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Theoretical attempts to understand hadrons in terms of confined quark constituents lead naturally to the
study of quantum field theory with methods that can be applied when strong interactions are present. In this

paper nonperturbative, variational techniques are developed and applied to calculating the ground state and
low-lying collective excitations ("kinks" ) of theories rendered finite on a discrete lattice. Particular application
is made to a scalar theory with a self-coupling of the form X,($' —f')' in two dimensions. Working in

configuration space we reduce the theory to coupled Schrodinger problems and establish the conditions for the
variational solution to exhibit a phase transition between ground states with ($) = 0 and those exhibiting a
spontaneously broken symmetry such that ($)+0. The phase transition is a second-order one in a simple
trial state constructed in a single-site product basis. Low-lying excitations are constructed that are analogs of
the classical "kink" solutions. The single-site basis is also generalized to form "blocks" of coupled lattice sites,
and general properties of a block formalism are explored. The usual renormalization limit of cutoff~ oo, or
lattice spacing~0, is also studied as well as the relation of our approach to the conventional renormalization

program.

I INTRODUCTION AND OUTLINE

The idea of quarks as fundamental constituents
of matter continues to be remarkably successful
in describing and predicting observed properties
of hadrons, and so the challenge of incorporating
these ideas within a calculable dynamical theory
continues to grow in importance. This is a dif-
ficult challenge since one has to harmonize the
fact that quarks behave as if they have a light
mass and are bound together by relatively soft
forces with the fact that single isolated quarks
have never been observed.

Attempts to meet this challenge fall into two
categories. There are those schemes which at-
tempt to develop a calculable theory of confined
quarks by starting from fundamentally new theo-
retical concepts, ' and there are those schemes
which seek to work within the more conservative
framework of conventional local quantum field
theory, ' ' recognizing from the outset that weak-
coupling perturbation calculations will be quite
hopeless (at least for discussions of spectra).

In this paper we develop nonperturbative, varia-
tional techniques which can be applied to calcula-
ting the ground state and low-lying excitations of
a class of quantum field theories that are rendered
finite in terms of a cutoff. Qur particular focus
is on a scalar Q' theory in one space and one time
dimension. The methods developed for this appli-
cation are more general, however, as will be evi-
dent, and the introduction of a lattice equivalent
to a cutoff field theory as well as the general varia-
tional techniques that we utilize are not limited to
two dimensions. The virtue of using this particu-
lar two-dimensional example, besides its simpli-

city, is that the classical strong-coupling version
of this theory possesses a solitonlike "kink" solu-
tion of low mass. Moreover, there is an exactly
conserved "charge" which distinguishes this state
from the vacuum state and so one might expect
that the existence of this extended state will sur-
vive quantization. Hence this relatively simple
model might be expected to possess a rich struc-
ture which cannot be adequately discussed by
perturbative techniques. Our physical interest in
this application as derived from the study of the
"SLAC bag model" is to see if the naive semi-
classical ideas survive once we go beyond the
"tree approximation" and include quantum fluctua-
tion corrections ignored in earlier studies. The
results obtained for this test case lead us to hope
that these methods will prove useful in the study
of more general classes of theories, including in
particular "asymptotically free gauge theories, "
although we have not given this question careful
study to date.

The outline of our paper is as follows:
We consider the Lagrangian

gdx,

1 &Q(x, t) 1 sp(x, t)
2 &t 2

review the semiclassical analysis, and study its
cutoff quantum field theory version —.which in our
formulation is equivalent to a discrete lattice
theory —by carrying through detailed variational
calculations.

Upper bounds on the energies of the ground state
and "kink" states are constructed using different
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trial forms. One approach is in terms of a mo-
mentum-space basis and is equivalent to an
"average field" or Hartree-Fock approximation.
However, we find that when the parameters of Eq.
(1.1) are in the strong-coupling region, i.e. , small

f for fixed mass MA. f, the variational solution
constructed by this approximation exhibits a be-
havior that violates a rigorous theorem due to
Simon and Griffiths. ~ The specific problem en-
countered is that the theory exhibits "tricritical
behavior. *' The resulting phase transition be-
tween ground states with (P) =0 and ground states
with a spontaneously broken symmetry such that

(P) 0 0 is a first-order one. Section II contains a
detailed discussion of this problem.

A second approach to the variational calculation
is in terms of configuration-space trial states.
The development of this technique, and its parti-
cular application in terms of a single-site product
basis to reduce the quantum field theory to a set
of effective one-degree-of-freedom SchrMinger
problems, is given in Sec. III. The equivalence of
a cutoff field theory and of field theory on a dis-
crete lattice is also explored. Working in this
single-site basis for calculating upper bounds on
the ground-state energy, we avoid the tricritical
problem. Regions of coupling parameters such
that these bounds are better (i.e., Iower) than those
obtained by the momentum-space method are ex-
plored. As the coupling parameters are changed,
there occurs a second-order phase transition from
the (Q) =0 ground state to a spontaneously broken
ground state with ($)a0. In particular, we ex-
hibit an explicit solution for a limited range of
parameters for which the analog of the semi-
classical kink is found to be a low-lying excitation.
Further numerical analysis and improvements in
the energy upper bound, due to "configuration mix-
ing" of low-lying excitations with the ground state,
are also cQscussed.

In Sec. IV, we discuss the problem of taking the
renormalization limit (cutoff -~, or lattice spacing
-0) and defining a finite version of our cutoff field
theory. First, we investigate the relation of our
approach with more conventional methods' applied
in the renormalization program of quantum field
theories. Then we extend our lattice formalism
by setting up a systematic procedure for general-
izing beyond a single-site basis to forming
"blocks" of coupled lattice sites. Using the block
wave-function formalism, we extend the region of
the parameters A. and f in Eq. (1.1) to which our
procedure can be expected to apply. We also show
why the momentum basis fails, leading to tri-
critical behavior. Finally, we indicate how the
"block formalism" provides a framework for de-
veloping resummation techniques which allow us

to discuss the multiplicative renormalization of
the Hamiltonian. These methods are reminiscent
of the renormalization-group methods of Wilson
and Kadanoff. ' This last part of Sec. IV is more
descriptive than actually substantiated by detailed
calculations.

Detailed discussion of the application of these
methods to theories including fermions and/or
gauge fields is deferred to forthcoming papers.
In Sec. V, however, we summarize the prelimi-
nary results we have obtained for the case of a
theory of a fermion coupled linearly to the scalar
field. We also indicate what we consider to be the
most interesting problems which should be ex-
plored in the immediate future.

Four appendixes are included with specific cal-
culational details.

II. (t) THEORY

In this section we review the semiclassical an-
alysis of the theory specified by the Lagrangian
(1.1) restricted to 1 space and 1 time dimension.
We then study the quantum field theory based upon
(1.1) by means of a momentum-space variational
calculation.

The purpose of the semiclassical discussion is
to exhibit the "kink" state and show that it is a
low-mass configuration only in the strong-coupling
regime of the theory. Hence, if this behavior is
to survive quantization, we must face the strong-
coupling quantum-field-theory problem when we
go beyond the semiclassical tree approximation.

The purpose of the momentum-space variational
calculation is to exhibit a practical method for
going beyond perturbation theory. It is an explicit
example of what it means to choose a trial ground
state of a field theory and it exhibits general fea-
tures as well as limitations of the method.

Since we wish to avoid any iterative weak-cou-
pling expansions the implementation of an order-
by-order Feynman graph renormalization pro-
cedure is not available to us. Thus, for the time
being, we work with a cutoff version of the field
theory and postpone the question of renormaliza-
tion until Section IV. This cutoff can be introduced
by cutting off the Fourier expansion of the field
amplitudes at a maximum momentum or by formu-
lating the theory on a lattice. Eventually we will
explore both possibilities and their relationship.
However, in this chapter, we exploit the first
possibility. As implemented, the momentum-
space calculation proves to have the serious defect
of incorrectly predicting that the theory exhibits
"tricritical behavior" in the strong-coupling limit.
This is a prediction known rigorously to be false
for this particular model. ~ This section closes
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with an explanation of the nature of this difficulty,
which we show how to avoid in Sec. III by using
lattice methods and in Sec. IV by modifying the
momentum method.

[v(x, t), 4 (x', t)] = t5(x —x'). (2.2)

Ignoring the quantum aspects of the theory, we

drop the momentum v in (2.1) and treat Q(x) as a
static classical field: 4) -g(x) =-(t(„(x). Evidently
the ground-state energy of the positive-definite
class ical Hamiltonian

H„= dx — — +)(g -f )'
2 dx (2.3)

vanishes for a constant field

A. Semiclassical discussion

The Hamiltonian corresponding to (1.1) is

H= dx 2»2(», t)+- +X(Q2-f2)21 8$
Iw

«el

(2.1}

with f'&0 and v—= (t1 the canonical field momentum,

(2 9)

is a time-independent quantity. The conserved
charge (2.9) vanishes for the vacuum state (2.4)
since g (~) =g (-~); for the kink (2.6) however,

Q "=a 2f410. Hence the kink is stable
The usual way to construct the quantum analog of

the kink is by expanding in a power series of the
fluctuations about the classical solution

(I)(x, x,) =g (x) +(t)'(x, x,). (2.10)

However, such an expansion converges, if it indeed
converges at all, only in the weak-coupling re-
gime, whereas the semiclassical treatment indi-
cates that the strong-coupling regime is the one of
interest to us. To make this point, introduce
(2.10) into (2.1) so as to obtain

H = dx — — +X(g'-f')'1 dg

2

+ —', 41'+- + 2(t(2[4)((3g2 —f2)]
21 ~x

g(0) ~f (2 4) (2.11)

Equation (2.4} describes the doubly-degenerate
ground state. The general solution of (2.3) satis-
fies the nonlinear Euler-Lagrange equation

d2g

4x
—4)(g(g2 —f') =0 (2.5)

(2.6)

Substituting (2.6) in (2.3) yields the classical
energy

and substituting any solution of (2.5) in (2.3) gives
the classical energy Z(g}. The only time-inde-
pendent solutions of (2.5) that give a finite value
for the energy Hz in addition to (2.4) are the one-
parameter family of "kinks"'

g'(x, x,) = sf tanbf(2)(. )'~2f (x —x,}].

where we have used (2.5) to eliminate the terms
linear in p'. The usual weak-coupling approach
to (2.1) is to expand Q about the constant g= sf
corresponding to the minimum in the classical
energy. The quadratic terms in (2.11) lead to
normal-mode motion for oscillators of mass

m~ =(8A.}' 'f. (2.12)

gkink ~g~ (2.13)

or

Since the classical kink energy is given by (2.7),
we expect the kink to be a better approximation
to the low-lying energy states of the theory than
the perturbative I esult only lf

4 (2y)1/2f 2 (2.7)
(2.14)

We readily demonstrate that the kink describes a
stable configuration even though its energy (2. '7)

lies above the ground-state value of E'=0 for the
constant configuration (2.4) by constructing a
conserved "charge" from the current

2 (((x) = e 2(( « t( « "= 0«18$
8 X11

)(. »mg and Xf »my (2.15)

In this regime the nonlinear cubic and quartic
corrections in (2.11) will be large and their
higher-order contributions important.

