
PHYSICAL REVIE% D VOLUME 14, NUMBER 2 15 JULY 1976

Conformal properties of a Yang-MI&is psenfloyarticlee

R. Jackie and C. Rebbi

(Received 12 April 1976)

The conformal transformation properties of the recently discovered pseudoparticle solution to a pure Yang-
Mills theory are studied. It is shown that the solution is invariant under an O(5) subgroup of conformal
transformations. A formalism is developed which renders this invariance explicit and which allows a very
compact group-theoretical analysis of the propagation of fermions in the 6eld of the pseudoparticle.

I. INTRODUCTION

A remarkable pseudoparticle solution to the
SU(2) Yang-Mills theory in Euclidean four-space
has been found by Belavin, Polyakov, Schwartz,
and Tyupkin. ' It has the property that although
the gauge-covariant field strengths E""= (&'/2i)Eu"
vanish rapidly at large distance, the gauge poten-
tials A" = (o'/2i)A," decrease considerably more
slowly —they tend to a pure gauge term

As a consequence, the quantity

combination of K" and I'", the conformal and
translation generators, respectively. This group
has been previously considered by Adler' and
Fubini. ' Moreover, coordinate inversion corre-
sponds to pseudoparticle conjugation.

The O(5) invariance can be made explicit by for
mulating the theory in a manifestly O(5)-covariant
fashion. This we do in Sec. III and find a truly
elegant expression for the pseudoparticle field.
Furthermore, the particularly simple form offers
remarkable computational advantages, as we show
in Sec. IV, where we study the interaction of fer-
mions with the pseudoparticle.

q= — d xTr~E""I"„„,1

F""=8"A"-8"A"+[A",A"I,
& ~ppoBy
2 ego

(1.2) II. CONFORMAL TRANSFORMATIONS

The form of the pseudoparticle solution' is

A" = g '8"g
x'

1+x (2.1)

is nonvanishing, even though the integrand is a
total derivative

Tr ~Fu"Fu„=2&"" ~Treu(A„8 Az+ —',A„A Az).
(1 2)

Since (1/Bx ) Tr *E""E„„is the anomalous diver-
gence of the U(1) axial-vector current, '

q also
measures the anomalous violation of chirality.
Such behavior in Minkowski-space quantum field
theory would have far-reaching physical conse-
quences, ' especially as regards the well-known
U(1) problem. 4 Indeed it has been suggested that
the pseudoparticle solution be used to dominate
the functional-integral description of quantum
field theory, continued to Euclidean space. '

%e discuss here the behavior of the pseudopar-
ticle under general conformal transformations,
which form an O(5, 1) invariance group for the
field equation in Euclidean space'

with g = (x4 —ix .PrXx„xu) '~'. Translations and
dilatations do not leave (2.1) invariant; they give
equivalant solutions with x shifted (translations)
or 1 rescaled (dilatations). The field strength
F""is

(1 x')'

where we have defined

(2.2)

Fuu ioull (2.4)

The matrices a"" and the field strengths are self-
dual, *E""=I"""and q=1.

Another solution is obtained by replacing g with
g~=g '=(x, +ix F)(x„x") '~'. In this case

8 Eu"+[A E" ] D (1 4)

We show in Sec. II that the solution respects a sub-
group of the conformal group —the O(5) group gen-
erated by M"", the rotation generator, and by a

ply 0$j
gi4

(2.5)

14



518 R. JACKIW AND C. REBBI 14

The matrices o"" and the field strengths are now
self-antidual, *E"v=-E"v and q = -1.

We consider first a discrete transformation of
the conformal group, coordinate inversion, which
takes x" into (1/x)" —=x"/x'. The vector field
transforms under inversion into 2"(x), given by

Egv gv

(1+x')' (2.11)

pointed out in Ref. 1, and is also adopted by us
henceforth. The O(4) field strengths are now given
by

A" (x) -&"(x) = pI""(x)A„(1/x),
1 pv

It follows that F"v transforms similarly:

(2.6)

where Z"" is constructed from the Dirac matrices.

