory represented by (1) and (5) and
then proceed as in the usual treatment of the Dirac
equation with an external field. This was done by
Wong' who got the following equations of motion for
a particle at position x„:

It is easy to see that (for J=O) only the second
term of (4) receives a contribution when (2) is sub-
stituted in. This contribution is independent of K
and has the form of a pure magnetic monopole:
B, —= —, e,» S'» -——x,/gr Thus . an electrically
charged test particle coupled to an Abelian vector
potential corresponding to F,„would move exactly
as a charged particle in a pure monopole field.

Since we are dealing with a Yang-Mills theory
a natural and related question is: How would a
Yang-Mills test particle move in the field system
(2) treated as a classical external field? We
shall find that for large r the Yang-Mills test par-
ticle does indeed behave as an electrically charged
particle in a monopole field. However, the motion
is different at small distances.

The Yang-Mills test particle may be formally
added to the theory by including in (1) the additional
terms

Z(r) = sinhy(cr cothcr —1),
H(r) = cosh'(cr cothcr —1) .

mx =gF'„„x„I',
Ia g& abcA bx Ic

(6)

(7)
Now, in order to discuss the physical meaning

of the solutions (2), 't Hooft defined a, gauge-in-
variant tensor which may be rewritten as

r,„=s,(j'A„') s„(y'Ag —e.„j's„j's„j'
(4)

In these equations an overdot indicates differenti-
ation with respect to proper time, but for simplic-
ity we shall consider nonrelativistic motions here.
The quantity I' is a classical isospin vector (equal
to —,

' 7' in the quantum case). The fields on the
right-hand sides of (6) and (7) will be taken from
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(2) (with J=0, initially). We will then examine the
resulting motion in space and determine from the
spatial (as opposed to the isospin) motion whether
the test particle is moving in the same way as a
charge in a pure magnetic-monopole fieM.

First, however, we must find a convenient way
of treating the time evolution of the isospin vector
since I' also appears in (6). [Note from (7) that
I'I' is constant in time. ] Define at each point along
the particle's trajectory an orthogonal set of vec-
tors x, w =x ~v, z =x ~w, with v=x. Then we may
without any loss of generality parametrize I' by

I'= ~x, + Pw, + y&. .

The coefficients Q. , P, y evidently satisfy

n'+ P'+ y' = const.

(8)

Substituting (8) and (2) into (7) gives three relatively
simple equations for a, )8, and y..

n =- ypK/r',
~ ~

P-—v xx v=-yZ/r,
p2

(10)

y+~ v ~ x x v = n pK/r'+ Pcl/r,
p

(12)

where r= ~x~ and p= ~w~. Next, substituting (8)
and (2) into (6) gives the ordinary equation of mo-
tion:

K'
mv= —(vxx) n(K' —1)+ x v

PrK'~
+ (x v'- vx v)

+ ~ [nx( J+J'r) +-JK(p(v+ ys)].r (13)

In (13) a prime means differentiation with respect
d

Now consider the above equations for large r.
Also take J=O for the time being. Then K(r) is
expected to fall off exponentially with r [see (3) for
example] so we may set

K(r) =K'(r) =0 (large r) .

This simplifies (10) to give

@=a, =const

r (and J=0). It is almost immediately apparent
that the motion cannot be given by an equation like
(14). Assume that it is and note that we arrive at
a contradiction. For in order for the right-hand
side of (13) to contain no terms which are not pro-
portional to v && x we must require P=0. From (11)
we conclude y = 0 and then from (12) that n = 0. Sub-
stituting n = P= y= 0 back in (13) gives the equation
of motion mv= 0, which is the desired contradiction.
Thus, while the Yang-Mills test particle moves in
the same way as a charge in a monopole field at
large distances it has a different motion at small
distances. The significance of this appears to be
that 't Hooft's tensor (4) defines a topological
property of the solution, putting it into a general
class corresponding to a given net magnetic-pole
strength. This seems analogous to the Wu- Yang'
concept of a gauge which can accommodate many
different physical fields so long as the net mag-
netic-pole strength is specified.