The condition (2.13) corresponds to strong coupling
according to (2.11) since, for fixed oscillator
mass (2.12), it is equivalent to the conditions

Evidently

aj„/s»„=0

&]V=- &VP &01=& (2.8} B. Iterative quantum mechanical procedure

A systematic application of the standard itera-
tive techniques of renormalizable quantum field
theory shows directly the importance of develop-
ing a strong-coupling approach for this regime of
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parameters. Returning to (2.11), we already have

computed the classical energy difference between

a kink solution (2.6) in the Q = 2f sector and the
classical ground-state energy of the constant

g(x)=f in the Q=O sector. It is given by (2.7),

+ quantum mechanical

(2y)1/2f
6

(2.20)

[E2212 EO] 4 (2g)l/2f 2 (2.16)

Z'g &d„=-2' g ()t2+8Xf')'/', (2.17)

which expresses the sum over plane-wave solutions
with mass ln/ = (8A}' 2f as in (2.12}. For the kink
solution we expand the field in normal modes,

1tl'(x, t) =Q 1~2 [u„(x, t)a„+u„*(x,t)aJ],

j(x, t) -=v= - t g(2E.)"(u. a. —u.*a.') (2.18)

[a„,at.] =6„.„.,

In order to evaluate the lowest-order quantum-
mechanical energy difference between the kink
and no-kink solutions, we must also include the
zero-point energies due to quantum fluctuations
computed from (2.11). In particular, these vacuum
fluctuations are different in the two sectors for
different values of g(x} and this difference must be
computed for us to know the true excitation energy
of the kink state with Q = 2f relative to the Q = 0
ground state.

An equivalent way of describing these correc-
tions is as the sum over the loop corrections to
the tree approximation. To lowest order, the one-
loop correction to the zero-point energies due to
quantum fluctuations is calculated by neglecting
the cubic and quartic terms in (2.11). In particu-
lar, we must calculate the shift in the sum over
the spectrum of zero-point energies for small
oscillations about the kink solution (2.6} for g(x),
relative to the oscillations about the constant
g(x) f. This difference was computed by Dashen,
Hasslacher, and Neveu. ' For the constant solu-
tion, the sum over the zero-point energies is
given formally by

i.e., the kink energy is shifted down by an amount
of the order of m~ itself as a result of the quantum
excitations being drawn into the potential well at
the kink boundary. The conclusion to be drawn
from (2.20) is that the shift in the fluctuation en-
ergy in the one-loop approximation is a very large
one, much larger than the classical kink energy
itself, which as shown in (2.16) is smaller by the
factor f'«1. Evidently then, an expansion in
fluctuations about the soliton solutions of the
classical problem does not define a reliable itera-
tive procedure for our purposes and we are faced
inescapably with the challenge of strong-coupling
theory.

C. Cutoff field theory: A variational calculation

In quantum field theory (2.1) leads formally to
two kinds of infinities. The first is associated
with the infinite extent (length or volume) of the
system and the second is associated with the ar-
bitrarily-high-momentum modes in the theory. In
order to define a theory in which H is finite at
each step, without resorting to infinite subtrac-
tions or renormalization prescriptions, we shall
consider the field theory in a box of finite volume,
V, and we shall terminate all momentum expan-
sions of the fields at a finite maximum cutoff, k
Eventually we will study limiting behavior for
V-~ and km~ arbitrarily large, but at each step
we have a well-defined quantum-mechanical prob-
lem. Although this cutoff procedure costs us
Poineare invariance, we believe that we can ig-
nore such violations when studying questions in-
volving low-lying excitations, such as the ex-
istence of "bags" or coherent excitations, which
are presumably built out of the long-wavelength
structure of the theory.

Formally, the volume cutoff is introduced by
integrating (2.1) over the range

with u„ forming a complete basis of solutions to
the Schrodinger equation derived from (2.11):

L L
2 2'

, —4A(3g2- f'} u„=E„2u„. (2.19)
A notation applicable for an arbitrary number
(p =1, 2, 3, . . . ) of spatial dimensions is

As shown by Dashen, Hasslaeher, and Neveu,
(2.19) can be solved in terms of known functions
when g is given by the kink (2.6), and the shift of
zero-point energy from (2.17) can be evaluated
after performing a simple mass renormalization.
They found

x =(x„.. . , x2)

L L——&x & —for j =[I . . . P} V=L'.
2 j 2 y ~ ~ ~ y

The Fourier expansion is written

(2.21)
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wQ) =pe" -*-'w(k), wQ) = — d'xe ''*—w'-(x),
1

(2.22)

(,(e)=pe"'(, (1), ((e)=p Je ee'" A(*ei
k

0@)=(2 ~&its .+s. ),

iw(k} = W (a 0
—a~~),

[Q)) Q )) ] = 6() ~,

(2.24)

where

21r
k =(k„.. . , kq), k~ =

where the e~ are arbitrary parameters to be
varied. ' For the trial state, we introduce a dis-
placed Gaussian packet for each mode by defining

2m
n =0, +1, . . . , +N, k.

L N,

where

. c) —e-(ev)((1)=0)
~
0 g (2.25)

[ w(k„ . . . , k0), (t)(- l„ . . . e -lq)] = —i60, /V.

This gives for (2.1)

H =Q [-', w(P) w(-k) + (-,'k' —2' ')(t)(Q) P(-2)]

a ~0 ) =0 for all k.
k

The variation parameter c provides a constant
displacement of the field

y(X) IS„;c) = e-'"''-="[ y(~)+c] l 0.,&. (2.28)

For the ground-state energy, we compute from
(2.23)

+)I g [6w, t, w ) Q (k, )Q (k0)(t)(k0)p (k~)]
A ~,A2, 43,0 ~

E( .,)= (S, icH iS .c) (2.27)

+XVf '. (2.23)
and require

The most obvious and simplest approach to a
calculation of the ground state of (2.23) is to work
in momentum space introducing for each mode k:

Ba& Bc
(2.28)

to determine the extrema. We find in this way

1—E(a„,c) = $(a„c)

1 1 k2
2 1 1 3A. 1 1

a1, + +X(Sc'-f')— +—— — +A.(f' —c )zV g, 4 — e~ V g a.„4 V g
(2.29)

The k sums extend over the interval —2wN/L

~k, ~ 2wN/L for each component k, . The ex-
tremum conditions give

single mass parameter 0., for all Fourier compo-
nents. Henceforth we shall proceed in this way.
In terms of n, and of the notation introduced for
the sum

(a„c)= 0: 4'(c' —f'+f ) = 0, (2.30) +4nm
3 ~ 1f . 0 2V m (k2+a 2)1/2,f (a (2.35 }

(a, , c) =0: a, '=k'+4k('f f'+Sc'), (2.31—)
8 (YA,

where we have introduced the definition

the energy density can be simplified to

(2.32)

According to (2.31) we can write

2 p2+~ 2

in terms of a variational mass parameter

a00=-4X[f(a, ) f'+Sc']. -

(2.33)

(2.34)

Evidently we could have defined the n, introduced
in (2.24) in terms of (2.33) and varied over the

f2 + g(f 2 ~2)2
3

(2.36)

E(luations (2.30) and (2.34) have two possible
solutions

Q 2

(i) c=0 and ' +f'=f(a0), (2.37)

Qo(ii) c' =f' -$(a0)&0 and — -' +f' =f(a0),
(2.38}
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Equation (2.35) shows that in the limit of large
ct, &k ., =2vN/L, g decreases as 1/a, for any
number of dimensions. For finite volume V, P(o.,)
diverges at no =0 due to the k =0 term in the sum
(2.35). Its rate of growth as a, -0 can be com-
puted by replacing the sum by an integral

1 ~ 1 ~max)

V~ (2 }P d k» (2.39}

Figures 1 and 2 show that there is always a solu-
tion of (2.37) for c = 0 but that (2.38) will have two,
one, or no solutions depending on values of f' and

In order to determine which of these roots
corresponds to local minima or maxima of $(a„c)
we must also compute the second derivatives and

calculate the trace and the determinant of the co-
efficients

a, —=a,(c}is determined from (2.34}, which has a
unique solution for every value of c since the left-
hand side is monotonically increasing and the right-
hand side is monotonically decreasing as a function
of a, . Figure 3 shows g(n, (c), c) for different
values of f' and shows the same general behavior
found in Fig. 2. In particular, there is always a
local minimum at c =0. As f' increases, for
fixed A., two local minima appear at +cc0. In one-
plus-one dimensions, i.e., P =1, one finds num-

8'8 8 8
8 go 8no8C

8 8 8'8
~ +o8c

(2.40)
a0

and determine whether it is positive at the roots
(2.37) or (2.38}indicating a local minimum, or
negative for a local maximum. The straightfor-
ward differentiation is displayed in Appendix A.
We find that the extremum (2.37) at c =0 is alunys
a local minimum. However, for the extremum
(2.38) with c 0 0 the condition for a local minimum
is

4X Ba 2 V ~ (k +a )

These solutions are shown in Fig. 2.
What is the physical content of these results'? In

order to extract this most simply, we return to
(2.36) and study 8 as a function of c for various
values of the parameters f and A. In particular,
we vary f' for fixed X. The extremum value

(b)

(oo}
aO

2
0

(c)

f 2 (ao)

op}

aO

FIG. 1. Graphical solution to the momentum-space
variational calculation [Eq. (2.37)] for the case c = 0.

FIG. 2. Graphical solution to the momentum-space
variational calculation [Eq. (2.38)]: (a) no solution; (b)

tangency condition co/4A =[ Bf /Boo~; (c) two solutions:
(1) maximum at c & 0, (2) minimum at c & 0.
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(c)

E (aO(c), c)

E aO(c), c)

E (aO(c),c)

& fcy nweak couPling'

f fey intermedio te coupling"

f cr ng o"p 'ng

can be shown that this form of 8(a,(c), c) is a
disease of the variational choice (2.26) for the
form of the ground state. This behavior of 8 vio-
lates our intuition, which suggests that ( P) should
approach zero continuously, with the discontinuous
change occurring in the rate of change of (Q), i.e. ,
its slope, in analogy to the observed behavior of
spontaneous magnetization as a function of tem-
perature. In addition, there is a much more ser-
ious problem, namely, that the behavior im-
plied by (2.36) violates a rigorous theorem proved
by Simon and Griffiths. ' To explain the problem,
let us add a linear source term to (2.1) of the
form

E (ao(c),c)
Q' = -J d VtIe) = -J V(f) k = 0, (2.43)

(d) f & fc, very strong coupling"
which, following (2.26), adds the term -J'c to the
energy density (2.29). Since the added contribution
is independent of a„ the extremum value a, = a,(c)
is the same as (2.34). Therefore,

FIG. 3. The ground-state energy in the momentum-
space variational calculation as a function of the vacuum
expectation value c for fixed I, and different f: (a)f
&f„"weak coupling, "c & 0 is the absolute minimum;

A

(b) f2=f„, the minima at c = 0 and & & 0 are degenerate;
(c)f &f« "strong coupling, "c = 0 is the absolute mini-
mum; (d) ft«f cr "super-strong coupling". c = 0 is the
only minimum.

erically that for the choice of the dimensionless
parameter X/A'-1 these minima appear when
f'-1. For large enough f' the minima at cv0
cross the one at c = 0. A numerical comparison of
the energies of the c = 0 and c c 0 minima for X/A'
=1 and a range of values for f are given in Table
I. We conclude that they then become degenerate
ground states of the theory, with (P) =+c or —c,
respectively, because the overlap between them
vanishes in the V-~ limit, i.e. ,

g(a, (C), C) = —(Sa„., iH+H')S„, ,)
1

=8,(a,(c), c)-Jc. (2.44)

is shown in Fig. 4, which is tilted by the linear
term —Jc relative to Fig. 3.

In the region of weak coupling, when the ground
state lies at (P) =c 00 in the absence of a source
term, the added contribution breaks the de-
generacy between + c. Which of these states lies
lower depends on the sign of J, and as one goes
through J=O, there is a sudden jump from one
minimum to the other. This behavior is similar
to what is known for a ferromagnetic medium in
an applied magnetic field below the Curie tem-
perature. However, in the strong-coupling region
of f' &f„', we see that a finite source strength

(S —clSa;+c) =(0 ie "' '=' i0 )

CtoV C
2

(2.42)

Thus either one of them, or any linear combina
tion, is a satisfactory choice of a ground state of
the theory if the variational calculation is any good
A specific choice of ground state is forced upon us
if we add a small external source. Assuming that
we always choose the one at +c whenever the one
at zero lies higher, Fig. 3 shows that as we vary
X and f the lowest eigenstate of the theory will
jump discontinuously (i.e. , a first-order phase
transition) from a state such that (P) =c-f to
(P) = 0 at some critical values of the coupling
parameters.