1 0"" 0z""=—[a" n"]=
4S 0 -gv

(2.12)

Ev "(x)-E ""(x)=—«I" (x)I"2(x)F 2(1/x). (2.7)

Suppose E"v is self-dual or self-antidual:

These field strengths are obtained from the poten-
tials

Ef v ~gv (2.8a) (2.13)

It is easy to verify that the inverted field strength~
satisfy an inverted relation

(2.8b)

Consequently,

1
q = — ~ g~xTr *E"vE

1
+169 d xTrE""E„„-q

q= — d STr+ E E~„

Since the action -2 J d«x TrE""F„„is inversion-
invariant, q = -q. Hence coordinate inversion
sends the pseudoparticle with q= 1 into an antipar-
ticle with q= -1.

The explicit formula for the inverted potential
1s

6Fl22 (~cl gva ~2 gvl2}4i
(1 + X2)2 v v (2.14)

The appraent noninvariance of F ~ can be compen-
sated by an O(4) gauge transformation U= e 'e,
9=-,'8 ~Z ~. The response of E ~ to an infinitesi-
mal gauge rotation is

The matrices Z"" are block diagonal, so that Eqs.
(2.11) and (2.13) represent two separate solutions
in the two SU(2)'s of the decomposition O(4) = SU(2)
x SU(2). In terms of the O(4) formalism, we can
say that the effect of the inversion is to produce
solutions where, up to a gauge transformation,
the upper and lower diagonal blocks of the matri-
ces Z"v are interchanged.

Next we consider the effect on the pseudoparticle
of continuous transformations of the conformal
group. Of course the solution does not respect
translations and dilatations. An infinitesimal ro-
tation with parameters ~'~ = -co~ takes x~ into
x —(d x~y and

A"(x) -2"(x) = g '6 "g.1+x (2.10a)
6F '=2[e, F ']

with U=g ', then (2.10a) is seen to be equivalent
to

gyp' 1 (2.10b)

which is consistent with (1.1}.
The particle and antiparticle solutions can be

put together by extending the gauge group to SU(2)
x SU(2) = O(4), which is a convenience already

This does not satisfy the boundary conditions (1.1)
and is singular at the origin. But if ~" is subject-
ed to a gauge transformation

(2.16)

which compensates (2.14) provided 8'2= &u 2.

Thus, as was already remarked in Ref. 1, the
pseudoparticle is invariant under the combined
space and isospace rotation generated by J"",

J""= IVI""+Z "v (2.16)

R" = 2(K"+ P"), — (2.17)

A conformal transformation, i.e., an inversion,
a translation, and another inversion, will not
leave the solution invariant, since translations
do not. However, if we perform the infinitesimal
transformation generated by"
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with parameters au, we find

5F = (0 Z" —0 Z" )(1+x )'

0 "=a x"—a"x .
(2.18}

Comparison with Eqs. (2.14) and (2.15}shows that
the noninvariance may be compensated by a gauge
transformation parametrized by e of the form

introduces gauge fields A„which are anti-Her-
mitian matrices in the space of infinitesimal gen-
erators of the gauge group and obey the constraint
r,A, = 0. The relation between the 5-dimensional

A, and the conventional 4-dimensional A.„is the

following:

1+x
2

A„=A u xuA„

e = —,'Qu„Z4" = aux„Zu". (2.19) 1+xA„A„—x„x„A",
The invariance is therefore generated by S.u:

S"=R"+ Z""x (2.20)

When it is recalled that the action of Bu on an ar-
bitrary field 4 is'

6e = —,'(1+ x')' 'a'8, [(I+x') 4 )

+ a x„(x"6" —x"6"+ iS"")4, (2.21)

where d is the scale dimension and S""the spin
matrix of 4, it is recognized that @u takes a sim-
ilar form, except that S""is replaced by S""+Zu",

just as in Eq. (2.16). The combination law for the
modified generators Ju" and Su follows that of
M~" and R"; the algebra closes on O(5)."