To complete the picture it is desirable to study
the motion of the isospin vector and to verify
that a consistent interpretation can be found. We
shall give an exact scattering solution for the K
=0 case where the space motion is described by
(14). Alternatively, our solution may be regarded
as an approximate (asymptotic) solution to (13).
From (14) one easily verifies that the speed v
=

~ v, the magnitude of the angular momentum l
=m w ~, the vector j = mw+ n, x, and j .x -=n, are
constants of motion. In addition, j' =l'+ n,', where
j:—

~ j ~. These lead to the well-known result' that
the particle moves on the surface of a cone whose
axis (through the origin) is parallel to j and whose
half-angle is cos '(no/j). At time t = —~ the par-
ticle is entering the scene, heading towards the
origin practically along a radial direction. It
winds its way in on the cone until t = 0 when it
reaches the minimum distance

r „=l/mv

and then winds its way back out, approaching at
t=+ ~ another radial asymptote. The r motion for
both positive and negative t is given by

a+ v2f2P/2 (15)

Now note that if the quantity v x && v is evaluated
using (14) and if the complex variable

and simplifies (13) to give = P+iy (16)

mv=-~0 v x x. (14)

Equation (14) is identical to the equation for a
charged particle moving in the field of a pure mag-
netic monopole. We shall discuss the motion of
the isospin vector later.

Next consider the above equations for arbitrary

mr'

Substituting (15) into (17) and carrying out a

(17)

is introduced, the isospin-motion equations (11)
and (12) can be combined to yield (remembering
J =K=0)
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straightforward integration gives the solution

imp ~ vt
3 = 3pexp — ' tan '

82V&mia min
(18)

where 3,= p, +iy, is a constant. Equation (18) rep-
resents [see (8)] a precession of the isospin vector
(in isospace) around the direction of the particle's
radius vector. For small t the angular frequency
of precession is n, /mr „', while as f-+~ the
precession slows so that asymptotically I' points
in a fixed direction. From (18) we see that as f

@pm . ape
z

Qp7T Np~
y ypcos + Ppsin (19)

&JS

sin0

The field transforms to

A'&r'=S 'r'SA; ——8, S 'S.

For the ca,se K= 0 (and only for this case) being
considered now, the new field A", lines up along
the isospin three-direction and is a pure monopole
type:

g r+xg

It is clear that under this transformation the test
particle's isospin I' must also be transformed. If
noWO while fi, =yo=0, I' will be transformed [see
Eq. (8)] to lie along the three-direction and the

n = no (all t) .

From the standpoint of giving a physical interpre-
tation, it is encouraging that asymptotica, lly the
particle's isospin vector has a fixed orientation
since we interpret this orientation as the "identity"
of the particle. Equation (19) shows that by adjust-
ing O, p, Pp, and yp we may choose any initial ident-
ity. Note, however, that e, P, y are components
along a coordinate system which travels along with
the particle. The interpretation of this result may
be facilitated by making use of a gauge transforma-
tion which has been exploited by several au-
thors. "' We rotate, at each point (x, 8, Q) in
real space, the isospin direction 2 into the third
isospin direction with the transformation

8 . . e
S = cos —+ in rsin —,

2 2'

situation will be exactly that (remembering K= 0)
of a charged particle in a pure monopole field.
P and y will be zero at all times. At the other ex-
treme, if Pp and pp are nonzero while ap = 0, it is
easy to see from (14) that the particle will proceed
with uniform rectilinear motion. This corresponds,
in the new gauge, to a particle whose classical
isospin vector has no component along the three-
direction scattering in a field which has compo-
nents only in the isospin three-direction. For
general np Pp pp the particle will move as a charge
in a monopole field but its isospin vector will
precess in accordance with (18).

Finally, we briefly comment on the Jt 0 case,
expected to correspond to a dyonlike structure. It
is convenient to work in the framework of the
Prasad-Sommerfield solution (3). This has the
property that the hyperbolic rotation angle y rela-
ting P' and A4 appears directly in the relation be-
tween the non-Abelian magnetic and electric fields,
namely

E', =- sinhy 8'. , (20)

where B', =-
& E,» E,.„and E', = iF4, . Substituting the

large-r limit of (20}, B; —x, x,/gr', as well as (8)
into (6) gives the large-r equation of motion:

mv = - ~0 (v && x - sinh)(f),r (21)

where we have also used n = n, = const from (10).
This is, of course, the same as the equation for
a charged particle moving in a dyon field.

Note added in proof. We may see that for KIO
(and J = 0) the motion is not that of a pure mono-
pole in another way. Using (10)-(13}we verify
that

J= m (xx v) + K l+ n(1 -K)x

is a constant of motion. Note that J- j for K= 0.
Hasenfratz and 't Hooft [Phys. Rev. Lett. 36, 1119
(1976)] have recently shown that the second and
third terms correspond to the angular momentum
associated with the fields of the "monopole" and
the test charge, in analogy to the Ex B contribu-
tion in the usual monopole case. We next observe
that 7 x=n. For K=O (10) shows that n=n,
= const so that the motion is confined to the cone
discussed previously. On the other hand, for KWO

(10) shows that n is not in general constant and the
test particle will depart from the cone.
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