As intriguing as this behavior might seem, it

fp g(c „=0) @&mi."0) c&0

1.5
1.4
1.3
1.2
1.1*
1Q*
0.97
0.8'f

0.77

4.1632
3.3469
2.6908
2.1714
1.7704*
1.4712*
1.2588 f
1.11807
1.0341$

2.2251
2.0837
1.9408
1.7952
1.6446*
1.4804*

0 ~ ~

~ ~ ~

~ ~ ~

1.3777
1.2568
1.1287
0.9892
0.8258*
0.5639~

0 ~ 4

0 0 0

~ ~ ~

TABLE I. A table of values of g(c) at its local minima,
obtained from the momentum-space calculation for Ap=1
and a range of values for fp. The asterisk indicates the
region in which the &0 minimum crosses the & =0 mini-
mum and the dagger indicates those values of fp for which
only the &=0 minimum exists.
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E(ao (c},c) -Jc

(0)

& &&cr

E(a0 (c},c)+Jc

(b)

f Cr

E(a0 (c), c)+Jc

FIG. 4. The ground-state energy in the momentum-
apace variational calculation as a function of the vacuum
expectation value c for fixed A, and different f~ in the
presence of an external source:

(a}f &f~. The minimum obtained from c ~ 0 of Fig.
3(a) is the absolute minimum.

(b) f2=f~. The minimam obtained from c &0 of pig.
3(b) is the absolute minimum.

(c)f2&f . For strong enough J, the minimum obtained
from c & 0 [Fig. 3(c)] can be made lower than the one ob-
tained from c = 0 [Fig. 3(c)] .

J &J (it) can tilt the energy curves sufficiently so
that the ground state becomes the minimum which
develops from the solution with cc 0 when J=0.
As illustrated, a ground state developing from the
c =0 root when J&J (X}jumps discontinuously to
one developing from c e 0 when J& Jci(A.}.

It is this behavior that is forbidden by the Simon-
Griffiths theorem which proves that the particular
theory described by Hamiltonian (2.1) plus (2.43)
in 1x+1t dimension leads to a ground-state ex-
pectation value for (p) that is a monotonic, anal-
ytic function of J for finite J4 0. Evidently the
trial ground state is too crude for a study in this
region, leading to an impossible shape for
8(ao(c), c}and to a first-order phase transition.
Actually, the crux of the difficulty lies in the local
minimum in 8(a, (c), c) at c=0 which is entirely
spurious, as we shall show in the Sec. III. In Sec.
IV we construct a modification of the momentum-
basis calculation which removes this difficulty and
discuss its origin.

Although the Simon-Griffiths theorem is specific
to this model in one space and one time dimension,
this result suggests that these simple methods are
inadequate for studying the strong-coupling region
where the tricritical behavior sets in and phase
transitions may occur. Unfortunately, it is pre-
cisely this region, with 0&f'=1, that the semi-
classical analysis suggests we must study in or-
der for the kink to be a low-lying state [see Etl.
(2.13)]. Note that if this calculation were valid,
the kink could never exist as a low-lying state,
since by the time the vacuum expectation value (P)
decreases to the order of 1, it jumps discontinu-
ously to zero. Thus, there is no region where (4')
is small but different from zero which is a nec-
essary condition for the existence of a low-mass
kink.

The reason we so thoroughly discussed this in-
correct momentum-space calculation is that it is
the most straightforward application of the idea of
doing a variational calculation for the ground state
of a field theory. It also points out a virtue of this
simple theory as a test case, namely, there ex-
ists an exact theorem due to Simon and Qriffiths
which provides a nontrivial constraint on the trial
state one uses for the variational calculation. We
conclude this section with three remarks:

(i) For weak coupling where $(c) is given by
Fig. 3(a), there is no contradiction to any known
theorem. Moreover, in this region there are
reasons to believe that the momentum-space cal-
culation correctly represents the ground-state
energy.

(ii} The momentum-space calculation is just one
example of a Hartree-Fock-type calculation. In
Appendix B we derive the general Hartree-Fock
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approximation from a more general variational
calculation. This means, of course, that the
Hartree-Fock calculation, which includes part of
the two-loop contribution (the normal-ordering
part), gives an upper bound on the ground-state
energy.

(iii) The momentum-space calculation will be of
importance to us when we discuss the renormali-
zation limit in Sec. IV.

d x ~
p (3.3)

and the fields at the lattice sites are defined by

where np =0, y 1, ..., +H now labels the lattice
sites. The continuous coordinate x is replaced by
a discrete lattice site label j such that for each
component jp =0, +1, ...,+¹

The volume integral in (2.1) becomes

A. Field theory on a finite lattice

Introducing a maximum momentum cutoff k m~

in (2.22), we developed a convenient language for
working in k space with a finite number of degrees
of freedom. If we now want to work in coordinate
space, the analogous procedure is to replace the
space continuum x by a discrete lattice of linear
dimension L and minimum spacing 1/A defined so
that there are 2N+ 1 points on a side:

L =(2N+I)/A, V=L . (3.1)

The correspondence between languages is, as de-
fined in (2.22),

III. |t}4 FIELD THEORY ON A LATTICE

In this chapter we reformulate the cutoff theory
discussed in Sec. II in terms of an equivalent lat-
tice field theory which provides a natural language
for constructing a new class of variational ground
states. These are trial states expressed as pro-
ducts of wave functions at each of the individual
lattice sites. A further extension of this approach
to include trial states correlating neighboring
sites is presented in Sec. IV.

The principal lessons to be learned from this
analysis are the following:

(i) For a limited range of X and f, the wave func-
tions produce lower ground-state energies than the
elementary momentum-space wave functions
studied in Sec. II.

(ii) Within this range of parameters, we are able
to use this variational procedure to study the re-
gion in which (P) «1. We show that the phase
transition from the (P) v 0 to the (({))=0 phase is,
in fact, of second order and that one has no dif-
ficulties with the theorem of Simon and Griffiths.

(iii) Because we can get to a solution with (P)
«1 by appropriate choices of the parameters A.

and f, we are able to argue that kink states of
arbitrarily low mass exist (no matter how large
we choose the cutoff mass) and the mass of these
states is much lower than the single-particle
masses suggested by the perturbation expansion.

Q & e i)) z/A-

k=-km

It follows that

[z(i, Pii] —-zA i)z zi. (3.8)

All of these transcriptions are entirely straight-
forward. The gradient operator in (2.1) is usually
transcribed as a difference operator,

(3.7)

Although this form is perfectly all right in the
limit A- ~, it leads to undesirable difficulties
with the introuduction of fermions for finite A.
Since we are developing a formalism for very large
but finite A, we choose an alternative definition
that has the two desirable properties:

(i) For a free field theory it leads to an energy
spectrum in accord with the relativistic form of
the energy-momentum relation for all k ( k

(ii) It automatically avoids doubling the fermion
degree of freedom which results from (3.7) (see
Kogut and Susskind, Ref. 2).

In terms of the program of this paper, these
properties are not essential and we could just as
well work with the familiar definition (3.7). How-
ever, for future applications (i.e. , to gauge the-
ories with fermions, and to a study of Lorentz
transformation properties of the lattice theory),
these properties are important and therefore we
always adopt the following definition of the gradi-
ent: For

where the zz(k) and (t)(k) are the same as introduced
in (2.22) and satisfy the commutation relations

(3 8)

2mn~ AN
kp-—,k ~= (3.2) (3.8}
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we define

vfj= P-ike"""f(k)
k

I.'e '3-'3,
3)V k

(3.9)

Note that (3.9) introduces long-range lattice cor-
relations beyond the nearest neighbors. The kine-
tic term in (2.1) now becomes

where

—=
A~ Q ~A'(t)f (Ijf eD() -f'), (3.10)

=,(j) =

4N(N+1) v v
(2N+1)' 3 """3 (3.12)

(27()'(-1)~ cos(vj /2N+ I) 2(-1)'
2(2N+ l)3 sin(vj/2N+1)2 " j '

for jw0.
For P & 1, we get a sum of such correlation terms
in each dimension.

One important result is that with this definition
of the gradient, the cutoff and lattice versions of
free field theory are isomorphic, i e , by (3.4.).
and (3.10)

1 2 1 2 1
H() =—j [gvj'+2(VQg} +g j Q; ]

=V —,'~ k~ -k +-,' k'+p'y 4 y -k
(3.13)

which is the familiar result for a cutoff Hamil-
tonian, and the commutators are the same as (3.5).
Moreover, (3.13} leads to an energy spectrum of
the form (k2+ g2)' ' rather than one of the form
[ij.'+4A2sin'(k/2A)]'j' which would emerge from
the prescription (3.7), and hence we have a rela-
tivistic form of the energy-momentum relation for
all k~ k . Note that these results also apply to
the case of a free fermion theory.

There is a difference between the cutoff and lat-
tice versions of the field theory for the quartic
term of (2.1). This a,rises from the fact that in the
cutoff theory, by (2.22)

d x Q (x) = V Q 533,,(33,(,
~ ~k],k2, k3, kg

x(p(k, )4(k,)4 ()'f.)4(k,),

(3.14}

msx

D(j-j')-=p —,e"e (1'-e~) (3.11)(2N+I}'a= a

is a sum of correlation terms in each dimension of
the lattice. In particular, forP =1,'

H = ~+[,'v—q'+ —,
'

(V—4)q)'+X(4),'-f')']. (3.16)

Rescaling to dimensionless variables, we introduce

= A(j -&)/2y
f

* = A-(~+&)/2~
f 7

[pj xf ']-e-z

Together with

z -=zA'-', f '= f'A&'-'&
0 0

this gives

(3.17)

(3.18)

H =A p[ ,'p, '+-', (Vx,-)'+Z, (x,
' f,')'] -(3.19).

f

Although all subsequent discussions will be based
upon (3.19), for completeness we observe that with
the definition of the gradient in (3.9) there is a way
to define the Hamiltonian so that the lattice theory
is entirely equivalent to the cutoff theory and there
are no umklapps. " This is accomplished by de-
fining

*(*), 33)(*) ,3(3.( ) ~).)'
r, /2 (3.20)P==,' 'd[x(v)xvP ()x+@4)(x)7j(x)],

-1./a
where

i.e., we must satisfy a true 5-function condition
k, +k, +k, +k4=0. However, for the lattice theory,
by (3.4)

1 4 —V e ( & k&+k3+k4) f/A
pP

kl, k2, k3, ky f

x (P(g,)(P(k,) jtj(k3} jtj(k,)

(3.15)

and the factor in square brackets is a periodic 5
function which equals unity for (1/A) (k, + k, +k, + k4)
=0 modulo 2v, for each component. Hence (3.15)
conserves momentum in the Hamiltonian only up
to "umklapps, " in the language of solid-state
physics. For quadratic terms, as in (3.13), in
which the k are equal and opposite and limited by
k umklapps cannot occur. In (3.15), however,
as in all terms of higher than quadratic power in
the fields, it is possible to have an umklapp if two
more of the momenta are of order of the recipro-
cal lattice spacing, i.e. , for k- 2vN/(2N+1)
= k . Therefore, the difference between (3.14)
and (3.15) can be expected to alter the high-mo-
mentum or short-distance behavior of H but have
little or no effect on the low-momentum structure,
viz. , the mean field strength ((P) in the ground
states and low-lying coherent excitations. For
simplicity, we choose to work with (3.15) and
analyze the Hamiltonian:
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y(x) eiP.x
~ e-»P»

=Z e'-'-*e(~)

=p» [g
(

e e-)n)

w(x)
—=e'—-*wi, e 'e'-" (3.21)

=~ -(~(-' )
"-"-"')

Substituting (3.21) into (3.20), we get

H =g f -2Xf'y, '+sf' + ,' g-D(~,
2 gX»I2

idit»i-Pi, + 2 A'(4-i»i i i» i i-i»)itf-, itf, li, iIif,
1» 2 ~ 3s 4

(3.22)

where the function [a»a,'] =bi ii. (3.25)

+(21 22) J 1 f»)21 2»)

can be calculated in a straightforward manner.
All of the results and discussions based on the
local Hamiltonian (3.19) can be obtained also from
the Hamiltonian (3.22) with minor numerical mod-
ifications as can be readily shown.