A, = -x„A". (3.3)

Under a gauge transformation U, A, is changed
into A,',

A., -A,'= U 'A, U+ U 'irbL~U. (3 4)

+ cyclic permutations of a, b, c.
The invariant action is

(3.5)

From the potentials A' one constructs a totally
antisymmetric field-strength tensor of rank three,

F„,=iL„A,+r,[A„A,]

III. YANG-MILLS THEORY ON A HYPERSPHERE
I=-4—'8 dQTrF b F,b„ (3.6)

The O(5) invariance of the pseudoparticle solu-
tion suggests that the theory be formulated in a
manifestly O(5)-covariant fashion. This is
achieved by projecting 4-dimensional Euclidean
space onto the surface of a unit hypersphere em-
bedded in 5-dimensional Euclidean space."We
introduce 5-dimensional coordinates r„
a= 1, . . . , 5, r,r, =1 (in what follows Latin labels
a, b, c, . . . run from 1 to 5; Greek labels p. , v,

f, . . . run from 1 to 4):

2x
1+x' '

1-x'
1+x' '

(3.1)

Rotations on the sphere are generated by M„, with

M» =R„, as is easily shown by defining the 5-di-
mensional orbital angular momentum tensor L„:

where the integral is over the angular hyperspher-
ical variables. I is identical to the action

,',fd'x—T—rF""F„„constructedwith the 4-dimen-
sional field strength. The variational principle
5I=0 then gives the equation satisfied by F„„

iL,~F,~,+ r, [A~, F,~,) —r~[A„F,~,]= 0. (3.7)

We have seen in Sec. II that O(5) invariance of
the pseudoparticle is achieved by a combination
of an O(5) rotation, M„=(M„„,R„), and a gauge
transformation. This suggests that in the present
O(5} formalism, the invariance can be made ex-
plicit by adding to M„some suitable generators
of a gauge transformation isomorphic to O(5). Of
course, the gauge group we are dealing with is
O(4), which is only a subgroup of O(5}. But the
matrix representation of O(4) provided by Eq.
(2.12) can be immediately extended to a represen-
tation of O(5) by defining the matrices Z»,

8 . 8
gb erg

g
+

rb ra
1

~u5= ~&u. (3.8)

a . a
L„„=-ix„„+ix„x x

L„=-ix„x" „—,i(1 —x')—8 I. 8
ex" Bx"

(3.2)

The formulation of an Abelian gauge theory on a
hypersphere has been given by Adler. ' To gen-
eralize his results to the non-Abelian case, one

Then the 10 matrices Z„are isomorphic to the
infinitesimal generators of O(5). We stress that
the embedding of the O(4) gauge group in an O(5)
gauge group does not alter the theory; rather it
is a convenient device for exposing invariance
under the O(5) subgroup of conformal transforma-
tions.

Having extended the gauge group to O(5), we can
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F.„= i(a2-+ 2a)(r.Z „+r,Z,.+ r,Z.,) (3.10)

look for solutions which are explicitly invariant
under the combined space and gauge rotations gen-
erated by J,,=M„+Z„. The most general form
for A, compatible with this invariance is

Aft sQ Zgg gy (3 9)

where Q is a constant. The field strength is deter-
mined from Eq. (3.5),

the solution as in (3.12)—a formula invariant under
the combined space and gauge transformations
generated by J„=M„+Z„. Note also that on the
h3q1ersphere the solution (3.12) is not concentrated
around any definite point, and the action density
2= —,—', TrP„,E„,is uniformly distributed, even
though, by a dilatation transformation, it is of
course possible to obtain solutions where Z is not
constant on the unit hypersphere.

In order that the field equation (3.7}be satisfied,
the following condition must be true:

-6i(a+ 1)(n'+ 2a) Z.,r, = 0, (3.11)

which requires that Q =0, -1, -2. The two values
Q =0, -2 lead to vanishing field strengths, and

correspond therefore to a pure gauge ansatz for
the potentials, while Q = -1 gives

A, = -iZ, p„
E,1„=i(r,Z1„+r1,Z„+r,Z,~) (3.12b}

(3.12a)

U= exp[if(r~)Z„5r ] ~ (3.13)

This is the most general nontrivial solution to an
O(5) Yang-Mills field theory on the hypersphere
which is O(5)-invariant.