Finally, we note that the interpolating field de-
fined by (3.21) satisfies nonlocal equal-time com-
mutation relations for finite N, i.e.,

The vacuum at site j is defined by

a~ 0&=0.

Repeated application of a,~'s to form

1
lsf& =- („„ip.(ai')"-'I0i&

permits us to build a complete set of product
states spanning the Hilbert space:

(3.26)

(3.2 "I)

[i((x), (t)(y)] = —g e'-"*- -'l,

leading to a factor

iA sin[vA(x -y)]
(2N 1) sin(wA(x —))/2N 1]I

for each dimension p."
8. Variational calculation mth a single-site basis

(3.23)

nx& = II Ini&. (3.28)

l4»=+IN& (3.29)

Our general trial state will be assumed to have
the form

Our trial state will be constructed in terms of a
single-site basis introduced in terms of creation
and annihilation operators for each lattice site,
i.e.,

1/2 (aj ai )t-+ ~

Qg

1/2

zvf = =' (a, —a, ),

n =p

Using (3.19) and the fact that

(Pil ti & =f, ,f

we find for the energy in this basis

(ylfflq& =A g&q, llui'+l. ( i' f.')'+l&(0)-xf'I((;&+» Q &(i, ig&eg, lxi, l-e;,&&0„lx, IO, ,&,
~ 1+»t2

(3.30)

where the diagonal terms with j,=j, have been
separated in the expression for the gradient.

Assuming that the ground state is translationally
invariant, we adopt the same ~g, & for each site i;
i.e., in (3.29) c'-„=c„, independent of i. Equation

(3.30) then simplifies further since

&ef, lx,'lei& (elx'le& a-nd &eflPi'leg& &el&'l0&-

independent of j. We can now use the identity, ap-
parent from (3.11), that
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(3.31)

so that

j gW)2

= -(2N+ l)~D(0)

and (3.30) becomes in this example

H(J) =—+ x +A, (x f, ) —Jx, -P ( ) 2 2 2 2 (3.33)

and let

= (2X+ I) A[&pl &'+ ,'D(0)x'-+X, (x' —f,')'l P)

—lD(0)&ql x! q)'] (3.32)

our problem now becomes one of varying the trial
state l lt) so as to minimize E,(g). Observe that
(3.32) contains two kinds of terms: The first is the
expectation value of a positive-definite Schrodinger
Hamiltonian, and the second is the square of the
expectation value of the mean field strength
&gl xl 0) This suggests choosing &g ~x!g) as one of
the variational parameters in any trial wave func-
tion. For example, a very simple choice is
lg)

—= e '~'!0), where !0) satisfies (3.26) with o a
variational parameter. Then we have &gl xl P) =c
as the second parameter. This procedure is dis-
cussed in detail in Appendix C. We shall follow
here, however, a more general procedure by first
introducing a Lagrange multiplier, so that we can
carry out the variation to minimize the energy with

&Pl xl P) held fixed, and then finding the lowest value
to E,(P) by varying over all values of &gl xi/). To
do this, define

x(J) = c,J(l + cJ'+ c,J '+ ~ ~ ) . (3.38)

If h(J) minimizes for arbitrarily small values of
Jw 0, then we will also have a solution satisfying
x(J)«1 as desired. What we are looking for,
then, is a regime of parameters X, and f, in which
the solution fulfills these criteria.

To demonstrate that such a region can be found,
we perform a simple variational calculation.
Observe first that (3.35) and (3.38) tell us that

I'(J ) = I'(0) —-c,J ' —-' c,c,J'+ ~ ~

and so we can write (3.36)

8(J) =I'(0)+-,'c,[1 —c,D(0)]J'
+ c,c,[~ —c,D(0)]J ' + ~ ~ ~ .

For J«1, (3.38) can be inverted

1
J(x) = —x-—x +3

C~ C~

(3.39)

(3.40)

(3.41)

and so we can express (3.40) as a function of
x(J), i.e.,

h(x(J)) =I'(0) — x' — ', (
—'+q)x +

2cl C

Finding S(J) for arbitrary values of J is a form-
idable problem and can only be done numerically.
Fortunately, however, for our purposes we only
need to know 8(J) for small J. This is because
we are interested in, exploring the region of small
kink mass and the semiclassical discussion of
Sec. II told us that this corresponded to having

&elxle) «I ~

If J =0, the Schrddinger problem defined by
(3.33) has a symmetrical potential and so x(J = 0)
=0. Since the term -Jx is an analytic perturbation
onH(J =0), we know that for small J

I'(J) =«I.IH(J)lsd

be its ground-state eigenvalue. Evidently

(3.34)
where

0 -=-1+c,D(0) .

(3.42)

(3.43)

8 I'(J) = -&001 xl 00) =- -x(J) (3.35)
Since c, is always positive according to (3.33) and
(3.38), this will minimize for small x if

for a normalized eigenstate" lg, ). Referring back
to (3.32) and defining

,E(J) = f'(J) +Jx(J) ——,'D(0)x'(J) =- 8 (J),1

(3.36)

0&g«1 and c3&0,

with the minimum, x, , occurring at

C
2

x,'= ' (1 —4q).

Hence we have x,'«1 if

(3.44)

(3.45)

the problem of minimizing &g!H lg) for the ground-
state energy is reduced to finding the value of J
such that

(3.37)

C
2

«1 (3.46)

It now only remains for us to show that there
exists a range of Ao and f, for which these con-
ditions on c, and c, are satisfied. To do this by
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analytic methods, we introduce a two-parameter
trial state

1 y& of the form of a displaced Gaus-
sian formed from (3.24) and (3.26),

(41xl&.& =&x& . (3.47)

+ (x)' —J(x& .D(0) 2 (3.48)

Differentiating (3.48) with respect to (x) and a
gives the extrema as functions of J. Expanding
in a power series for small t, using (3.38) for
(x) and introducing

u(d) = o,(1+a,d'+ ),
we find directly

o., = 6X,/[u, '(a, '+6Z„)],

c, =I/n '&0,

SAo 6Ao ~o
&o 3~o+ &o

and

o.o' -D(0), 3

(3.49)

(3.50)

(3.51)

In order to satisfy the condition g «1, we see
from (3.43) and (3.50) that

o, = [D(0)]"[1——,'q+O(q')] . (3.52)

By (3.51) and (3.52) A., and f, must then satisfy the
constraint equation

3 qD(0) 3X.
2[D(0)]' ' 4Z [D(0)]' '

(3.53)

Furthermore, in order to have c,&0, it is
necessary that n,'&6k, in (3.50). For q«1 this
becomes

x, & ',—[D(0)]' '(I --,'q+ ). (3.54)

Since both of these conditions can be satisfied
simultaneously, it is clear that we have established
the desired result. Namely, we have 0 & x, «1
when, by (3.53),

3 3'/'
2 ) 2 = 0.83

2[D(0)] lV 2v

and, by (3.54),

(3.55)

(3.56)

Taking the expectation value of (3.33) in this state
and henceforth restricting ourselves to two dimen-
sions, we find that

&(t'olIT(d) I ko&
=- I'o(J )

D(0) 3 3(x) fo
(( )2 f 2)2

With this choice of parameters, we find a reason-
able second-order phase transition whose onset is
characterized according to (3.45) and (3.53) by

qD(0) '~'
~ (f.' f-')" .

p
(3.57)

The inequalities will be altered quantitatively by
a more elaborate trial wave function but the gener-
al conclusions about the nature of the transition
remain essentially unchanged.

Notice that throughout this analysis the term
proportional to D(0), which contains the effects of
site-site recoupling in (3.32), plays an important
role in eliminating tricritical behavior. Had D(0)
been zero, 8(J) in (3.40) would have had the form

h(d) =I'(0)+-,'c,d'+-,' c,cp'+ ~ ~ ~ .

Since c, )0, we could only have obtained a mini-
mum with (x) g 0 if both c, & 0 and if the coefficient
of the next higher term in g(J) of order J' was
positive. However, there would again be a local
minimum at (x)=0 leading to the tricritical prob-
lem encountered in the momentum-space calcula-
tion. The interesting question of what happened to
the analog of the D(0) term in the momentum-
space calculation will be addressed in detail in
Sec. IV.

To summarize, the main achievement of this
calculation is that we have found that x, in (3.45)
can be made arbitrarily small by appropriate
choice of A., and f,' without a spurious minimum
at (x)=0. This is in contrast with the first-order
phase transition found in the momentum basis be-
tween the (P& =0 and (P& = c e 0 phases in Sec. II C.
We have thus developed a variation procedure free
of the tricritical problem and we have found that
the spontaneous symmetry breaking of the ground
state from the (x) = 0 phase to (x) w 0 can be estab-
lished in accord with general principles. The
possibility of finding a nonvanishing value of x,
that is arbitrarily small is of crucial importance
for the study of low-lying kink solutions to this
theory.

However, before discussing the kink solution,
it is also important to compare the present bound,
(3.42), on the ground-state energy with that ob-
tained in (2.36) using the momentum basis. Al-
though we have found that the trial state (3.47)
removes the tricritical pr.oblem, we must also
compare energy bounds in order to establish
whether the single-site-basis approach as imple-
mented here is a better variational approximation.
In particular, we are interested in this comparison
for parameters satisfying (3.53) and (3.54). Un-

fortunately, a numerical evaluation of (2.36) shows
that, in the range of A.os1, as required in (3.56),
the momentum calculation produces a lower bound
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TABLE II. A table giving the single-site energies and

(x) for &0=3 and a small range of fo The last column
gives the values for the momentum-space calculation in
this same region. (N. B. The momentum-space calcula-
tion has already gone through to the case where +=0 is
the unique minimum!) This table shows that the single-
site calculation provides a better description of what is
going on all the way through the region of interest, i.e.,
&x) -0.

~mOIIIentu~~~ = +

classical results of (2.6) and (2.7).
To carry out this calculation, it is simplest to

modify (3.30) by adding and subtracting the diagonal
term j,=j, in the double sum, writing

kink ( Pkirlk I+ I WJ kigk)

+kD(0)(», ' xg—&P, I «, I 0,&)I 0,&

0.8075
0.8060
0.805 94
0.805 90
0.805 902 5

0.073
0.018
0.011
0.000 76
0.0

1.712 89
1.707 43
1.707 21
1.707 08
1.707 08

1.714 32
1.708 66
1.7084
1.7083
1.7083

in the energy than the single-site calculation.
However, this numerical constraint to A,,s 1 is only
an artifact of our crude trial wave function, and
one can do better.

Restricting ourselves to a single-site basis as
in (3.29), we can numerically diagonalize the
Hamiltonian to better than one part in 104 accur-
acy." The results of this computer calculation
show that if A,,=3, the single-site wave function
gives a lower ground-state energy than the mom-
entum basis for all values of g, such that 0 ~ x,« i.
Moreover, this calculation does not predict tri-
critical behavior. A numerical comparison of
single-site and momentum-basis results for A,,=3
and 0.8059$f, S0.8075 is summarized in Table II.
To recapitulate, we have developed techniques for
a variational calculation free of illegal behavior
and applicable in the strong-coupling regime
&x)«1. Many avenues are open for improving both
qualitative and quantitative predictions. One way
would be to abandon the single-site basis approxi-
mation in (3.29) and build a procedure using blocks
of neighboring lattice sites. This technique and its
value for extending the realm of coupling paramet-
ers for which we can construct ground states will
be discussed in Sec. IV, along with the relation of
our method to renormalization theory.

C. Calculation of an upper bound on the kink mass

In order to compare with the semiclassical re-
sults of Sec. IIA for a kinklike solution in one
space and one time dimension, we now introduce
a trial form that exhibits a dependence on the in-
dividual lattice sites j. We again work in a single-
site basis (3.29) and compute an upper bound on

the energy for the single-kink sector relative to
the energy in the vacuum sector. Furthermore, if
we can establish the accuracy of the ground-state
energy, we can interpret our result as an upper
bound on the single-kink mass and compare with the

—J(j)'x, (3.59)

and define

where r&(J(j)) is the same function calculated in
(3.39). The variational upper bound on the energy
of the kink state is then computed by finding the
local minima with respect to J(j) of

I Q Ir,(~(i ))+~(j&&xg&
1

—2 D(0)&xy&']

1 ,D(j, j,)&»J )&—xf)—
f g, f2

(3.60)
Since our goal here is to display an upper bound on
the energy of a kink state that is low-lying, in the
sense of the semiclassical energy (2.7), we now
make a simplifying if crude approximation to esti-

+ 2 g D(j j.-)&Of I xf 14j &&i)f I «J

(3.58)

The double sum in the last term is essentially the
classical gradient term in the energy expression
(2.3), with the matrix element of the field replacing
its classical strength. This is the only term coup-
ling different lattice sites and therefore we can
minimize the kink energy simply by imitating our
procedure for the vacuum state, introducing a
Lagrange multiplier J(j ) for each site and per-
forming the variation subject to the condition that

&»i& =&i)il xil 0i&

is held fixed. This state will automatically be
orthogonal to the vacuum in the limit (2N + I)-~
since the choice of a functional form for &x&) as
illustrated in Fig. 5 leads to QW 0 for the conserv-
ed "charge" (2.9).

In analogy with (3.33) and (3.36), we introduce

1 Pi' D (0)xy'H(J(j))=
( ) Q 2

+ +k.,(x, f,)-
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X C

+XC

FIG. 5. The "kink" configuration.

L = (2At +I)/A, akin to the classical result that
unless g(x) makes the transition from f-to +f
within a finite interval in (2.6), the total kink en-
ergy (2.3) would diverge as f dx. Let us intro-
duce as a parameter in the variational calculation
the width, D, of the interval over which x(j )
changes from -x, to +x, . We parametrize D in
terms of the lattice sites by

D =(2j,+1)/A, (3.61)
mate the kink energy, and in particular to show its
dependence on the parameters in the theory.

It is apparent that, except for an interval of
finite length on the lattice, the value of (x( j)) must
be arbitrarily close to +x„where x, is the ex-
tremum determined by (3.45) for small J and (x).
Otherwise, the excitation energy of the kink would
be proportional to the total length of the lattice,

where

+x, for j&j, ,

-x, for j& -j, .

Using (3.61), we can write for the difference be-
tween the energy of the kink and vacuum states
[recognizing I'(J) = I'(J)]

+gp

Eh„„(J) E,(J,-) =A g [I'&(J(j))+J(j)(x~)——,'D(0)(x~)'] — E,(J,) +A P 2D(j, —j,)(x&,)(x&) . (3.62)

AXc'
DA

(3.63)

This is evaluated by a linear approximation to
(x,) between -j, and j,. Equation (3.63) is just the
classical expression for the kinetic energy. As-
suming that the ground-state energy has been
evaluated accurately, we overestimate the energy
difference in (3.62) if we simply set J(j)=0 in the
transition region for calculating the difference of
the first iwo terms. Using (3.42) and (3.61) this
difference gives, to leading order in x,'«1,

The last term represents the "kinetic" energy due
to the change of (x&) in the transition region and is
equal to

2

A Q 2D(j, -j,)(x,,)(x,)=A(2j, +1)
(2j, + 1)'

(3.50) in terms of the coupling parameters. Using
(3.56) and (3.18), we find

D -(u 't'x )-'A-'

(2A' 'x )
'

E k;„k (J ) E~(J,) = 4—x't'x, '[I + O(x, )] .
(3.67)

Equation (3.67) is the main result of this section.
Assuming, as we remarked earlier, that the
ground-state energy has been evaluated accurately,
the one-kink energy is, aside from unimportant
numerical factors, a rescaled version of the semi-
classical result for the kink mass -v X f' in (2.7).
Thus (3.67) shows that the effect of the quantum
corrections has been simply to rescale the classi-
cal field strength f to x, —= (g, ~ x, ~ g&) for sites out-
side of the kink region. No matter how large the
cutoff A is made in (3.67), we are free to choose x,
small enough so that the kink mass

(2j +1)AI'(0) — ' E (J,) =DA' x,'. (3.64)
m -4~ '~'~x '

kink p c (3.68)

Adding (3.63) and (3.64), we have

E„„E,(J,) =A-(DA) x,-'+, ',
12G

which is minimized at

(DA) = (2c, ,/q)

to give

(3.65)

E kink (~) Ep(~c) = 2xc
2GI

(3.66)

The constants can be expressed using (3.45) and

is a finite and small mass. What we still face,
of course, is the challenge of an accurate calcula-
tion for the ground state by going beyond the single-
site lattice basis, but our principal point is now
evident: In the spontaneously broken theory for
small values of (x) we find low-lying kink config-
urations in the quantum theory of (2.2j formulated
on a lattice. Moreover, there is no reason to be-
lieve that this result is an artifact of having in-
troduced a lattice since the kinA, rejresents a
structure which extends over many lattice sites.
In particular, the kink extends over a number of
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lattice sites given by

1
2pp + 1 DA 1/2 ~

2A, p xc

IV. CONNECTION TO RENORMALIZED FIELD
THEORY —THE BLOCK FORMALISM

In the previous sections we discussed two dif-
ferent attempts based on variational techniques
fcr calculating bounds on the masses of the ground
state and of the "kink" state for a lattice (or cut-
off) field theory with a X,(x'- f,')' self-interaction.
We saw that a calculation using a simple momen-
tum-space basis for describing the ground state
is adequate in the weak-coupling regime (f'»1).
For strong coupling (f' &1), however, we encoun-
tered tricritical behavior and saw that such a cal-
culation predicts a first-order phase transition
(i.e., the vacuum expectation value (x) jumped
discontinuously from (x) -1 to (x) =0). On the
other hand, in the strov ~-coupling region we found
a limited range of parameters for which a con-
figuration-space basis provides a more appropriate
description. The single- site calculation carried
out in Sec. III exhibited a reasonable second-order
phase transition with (x) A(fo'--f„')'~', as shown
in (3.57). Moreover, this calculation allowed us
to explore the region of coupling parameters in
which (x) is arbitrarily small, and therefore to
establish the existence of the kink configuration as
a low-lying state.

Numerical studies also showed that for the region
of parameters X, -3, f,'&1, the single-site basis
produced lower upper bounds on the energy than
the momentum-basis calculation all the way down
to (x) =0. Unfortunately, for l(o&1, i.e., X&A',
the momentum-space calculation, although mani-
festly incorrect, produced lower upper bounds on
the ground-state energy than the single-site basis.
We face, therefore, the following questions: 'Why
does the momentum basis win for Ap&1?" "How

can we extend our techniques to allow us to ex-
plore larger regions of Xp and fp without encoun-
tering forbidden behavior?" It turns out that the
answers to these questions are intimately related
to the general question of renormalization of this
theory which we must now address.

We proceed as follows:
(1) First, we discuss the general pr blem of

taking the lattice spacing to zero, i.e. , A-~, and
defining a finite version of our Hamiltonian in
order to establish contact with the usual renor-
malization procedure. This analysis shows simply
why, for ~p «1, the single-site calculation must
lose to the momentum-space one.

~2) Next, we introduce a more general class of

wave functions which correlate a finite number of
neighboring sites to one another. We call these
"block wave functions" and describe how they can
provide a systematic way of extending the regions
of parameters &, and f,' over which we can find
bounds on the ground-state energies which are
lower than those obtained in the momentum basis.

(3) Next, we develop a straightforward and prac-
tical scheme for working with the block wave func-
tions. It is a hybrid method which uses a k-space
momentum basis for performing the variational
calculation within each of the individual blocks
that are introduced using the site basis. With this
technique we can explore the range of values of
&, and f,' all the way into the usual renormaliza-
tion region, with A, —0 and f,' —~ in one space and
one time dimension. As applied to this model,
this technique has the virtue that it is capable of
calculating exactly the parts of the ground- and
excited-state energies which diverge as the cutoff
A-~, while at the same time completely avoiding
tricritical behavior. The hybrid calculation also
shows why the momentum-space calculation failed.

(4) Finally, we introduce scaling arguments and
outline a procedure that indicates how the block
formalism may give us a framework to improve
further upon these calculations. These arguments
are reminiscent of the resummation technique and
renormalization-group ideas of Wilson and Kad-
anoff. '

A. On the connection to conventional renormalization theory

Qur cutoff theory was defined in terms of the
Hamiltonian density

X " = —,
' v2(x)+~(V(j))'(x)+X[(j)'(x) —f']' . (4.1)

We now seek a way to redefine X so that it will be
finite even as A-~. As is well known, the only
divergences in the (1)' theory in one space and one
time dimension are those associated with normal-
ordering. ' Normal-ordering the first two quad-
ratic "free field" terms in (4.1) gives a term pro-
portional to A', while the (j)' term, as illustrated
by the Feynman graphs of Fig. 6, contributes
terms proportional to lnA and ln'A. Hence, once
we define the Hamiltonian density N(X "s) to be
normal-ordered with respect to an arbitrary mass,
and require the coefficient of every term to be
finite in the limit A- ~, the resulting Hamiltonian
will define a finite theory. To carry out the nor-
mal-ordering we introduce a momentum basis

(t)(x) = dx e'" (j)((f),

(4.2)
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(b) (c)

verified from (4.1}and (4.4}. The Hamiltonian
(4.1) can now be written as

X " = N„2(2 &'+ 2 (VP)'+X/ )

+(-2''+6k(P')22) N22(p')

+(—,
' v' +-,' ( Vp)' —2kf2$')„2+ 3A(( j)')„2)' .

(4.5)

FIG. 6. Feynman graphs giving rise to logarithmic
divergence in the Hamiltonian: (a) contribution to the
vacuum energy (InA); (b) contribution to the vacuum en-
ergy (In2A); (c) contribution to the coefficient of the
term X/2((II' ) (lnA).

and define a, and a, by

Defining a mass

n22 = —4Xf2 +12k(p )22

we have

3C
'""'"= N 2 (—v ' + -

( Vp)' + - m 'p' + XQ')

+const&&(tj2, &,f'),

(4.6)

(4. ?)

a'4(&) =
(3 („.)) .( —,+,)

2 -Z/2
iv(q) =— ' (a, —a,),

where

o,(t ') -=(~'+ u')"

which represents, up to a divergent c-number
term, a finite normal-ordered Hamiltonian, pro-
vided ni' and & are finite in the limit A —~. If we
now introduce the dimensionless units as used
earlier in (3.18), X and m' may be chosen to be
finite as A -~ if and only if the dimensionless pa-
rameter Xo vanishes as

and p.
' is arbitrary. We can then write the terms

in (4.1) in normal-ordered form:

A.
~ =—-0 as A-~ (4 8)

p'(x) =N22(p'(x))+(p')„2,

g'(x) =N22(p'(x))+6($2)„2N„2(p'(x))+ 3((p')„2)',

(4.3)
(Vp) (x)' =N„2((VQ)'(x))+((Vp)'(x))„2,

v'(x) =N22(v'(x))+ v'(x)) ~

In the infinite-volume limit, with k = nA, we find

by straightforward calculation

1
2w

mA

(t 2 q p2)1 f2

1 mA mA= —ln —+ 1+—2' p.

xA

(7f 2) 2 = dy(J22 y i22}&?2
2w,

(+2 + v2A2)l/2 & +2(42) (4.4)

1 " k'dk
&( 4)'). - 3, („2. 2)i~2

An important observation at this point is that
from the point of view of rendering the theory fi-
nite, normal-ordering with respect to one arbi-
trary mass p' is as good as normal-ordering with
respect to any other mass. The difference is given
by finite terms in the limit A -~, as can be readily

and, in (4.6),

f' =f,' = 3($2)„2—in(A) as A —~ . (4.9)

In other words, if we wish to study lattice theories
corresponding to conventionally renormalizable
theories we have to look at the region where X,«1
and f,'»1. These conditions ensure that the di-
mensional parameters ~ and m' are small with
respect to the cutoff A. Clearly this is not the
range we have been considering. Indeed, the sin-
gle-site basis gave a lower upper bound on the
ground-state energy than the momentum-space
calcuation only when the coupling parameters were
in the range X, -3, f' -1. We emphasize, however,
that even though the corresponding lattice Ham-
iltonian does not define a finite theory for this case
in the limit A -~, this example is of interest in
itself. In particular, it possesses low-mass col-
lective or quasiclassical-extended states as we
saw in (3.68) for any arbitrarily large finite value
of A.