The solution (3.12) is also equivalent to the
pseudoparticle solution (2.11) and (2.13). To show

this, we first eliminate the matrices Z» from
(3.12)with a gauge transformation (3.4), thereby ro-
tating the fields into the O(4) subspace. Then we
use Eq. (3.3) to construct A, from A, . The re-
quired gauge transformation is

IV. FERMIONS IN THE FIELD OF THE PSEUDOPARTICLE

F~ = SQ@Q5q

F, =Q5,

Q5 = G j Q2QSQ4~

and we define

(4.2)

(4.3}

The Fermi fields g have four components'o; they
are related to the 4-dimensional, Euclidean Fermi
fields P by

In this section we analyze the fermion-pseudo-
particle system. The power of the O(5) formalism
allows for a complete solution of the equations.
To describe Fermi fields on the hypersphere one
must introduce a set of five anticommuting ma-
trices I"„

(4.1)

We take these to be 4-dimensional, "

One verifies that the two choices for f(r,)

cos 'Y5

f(r, ) =
(1 „,)lg ,

cos x5 —w
f(r~}=

(1 2)1 n
5

(3.14a)

(3.14b)

(1+in „x")g.(1+x')

It is possible to show that

8d'xPtia" „g=
J

dA P(S„L,„+2)$,

(4 4)

(4.5)

lead respectively to

p pvA =) ~Z Xv,

A" = Z""x
(1+x')x'

(3.15a)

(3.15b)

(4.6)

In the presence of gauge fields, Eq. (4.6) be-
comes

so that the free Dirac equation in "(8/Bx")/=0 is
equivalent to the O(5)-covariant equation

(S,P,~+ 2) hatt
= 0.

which are precisely the two gauge-equivalent
forms of the potentials that characterize the
pseudopa, rticle solution.

To summarize, the invariance of the pseudopar-
ticle solution under the O(5) subgroup of conformal
transformations generated by M"" and R"= —,'(K~
+P ) CR11 be 111Rde 11lalllfest, by pro3ectlng Ellcl1deR11

4-space onto a hypersphere and embedding the
O(4) gauge group in an O(5) gauge group. Using
a gauge transformation, we can elegantly express

[(Sad1JK.I an -2(SN~);;ra A~ Tmn+ 26 n61J]&1.= 0~

(4.7)

where the matrices T' „are the infinitesimal gen-
erators of the internal-symmetry group in the rep-
resentation chosen for the fermions, and we have
also put into evidence the spinor indices of g. The
equation may now be analyzed by expanding P in
terms of O(5) harmonics appropriate to conserva-
tion of J„.
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g„-O' = U „g„,

U „=(ia,a, ) „,
with

UtZ. ,U= -(Z.,)".
The transformed Dirac equation becomes

(4.9a)

(4.9b)

[(S,~);,L,~5 „+2(S,~);,r, (Z~,)„r,+ 25;,5 „]4;„=0,

(4.10a.)

or, more compactly,

S,+„4 2r+.S.,@S„r,+ 24 = 0, (4.10b)

where we consider 4' to be a 4 x 4 matrix, and
since Z„=S„it is no longer necessary to distin-
guish between these two matrices in order to keep
track of spin and isospin indices. "

The left-hand side of Eq. (4.10) is of the form
&4, where X) is a linear Hermitian operator with
respect to the inner product fdQ Trait@, . In the
rest of this section we shall find eigenvalues and
eigenfunctions of this operator, as well as its in-
verse, which gives the fermion propagator in the
field of the pseudoparticle. The relevance of these

As an example of the computational simplifica-
tion that our formalism effects, we consider the
special case of fermions transforming as isospin-
ors in the two SU(2)'s of the reduction O(4) = SU(2)
x SU(2). We choose therefore for the fermions the
4-dimensional representation of O(4), where the
infinitesimal generators are represented by the
matrices (Z"") „. We notice then that the Fermi
fields also span a representation of O(5), obtained
simply by enlarging the set of infinitesimal gen-
erators to the matrices (Z„) „. We are thus led
to consider the equation

[(S, ),,L, 5 „—2(S, ),,r, (Z,) „r,+ 25 „5,, ]g „=0,

(4.8)

which is obtained from Eq. (4.7) by substituting for
(I/i)A', T'„ the O(5)-invariant expression of Eq.
(3.12a).