Now we are in a position to answer the question
raised in the introduction to this section: Why
does the single-site calculation eventually lose to
the momentum-basis calculation as &0 gets smaller
(-1/A')'? The point is that the normal-ordering
divergences of the theory, which in one space and one
time dimension are the only divergences, are ex-
hibited exactly by the momentum- space calculation
as seen by comparing the quadratic (A') as well as the
logarithmic (lnA and ln'A) terms in (4.4) and (4.5)
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with (2.35} and (2.36) and observing the similarity
of (2.37) with (4.6).

Hence we can write for the ground-state energy
density calculated in the momentum basis

~momentum pA + p nA + pin A + ~momentum

(4.10}

where the coefficients +p +p and Cp are exactly
what they should be for the true ground-state en-
ergy of X ", in particular in terms of a cutoff
k =@A, Ap=& w, which follows directly from
(4.4) and (4.5). S~"„« is larger than the true
A-independent part of the ground-state energy
density since the variational procedure gives an
upper bound. As far as the single-site calculation
is concerned, the energy density S,(J), by (3.33),
(3.36), and (3.48), has only a A' divergence and
we can write

~ahgle+te +p A + ~ahgfe-site ' (4.11)

In particular, for X, -O we can use (3.51) and
(3.48) to evaluate the coefficient A,', which is larg-
er than the corresponding one in the momentum-
basis calculation:

A,' = 2 [D(0)]
' ' = ~ = ~- A, &A, .

It is clear therefore that if we hold X and f' fixed
and take A- ~, eventually we must have

$«,s~« —$«,«m«« = (Ao -Ao) A —Boln(A) —Coin (A)

density in these trial states with the calculation in
the momentum basis involved finite parts alone.
Of course, we also demand that this class of trial
states not produce any problem like the tricritical
behavior found in the momentum-space calcula-
tion. It is the purpose of Sec. IV Bto indicate a way
toward accomplishing these goals.

B. Block wave function

The block wave-function formalism is a general-
ization of the single-site approach used in Sec. III
which allows the correlation of a finite number of
neighboring lattice sites to one another. It has the
advantage of enlarging the space of variational
trial states while still reducing the problem to a
Schrodinger one with a finite number of degrees
of freedom. Our starting point is to assume that
the lattice is subdivided into B blocks, B =(2b+ 1),
of length L, =(2l +1)/A (see Fig. 7). The total
length of the lattice will, therefore, be L =&L,.
The points on the lattice can be labeled either by
(j)=(-N, N), L =(2N+1)/A, as used thus far, or
alternatively we can introduce j' and n such that
j'=(-l, l) and (a)=(-b, b) so that every j can be
uniquely written as j =j'+L& a; a labels the block
we are in while j' labels the points within the block,
and L, =AL, . Adopting this notation we introduce
a trial state as a product of block states:

1 ApA )0 4 12

(4.13)

The reason the single-site calculation with Ap-3,
f,'-1 produced a lower bound on the energy than
the momentum-space one is that, for these pa-
rameters, the bare mass is comparable to the
cutoff, and the cutoff-independent part of the en-
ergy density, i.e., the term we have called Sh",
is comparable to the ones of order A', ln(A}, and
ln'(A). Since in this region 8~™„«&S«o«„««, the
single-site calculation wins. This, of course,
tells us that when the finite part of the momen-
tum-space energy gets smaller than the divergent
parts, the momentum basis will win. Therefore,
if we wish to extend our variational calculations in
a site basis into the region of coupling parameters
with Ap«1 and f' » 1 and at the same time obtain
lower bounds on the energy than the momentum-
space approach, we must construct a class of trial
functions that reproduce with arbitrarily high ac-
curacy the coefficients +p +p and Cp of the terms
that diverge as A -. Only then can we claim
that the comparison of the ground-state energy

= lattice spacing
1
A

Example

N =4
X X X X X X X X

-4 -3 -2 -1 0 1 2 3 4

b =1. 0 1

j': -1 0 1 -1 0 1 -1 0 1

AL = 2N+1 = 9

Lb AXLb = 24+1 = 3

B = 2b+1 = 3

FIG. 7. Block l.attice notation.

l g(o')& is a general trial state in the space of states
generated by applying arbitrary polynomials in
a (j'+L~n) to the state II& lOJ I „) [defined in
Eq. (3.26)] for n fixed, and j' varying over {-I,I).

Taking the expectation value of the Hamiltonian
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(3.19}in this trial state we obtain
+b +l

&4™

IHIP'

& =A g 7(l(a) p [2p(j .IxI y) +)(&(x(ji+~-, )'- fo')']
a= -b j'= -l

~ l g P&( jl- )l)*(i,.—,ii(i;..—,i) 7(ii))
f1 &f2

+A g p 2 D(j,'- j.'+L.(a7 —+))&4(a7) I x(j;...i,)14(a7)& &0(w) I »& 7,+~a, ) I O(w)& (4 14)

1 1 1'2

Since we are interested in the ground state we assume that all of the 1$(a)& are constructed in an identical
way. This construction preserves invariance under the translation from one block to another. To calcu-
late the energy density we can suppress the a label, since summing over a produces B identical terms.
This reduces our problem to finding the state which minimizes the following Schrodinger problem with L,
degrees of freedom:

1 1 +r 2 1 +

( 7(&l 7)
= 7 7 P ' ~ & (*,* 7.*)' ~ —-P (l D(7, 7.) «i *i ) 7)-

b j l
—2 1' 2

a if

(4.15)

g ( V(»j &)' = g D(j, —j, + L(,(a, —a, ))
a, f a1 ~ a2

f1,j2

x(x, &(x, &. (4.16)

where we have used the fact that (xj,„j,& =(xj) and
introduced the notation

with respect to the L, parameters Jf.
In principle, an exact solution for the ground

state of H(J) will give a lower value for the upper
bound on the ground-state energy than that given
by the single-site basis. Therefore this will yield
a better bound than the momentum-basis calcu-
lation for a large range of parameters )(, and f,'

+2 D j1 j2 +f +f
j1 if2= l

(4.1'I)

for arbitrary Jj, with (xj) held constant. Defining

I(Jj}=ground-state eigenvalue of {H(Jj}j
and noting as before [see (3.35)]

81' 1 1= = &x, &
-== x(J,), (4.18)

our problem reduces to minimizing the function
+l

(g(Jj) =I'(Jj)+= Q Jjx(Jj)
b

, p —,'(v(, &)'

a, f

W D(j, —j,) x(Jj ) x(Jj ), (4.19)

As in the single-site case the terms proportional
to (xj)' complicate the minimization problem and
so we introduce the Lagrange multipliers Jj and
solve first for the ground state of

+l

H(Jj) —== Q [gPj +)(xj('of)' —oJjxj-]
b

C. Hybrid calculation

In practice the general solution for the ground
state of the Lb degree-of-freedom Schrodinger
problem is difficult to obtain. In particular, each
(x, ) and J, will be a function ofj due to end effects
on each block. However, the (x, ) will, for most
lattice sites, become independent of j as L, -~.
In other words, for the large-Lb limit we expect
that the difference

+l

(x, ) ——Q (x, & =-x(Jj) -»
b f= -l

(4.20)

+l
H(J)= = P [-,'P '

Xj,(+'xfj')']
Lb

+l +l
+Q Q D(j, -j,)xj xj J»j

Lbj,j= l1' 2
j=-l

(4.21)

will go to zero like I/L7, for most of the L(, » 1
sites within each block. With this in mind we min-
imize ($1H(Jj) lg& only over states such that
x = (I/L7, }Q j~ 7 (xj) is held fixed, and we construct
8(Jj) by replacing x(Jj) by x. One accomplishes
this technically by introducing a single Lagrange
multiplier J to replace the individual Jj in (4.1V):
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Defining next

I'(J}= ground-state eigenvalue of (H(J)],

we have
(4.22)

8I'——= =Y (x~)=-x{J}. (4.23)

We then construct

(4.24)

where we have obtained (4.24) from {4.19) by re-
placing {x(J,)) by x(J) and using the fact that
(4.16) vanishes according to (3.31), i.e.,

g D(j,' —j,'+ L,(a, —a, )}=0.
e~,y~

d(X~) is defined by

(4.25)

(4.26)

Minimizing with respect to J yields [see (3.43)
and (3.45) for x,« I,

when [c,n(X, ) —1]&0; otherwise x, =0.
Note that we would incorrectly predict tricritical

behavior, as in the momentum-space calculation,
if we take the limit X,- ~ so that n(L,)-0 without
paying attention to what happens to the product
c,n(X~). In this limit, the sign of the coefficient
of J' in (4.28) is positive independent of Xo and

fo; hence for all coupling strengths, J= 0 becomes
a local minimum and we run into the gricritical
problem. However, the sign of the J' term in
E{J)does, in fact, depend on the parameters X,
and f» as we found earlier in the calculation of

and has the important property that' for 1.~»1,
(4.27)

It is of crucial importance to what follows that
although n, (L,) decreases with increasing X~ ac-
cording to (4.27}, at no stage is it actually zero.

Following a procedure similar to the single-
site calculation, we note that the term (J'/X, ) gx&
is, for small J and finite X~, an analytic perturba-
tion of H(J= 0); so we expand x(J) as

x(J) = c,J(1+c,J'+ c,J + . . ) .
Repeating the steps leading to (3.40), with n(X,)
replacing D(0) there, we find

Sec. IIIB for the single-site basis. Care is re-
quired in taking the L,,—~ limit in such a way that
c,b, (L,) is held fixed. We show how to do this in

detail in Appendix D by bounding the energy eigen-
value (4.28) by means of a momentum-space cal-
culation within each of the individual blocks; that
is, we use the method of Sec. IG, but keep 1.,
finite. We find that, as A and I.,-~, we can take
&,—0 and f,'- ~ in such a way that x, is held fixed
and arbitrarily small. In particular, A.,—0 as
1/X, and f,'- as lnL„so that this limiting pro-
cedure also renders H ' " in (4.V) finite if we
make the association of L,~ with the square of the
cutoff, i.e., X~ ~A' in (4.8) and (4.9).

As L,,- ~ the variational energy found by this
hybrid method of a block basis, and within each
block a momentum basis, converges to the
momentum-space answer from above. Hence
as shown in Appendix D, the block basis pro-
vides us with a technique of calculating which
does not produce mathematically forbidden or
unphysical behavior and at the same time yields
bounds on energies that are as good as those ob-
tained from the flawed (by tricritical behavior)
momentum-space calculation. Our hope, which
we shall try to motivate in Sec. IVD is that a.

more detailed use of the block formalism will
enable us to do even better for the ground-state
energy.