Equation (4.8) is the equation of motion for a
Dirac field in the potential of the pseudoparticle,
after a projection has been made from Euclidean
space onto the surface of the hypersphere and a
gauge transformation has been used to express
the gauge fields in a convenient form. By means
of an inverse gauge rotation and projection, it is
always possible to transform a solution of Eq.
(4.8) into a solution of the Dirac equation in Eu-
clidean space with the SU(2) x SU(2) gauge group.

To analyze Eq. (4.8), it is convenient to perform
a unitary transformation acting on internal-sym-
metry indices

quantities for an analysis of the field-theoretical
implications of the pseudoparticle solution is ob-
V1ous.

It is important to notice that S has definite sym-
metry properties under two unitary transforma-
tions of the field 4. These two transformations,
which we shall call chiral transformation and
chiral gauge transformation, are obtained by left-
multiplying and right-multiplying the fields with
the unitary matrix 1",r, :

Uc: 4 -O'=I', ~,C,

U: 4 -4'=4K, r, .

(4.1 la)

(4.11b)

[The chiral transformation Uc is the projection
over the hypersphere of the chiral transformation
g- g'= a,P. The chiral gauge transformation is a
useful addition symmetry of the system. It can
be viewed as a gauge transformation that leaves
the gauge fields unchanged, but to realize U«as
a gauge transformation one must consider the
gauge group O(5) further embedded into an SU(4)
gauge group generated by the 15 matrices Z„and
~I', .] The transformation properties of B are the
following:

UeX)Uc = -»
U/GSUCG

' = $).

(4.12a)

(4.12b)

The eigenvalue equation which we solve is

$4= pC. (4.13)

Note that Uc takes a solution of (4.13) into another
solution with p. replaced by —p, ; this symmetry is
analogous to Fermi-number conjugation. U«
takes a solution of (4.13) into another solution with
p, unchanged. Thus we expect to find doubly de-
generate solutions both for p, ) 0 and p, &0, and a
self-conjugate solution for p, = 0."

To solve (4.13) we expand 4' into a. complete set
of 4 x 4 matrices,

+ a a+ ay a ter (4.14)

@(,)= ~&, =—(~2)' ',(i) ~ o (4.15a)

4 (2) = 4 (,)I,r„

separate from B, and C,~ components parallel and
perpendicular to r', and obtain a set of coupled
first-order differential equations, which converts
easily to a set of uncoupled second-order differen-
tial equations. These equations are trivial to solve
since they are simply free wave equations on the
hypersphere, involving the wave operator I.' whose
eigenvectors are O(5) harmonics with eigenvalues
2n(n+ 3), n= 0, 1

In this way the following solutions are found:
p, =0,
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p, = n(n+ 3}, n = 1, 2, . . . ,

1 1
4(, )

—— 1+—S,7L, 7 Y„,
v'5

e(» = e(»r, r„
p.
' = (n+ 1)(n+ 2), n = 0, 1, . . . ,

S,~ 1 i
q (I & ~ rc+ ra ac ~dn&

u

(4.15b)

(4.15c)

n, (internal degrees of freedom) referring to the
initial configuration, and similarly i„n, for the
final configuration. Furthermore, G depends on
two position vectors x, and r, . The symmetry
properties of S under chiral and chiral gauge
transformations restrict G. It can be easily
shown that these restrictions are satisfied when
G is of the form

G = PGPGGQPG co —P'cPGGQPGPco

4'(2) = 4(, )I",x„ CGQ C CG C CGQ C Co& (4.17)

where Y„and 'JJ,„are scalar and vector spherical
harmonics. Their properties, already given by
Adler, ' are as follows. Each is an eigenfunction
of L' with eigenvalue 2n(n+ 3). Y„spans the (n, 0)
representation of O(5) with dimensionality -', (n+ 1)
&& (n+ 2)(2n+ 3). [There is a "magnetic" label m,
which we have suppressed, ranging from 1 to