D. Extending the applicabiTity of the block formalism;

a scaling argument

We conclude this section by formulating a pro-
cedure for systematically improving on the vari-
ational calculation for the energies of low-lying
states.

The nature of our approximation in the site basis
can be stated as follows: An accurate treatment
of the "potential terms" involving fields at the
same lattice site, viz. X,(x&'- f')', is possible,
but the gradient terms coupling different sites are
approximated only crudely. In the single-site
basis the correlation between different sites is
retained only in the fluctuations about the average
field, i.e., the term 2D(0)((x') —(x)'), plus the
classical derivative term for the kink energy in

(3.5&}. With a generalization to the block basis
for studying the ground-state energy we have in-
cluded the correlations between sites within the
individual blocks, but not between different blocks.
Evidently the block procedure irxyroves as the
block size L,, increases. It is, therefore, of
interest to determine how big the effect of the
gradient terms is, how the accuracy of repre-
senting them improves with increasing X„and
how large a value of I,, is needed for reasonable
accuracy as a function of the parameters X, and fo'.
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( )
1 2

(4.30)

where we use dimensionless canonical variables
and measure energy in units of the cutoff A. Ho
is completely diagonalized in the momentum basis
with ground-state energy

Q (ga + //2)1/2

k

A2L
ch(a '+ Iaa/Aa)"'

2F Q

(4.31)

Note first that when the gradient terms are total-
ly ignored, the Hamiltonian (3.19) becomes a sum
of 1-degree-of-freedom operators at each site j,
and the spectrum of eigenstates at each site is
identical. The eigenstates of H are then charac-
terized by specifying the different individual levels
of excitation populated at each site. Barring ad-
ditional degeneracies arising for specific values
of Xe and f, the first excited state will be (2N+ 1)-
fold degenerate corresponding to having the ex-
cited level at any one of the lattice sites. When
the gradient terms are included in F.', their effect
is to lift this degeneracy; they also mix these
states in general with the ground state and with
the more-highly-excited spectrum. It is when
these gradient-induced splittings are small rela-
tive to the spacing between the single-site excited
states that the site basis is expected to provide a
reasonable picture of the true ground state.

This feature can be displayed simply in the ex-
actly soluble example of the quadratic Hamiltonian
with positive mass:

1
+ ——+D(0) x '

2 2A' f
j

There is a gap of mass p. to the first excited
(single-particle) state, i.e. ,

Ecx Ecx (4.32}

and the splittings among the excited single-particle
states are expressed by

2'Z ex(22) Zex ~2 + A2
2N+ 1

(4.33)
with n =0, +1, . . . , aN,

The single-site variational basis as in Sec. III
gives a ground-state energy

A2L
goee-&1e — [D(0)+ ~2/Aa]«2

2
(4.34)

and a gap to the first excited state

geee-a1e gexeeae [&2+A2D(0)]1/a (4.35)

where D(0) = aa' in the N-~ limit [see (3.12)].
The site calculation gives a result for the ground-
state energy and for the first gap whose accuracy
is measured approximately by the ratio

A'D(o)/u'. (4.36)

The quantity [lax+ A'D(0)]'/' measures the gap to
the mean energy of the (2N+ 1) degenerate 1-par-
ticle excitations of (4.30) and the gradient intro-
duces splittings among levels of order = (Aa/p, aN )l/,
= (1/paL2) p, , with the total splitting being-[(pa+
+ A2)1/2 ~]

Clearly the single-site basis gives an accurate
result when A2D(0}/pa &1, in which case the ground-
state energy is a.ccurate to better than 3% and the
gaps between higher excitations in the single-site
basis are large compared with the splittings among
the degenerate one-particle levels and hence are
relatively unimportant. The ratio

[splittings among degenerate excitations at individual sites]
[interval between excitation energies of single-site spectrum]

(4.37)

is a measure of how well the gradient is approx-
imated by the single-site basis. When R «1, the
single-site basis is expected to be a very good
approximation. However, if this ratio is not small,
we require a more accurate treatment of the gra-
dient terms.

This suggests using the formalism of the block
functions, and working in a momentum basis within
the individual blocks. In this way we lift the de-
generacy among L, single-site levels within a
block and produce more accurate upper bounds
on the ground-state energy. Couplings between
the different blocks are introduced via the re-

maining terms of the gradient operator, but these
couplings will induce smaller splittings since the
"typical" separation between lattice sites in two
different blocks is Z, &1 and the coupling strength
between them is proportional to

D(j i')--1 1
L~

An iterative procedure based on working with
larger and larger blocks formed by combining
smaller block units and including site-site coup-
ling via the gradient terms offers the promise of
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a calculable and convergent procedure for a broad
range of ratios R.

Returning once again to simple exactly soluble
Hamiltonian H, in (4.30), we can illustrate the
rapid convergence to the exact energies as the
block size grows. It is easy to carry out the hy-
brid calculation if the lattice is divided into blocks
that contain two sites each, and within which we
use a momentum basis. The ground-state energy
becomes

@two st'te jggg[D{0) D(1)+ ~2/g2]1 a

+ [D(0)+D(1)+It')}'A']t~') (4.38)

and the gap to the first excited state is

H txxo-cite

@taoist

te /~2 + At [D(0)+D(1)]]t/2

= [It +0.4D(0)Ae]'i . (4.39)

Comparing with (4.35) for the one-site result, the
two-site basis is seen to converge for smaller
values of p, 2.

More generally, we can abstract from these ob-
servations the following scaling argument for il-
lustrating the value of the block formalism in
extending the regime of parameters over which
the site basis can be applied. First, we regroup
the terms in (3.19), using (3.10) and the notation
of Sec. IVB, i.e. , the lattice is divided into 8 =2b+1
blocks each of length Tb =2l+1 and we carry out
the sumg=g'+nl. , wit (j']=]-f,f] and (a)=( h, h):

B QQ—(lp, =.'( ) X,x(x,+.*(x) f, )')x l-Q'e((, —) }x, (x)''x, (.x)).
+-,' D(X,(nt —n, ))g xj (n, )x, (n, )+-,' D(j,' j2+Z, (-a, —a, ))x, .(n, )x, (a,),

1 2 ~ 1 2

(4.40)

where we have adopted the notation x, (n) =x(j'+ aX,). Rescaling the fields according to the canonical trans-

formationn

p g-1/2p

and using (3.12) so that for n, 4a,
D(X,(at —n, )) =X, 'D(n, —n, ),

we obtain

(4.41)

(4.42)

H = =(f),+ I),),
A

Q Q (4.43)

where

Q {ape'(n)+ 2Z,'[-4It,j'+ D(0)]x,,'(a)+ Z,'It~, ,'(n) + X,It,f'] +-,'X,' Q D(j,' j,')x,'(a, )x,—.(a,)
0( SPJ2

+ P D Q1 —+2 XP Q1 X «, Q2

( )J j (t)e( I- e&()xgt()2}

Jt Je+ f ()(at ae)

(4.44)

II, in (4.44) defined a, theory of an interacting
Xb-component field x, with a large coupling con-
stant XQXb' and a mass matrix

M, , '=T'[D(j,'-j,') —4X,j'5, , , ].
This mass matrix can, of course, be diagonalized
by an orthogonal transformation mixing the dif-
ferent components of x„..(a) only within the indivi-
dual blocks n. In general, the mixing only couples
a finite number of neighboring field components
as Xb grows large since the long-range order in

D(j,' —je) decreases in coupling strength a.s (j,'
—j,')~, according to (3.12). Moreover, it is impor
tant to notice in (4.44) that the block-block inter-
action in gQ is given by the gradient term which
has no powers of Xb in it. Therefore )„ for large
X» is almost local within individual blocks. Fur-
thermore, the "potential" bQ contains no powers of
Xb. We conjecture, therefore, a good starting
point to calculate the ground-state energy for large
enough Xb is in terms of gQ and a trial ground
state constructed in a single-site basis. As we
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argued earlier, this approximation gives a good
bound on the ground state energy when Lb Xo ~ Zb
i.e., the potential term is greater than the gradient
term. For increasing Zb& 1, this allows to us
enter the regime of small A., with this method, so
long as we satisfy X,& lv L,

This block-basis resummation argument is sim-
ilar to our block-basis calculation of Sec. IV C;
in both cases, the problem is reduced essentially
to an Xb-degree-of-freedom Schrodinger problem.
Of course, for large Xb, this is still a very com-
plicated problem to actually solve and therefore
we would like to do the regrouping into blocks
in stages, with each step a small and readily com-
putable problem. At each step we group the de-
grees of freedom into blocks of small length (with
perhaps 7, e(lual 2 or 3), and introduce block
degrees of freedom. Within each block, we want
to lift the degeneracies in the single-site problem
as already discussed. Although this could be ac-
complished in a k basis for the exactly soluble
quadratic Hamiltonian, as we illustrated, in the
general strongly coupled P4 theory a more accurate
treatment of the single-site problem is required.
We have not carried out a detailed analysis of this
general problem, but in concluding this chapter
we sketch a procedure which offers the promise
of systematically improving the ground-state de-
scription.

Let us return to (4.40) which we group now into
two terms, H =H, + V, where H, contains the single
block terms and V contains all of the block-block
coupling:

conjugate operators [jI,.(n), x„(a)]=-i5„„,and
the basis functions satisfy

"n & ~e &

We perform the variational calculation for the
"best" u„(j') by minimizing H, (n) in a trial ground
state containing the first n = 1,2, . . . , 0 excitations
in the u„(j') eigenspectrum; see Appendix B for
the general formalism. The cutoff at n =o de-
pends on one's strength in solving the Z, -degree-
of-freedom problem defined by H, (n). Having thus
constructed a trial basis, we rewrite H in terms
of the truncated set of n=l, . . . , o solutions u„(j')
and the 2Z, x o' operators x„(n) and P„(a).

As a second stage we now form new blocks, or
"super blocks, " each containing again three (or
more generally X,) adjacent blocks of the first-
stage decomposition. The terms in the newly
constructed H are again regrouped into two terms,

H =H, +T',

where

N, =$2(,(2)

contains single super-block terms and

contains all of the coupling between different
super blocks. The summation indices are n = o.'

+Xbp, with o."=-1,0, 1 when, for example, L, =3.
The number set

H =Ho+ V,

Ho= H (c(),

V = g V(o(„n,)
Of) il Of

(4.45)

(2N ~ 1) (2N+ 1)
Ig 2 2 2L

labels the different super blocks. We again expand
the canonical operators as in (4.46)

«„(f).) =-x„,(p) = Q u (n')x„(P),
This grouping differs from (4.43) and (4.44),
which included some of the block-block coupling
in ), as defined. Stage one of our procedure is to
construct a good variational basis and accurate
energy eigenvalues for the low-lying states of
H, (a) for a single block n. We do this by choosing
a small block size containing, for example, three
sites only so that L, =3. The variational calcula-
tion is performed by expanding in an orthonormal
basis

x, (a) = g u„(j')x„(a),
(4.46)

if I.,=3, j' =-1,0, 1, where x„(a) and p„(a) are

if L, =3, n' =-1,0, 1, and repeat the process as
before. This gives a rewrite of the original H in
terms of the (2L~o)' operators x„(P) and p„(P).
The process may be repeated p times until the
desired super-block length Lb=3~ is achieved. In
this way, a set of fields x„„andp„„will
be constructed that in principle are free of degen-
eracies in their frequencies and include a reason-
able approximation to the nonlinear effects con-
tained in the X,(x,.'- fo')' potential. Beyond a point
in the calculation, more traditional iterative
techniques are then expected to apply following
the scaling argument constructed in (4.44). This,
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at least, is the hope of the authors.
As outlined in this section, we have a procedure

reminiscent of the techniques described by Wil-
son and Kadanoff' for extending the region of coup-
ling parameters for which our site-basis variation-
al methods can be applied. %hat remains to be
provided is its implementation and substantiation
as a rapidly converging, Practical and systematic
procedure.