6 (n+ l)(n+ 2)(2n+ 3).] The normalization is

dA Y* Y„, , =6„„,6

Y„may be constructed from

Y =y ~ ~ ~ yn fI n

where M is a constant, totally symmetric, and
traceless tensor. 'JJ,„ is a vector harmonic, span-
ning the (n, 1) representation of O(5) with dimen-
sionality ~n(n+ 3}(2n+3). It satisfies the subsidi-
ary conditions x,, „=0, iL„'JJ,„='JJ,„, and is nor-
ma, lized by

1 +I',y,
2

Pc (P'co) are the projection operators on the sub-
spaces of positive and negative chirality (gauge
chirality). The notation in (4.17) is schematic;
matrix multiplication is not indicated. The pro-
jection operators standing to the left (right) of Q

refer to the first (second) configuration and are
functions of r, (r, ). Pc (P«) act on the spin (in-
ternal) indices. Further, Pc (Pco) of the first con-
figuration act on the left (right), while those of the
second configuration act on the right (left). For
example, the first term on the right-hand side of
(4.17) is explicitly

x —,'(1+ I",r,')„-,'(1 —I',r', ), , .

9 can be expanded as

dQ'JJ+„'JJ,~, = 6

One may construct 'JJ,„ from the overcomplete set
of functions (2L26„+2L,~L~, + i6L„)(u,},Y„; (u, ), is
a constant unit vector with components 67, .

The eigensolutions (4.15) are orthogonal to each
other, and normalized to JdQTrCt@=1. When
nonvanishing, p, takes on positive and negative
values of equal magnitude. There are the expected
zero-eigenvalue solutions which can be arranged
into eigenstates of I"r,. Evidently they also solve
the Dirac equation (4.10).

We turn our attention now to the propagator as-
sociated with the operator X). It is obvious, from
the existence of zero eigenvalues, that X)

' does
not exist. The propagator G should be rather de-
fined through the equation

SG =I —Po, (4.16)

where I is the identity, and P, projects onto the space
of eigenfunctions with p = 0. To make the expression
of the propagator more explicit, we notice that it will
be a matrix with indices i, (Dirac degrees of freedom},

(4.18)

(4.19)

In principle, f and g could be found from the eigen-
functions of S, Eqs. (4.15), but it is simpler to
determine the propagator directly from (4.16). In-
serting into this equation the expansion provided
by (4.1'l) and (4.18}, we obtain four equations for
f andg

(x —1)g'+ 2g= 0,

—f +Pxg +Pg=Oy

g —1f+ g'+ 2xg=0,

(4.20a)

where we have set x=Pr,'. These equations are of
course compatible and fixf and g completely:

with f and g to be determined. The form of G given
by (4.17) and (4.18) satisfies a crossing property
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1 2 —x
16m' (1 —x}'

1 1
~ SH(1-x}2

(4.201)

Since we have thus satisfied (4.16), G is deter-
mined up to solutions of the homogeneous equa-
tion I)60=0, that is, up to terms proportional to
the zero-eigenvalue solutions (4.15a). Our propa-
gator is the unique function which is orthogonal to
these.

it relevant to questions of anomalous nonconserva-
tion of symmetries. We have here demonstrated
that the pseudoparticle is further distinguished by
possessing a large kinematical invariance group,
possibly important in future developments of the
theory. We have already put into evidence the
computational simplification that the O(5) for-
malism affords in analyzing the Dirac equation,
which displays a peculiar zero-frequency mode,
previously encountered in the spectrum of fer-
mions in topologically interesting external fields,
and having novel physical consequences. "'"
Moreover, the O(5) invariance may possess fur-
ther implications —in connection with spontaneous
breakdown of space-time symmetries, as Fubini'
has recently proposed.

V. CONCLUSION

The Yang-Mills pseudoparticle is distinguished
by its topological properties which give it a non-
vanishing Pontryagin index q; this in turn makes
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