V. REMAINING PROBLEMS

Our primary physical motivation in developing
the nonperturbative variational techniques de-
scribed in this paper is to understand quark con-
finement in the context of a local canonical quan-
tum field theory with strong eouplings. According
to the current folklore, this implies solving a non-
Abelian gauge theory of interacting fermion quarks
and vector mesons. Vfe have not yet applied the
techniques used in this paper to this model and
therefore have no idea whether or not there occur
spontaneous breakdown of continuous symmetries
and low-lying coherent variational states that rep-
resent confined color singlets. From a more fun-
damental point of view, the nonlinear self-coupled
scalar field introduced in (1.1}may be nothing
more than a phenomenological crutch in terms of
which to exhibit the mechanism of spontaneous
symmetry breaking. The nonvanishing vacuum ex-
pectation value ( 4)) may in reality be products of
fermion fields, viz. (T))g) or (()T)y„g)') in the sense
described in the earlier studies of Nambu and
Zona-Lasinio. "

We have made a Pre/imas+~y investigation based
on the variational methods of this paper of the the-
ory of a fermion field interacting linearly with the
scalar field of (1.1) in one space and one time di-
mension. Results achieved thus far indicate that
the fermion gives up a finite fraction (-2) of its
mass when confined to the potential well it forms
in the scalar field configuration in the ground state.
The complete canceling of mass achieved in the
elassieal kink state does not occur when the quan-
tum fluctuations are included. These results will
be described in a subsequent paper now in prepara-
tion.

In a fundamental way, we are of course limited
by the very nature of our variational approach to
establishing upper bounds only on the energy val-
ues. This makes it particularly important to @nose

how accurate our ground-state calculations are
since we wish to identify the difference of bounds
on the energies of the ground state and of the low-
lying kink states as excitation energies. Fortunate-
ly for the specific P' model studied in this paper,
new methods have been found by Pearson and

Blankenbecler' which yield lower bounds on the
energy. Thus the convergence of lower and upper
bounds can be studied and the aecuraey of the
ground-state energy assessed.
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4$(a„c)= —Q 2(k'+a, ')'~'—
+ao )

+
3 f(a, )'+

3
(3c'-f')f(a. )

4x — 8x

+4X(c'-f')', (A 1)

3 1
2)' ~(a'+ ')'") ' (A2}

The variation with respect to zo and e gives at the
extremum

s(4g 2 sf
[—a, '+4k(f —f'+3c')] =0,

s(4g) =16Ac(f —f +c')=0.
Bg

(A3)

(A4)

The analysis for the maxima and minima demands
knowing all of the second derivatives

6'(4g) 2 sf sf

+ —[-a,'+ A(f —f'+3c')].(A5)

where by (A3) the second term vanishes,

=16k(f +3c' f'), —(A6)

s'(4S) s'(4h)
O~g ~g~~o

APPENDIX A

In Sec. II we stated the results of the variational
analysis of the momentum-space ealeulation which
led to the tricritical behavior in the strong-cou-
pling regime. Here we shall elaborate a little
more on this analysis.

In Eg. (2.36) we have derived the expression for
the energy density
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Direct differentiation shows that Bf/Ba, is abso-
lutely negative. Returning to Eqs. (A3) and (A4) we
see that c =0 is always a solution. Then a, is de-
termined from

2' + f' =f(ao)

which always has one positive solution (see Fig. 1).
The determinant of the matrix of second deriva-
tives at this root is

B'(4h}

~
B'(4 g)
acbcr -2&0+4~

2~0+ 4y p
=det 0 0 ~p (A8)

c' = f' —f(a ), (A 9)

Hence c =0 corresponds always to a local mini-
mum. For f' &0 this is the only solution. However
for f' &0 there may be another solution according
to (A6}

The degrees of freedom p(j) and v(j) can be ex-
panded in terms of a complete set of eigenfunctions
$u„}of any Schrodinger problem. In the Hartree-
Fock approach the "best" Schrodinger problem is
determined self-consistently as follows. We ex-
pand

(A10) p(j) = P g )g/2 [u„(j)a„+u„*(j)a„'],

Next, we can calculate the determinant of the ma-
trix of second derivatives at this root and get the
condition for it being positive: [a„,a']= 6„

~a sf
4A. 8a, ,

(A 11) The u„'s form a complete orthonormal set

Quf(j)u„(j) = V5„
The equality sign holds at the point of tangency of
the two curves: - a/08+)(f' and f(ao) [see in this
respect Eq. (A10} and Fig. 2(b)].

Once f' becomes positive enough so that Eq.
(A10) has two solutions [Fig. 2(c)], the solution
which satisfies Eq. (All) corresponds to a local
minimum while the other corresponds to a local
maximum. As drawn in Fig. 2(c), point 2 is the
local minimum and point 1 is the maximum.

APPENDIX B: HARTREE-POCK VARIATIONAL

CALCULATION

Q u„(j')u„(j)= V6

The variational wave function is

where

(H4)

In this appendix we review the general Hartree-
Fock approximation as a variational calculation.
We use the discrete lattice notation of Sec. III,
starting from the Hamiltonian

and

8IA(j)lp& =g(i).

a„, g, and (uQ will be our variational parameters.
It is now easy to compute the expectation value of
the Hamiltonian in this trial state:
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1 ~ u„*(j)u„(j} 1 ~ vu„*(j)vm„(j) Sx 1 ~ u„*(j)u„(j) 2~ S~ .
]

1 ~ u„*(j)M„(j)

+ M&z( ))) +'&4' -f*)').

Variation with respect to the e„'s and g gives

guf(j)[-n„' —V'+4k(f -f'+Sg')]u„(j) =0,

n„'s which enable us to construct a new f (j) [Eq.
(BV'}]. Using these equations in the expression
for the energy [Eq. (85)] we find

[-V +4k(f -f +g )]g(j)=0

where

."())~.()))

(86)

(87)

(87') where

81 1 ~ I ~ „"(j) „(j))' (813)

The variation with respect to the basis functions

(u„j has to be done a little more carefully due to
the orthonormality of the u„s [Eq. (83)]. It is
therefore necessary to introduce Lagrange mul-
tipliers when varying over the u„'s in

(86)

obtaining

g (o.„'6„—4n„S„„)u (j)= [V' —4X(f —f'+ Sg')]u„(j).

(89)

Multiplying Eq. (89) by u„(j) and summing over j
we get [using Eq. (86}]

(810)

The set of equations (86) through (810) is clearly
very complicated. We can simplify the equations
somewhat by looking at a particular set of solu-
tions which are obtained if we specialize Eq. (86)
to

[-().„' —v'+ 4x(f -f '+ Sg')]u„(j)= 0. (811)

Clearly any solution to this equation is also a solu-
tion to Eq. (86). Using this equation in Eq. (89)
we obtain

(812)

Therefore Eq. (Bll) is consistent with Eq. (89).
Equations (87) and (Bll) give a set of self-con-
sistent coupled eigenvalue equations. The solution
can be, in principle, obtained by an iterative pro-
cess. Starting with a given f(j) we can solve Eq.
(BV) for g(j) and then Eq. (811)for the u„'s and

(814)

For f =0 the set of equations reduces to the
Dashen, Hasslacher, and Neveu equations. Since

f arises from the two-loop normal-ordering con-
tribution, setting f to zero leaves us with the one-
loop approximation. It is important to note that
including the simple normal-ordering two-loop
contribution yields an upper bound on the energy.
Note also that the one-loop approximation f = 0 is
not a good starting point for iterations. It is well
known that owing to translation invariance Eq.
(811)with f = 0 and g =f tanh(2X)' ~2f(x —x,) [which
is a solution of Eq. (BV) for f =0] always has a
zero eigenvalue no =0 which in turn will make the
new f [Eq. (87 )] divergent.

The momentum-space calculation in Sec. II is a
particular solution to the Hartree-Fock set of
equations for constant g and f

APPENDIX C: A SIMPLE VARIATIONAL CALCULATION

In this appendix we present the details of a cal-
culation for variationally minimizing Eo(g) in

(3.32) using the trial state

(Cl)

where ~0 ) satisfies (3.26), with u a variational
parameter. Instead of introducing a I agrange
multiplier, the constant displacement c is intro-
duced as a variational parameter:

(C2)
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and

8E 3—= 0 = 4cA —+ (c' f')-.
8c ' 2a (G4)

According to (C4) the extrema are either at
c =0 or c'=fo' —3/2a.

Case 1: c=o. Substituting c=0 into (C3) yields

a' —D(0), 3
4A., ' 2u ' (G5)

which has a unique solution. In order to determine
whether this is a local maximum, minimum, or
saddle point, one must take the matrix of second
derivatives and evaluate it at c =0. Straightfor-
ward computation yields

To minimize E(u, c) with respect to the variational
parameters a and c we must solve the equations

BE 1 3 3co f -D(0)
8a 4 2n' n' 4a'

which can have either two, one, or zero solutions
depending upon the values of foo and Xo. If f,
is large enough, for fixed Ao, (Cll} has two so-
lutions corresponding to the two intercepts in

Fig. 2(c). In order to determine which of these
is a local minimum, we take the matrix of second
derivatives, finding that

Q 3
4AQ 2@2 (C12)

is the condition for a local minimum. Graphically
it is easy to convince oneself that only the root
corresponding to the larger value of n is a local
minimum.

We next want to determine whether this root
can move smoothly toward c' = 0 when fo'-f„'
so as to guarantee that the c =0 root is not a min-
imum until fo' =f„'. Returning to Eq. (C12) it
is easy to find the two roots in the two limits
A. - and A.Q-O:

BoE 2 D(0) 3, 1 3Ao
8~2 ~3 4 P g~ fQ ~2 2~2

(C6) A,
Q

0:

2 ~ g 2 3=8 ofo~ uo=
2f oi
Jp

j./2 12m,a, =D (0), u, =

(C13)

which by (C5) is just

8 E 1 3A.

2a 2m~

In addition, one finds

82E 82E
=0

8c8u
Q

8a8c

(C7)

(CS)

We are interested in a, which is the larger root
corresponding to a local minimun. When ~p-~,

c =f2=2 3

while for ~Q-O,
and

8 E
=4k. -f o

8c g p 2QQ

= [ao' —D(0}], (C9)

c =f2=2 3
Q

2 3
2D'~'(0)

f 2f 0 f cr 2[ D(0)] 1/2 (C10)

Hence, as discussed in the text the term D(0)
eliminates the problem of a local minimum oc-
curring at c = 0 for fo'&f„o.

Case 2: c =fo' —3/2a. In this event direct sub-
stitution into (C3) yields

—a'+ D(0), 3
SAo 2a '

where a, is the solution to (C5}. Hence, if u, '
—D(0) is greater than zero the root at c =0 is a
local minimum; otherwise, it is a saddle point.
Referring to the discussion of (3.51), where the
identical. equation arises in our discussion in terms
of Lagrange multipliers, we see that c=0 is a
local minimum only when

0
JF

There exists, therefore, a critical value A. „such
that the c W 0 minimum obtained from the root
u, moves smoothly toward zero for fo'-f„' so
long as ho&A. „. Since f ' approaches f„' from
above we already know that the c =0 solution does
not correspond to a minimum. Hence there is
no tricritical. behavior. It is easy to check that
u =DV' and foo =f„' is always a solution of (C13).
Substituting this solution in the minimum con-
dition (C12) we observe that this solution cor-
responds to the local minimum moving smoothly
toward zero only for

u' D'go(0)
&1.

6 6

This is the same condition encountered in the
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analysis of Sec. III. We have remarked there
that we can relax this condition by allowing con-
figuration mixing instead of using just a simple
Gaussian.

If we drop the term proportional to D(0) in
(3.32}and in the development following Eq. (C2),
we recognize that the problem being solved is
simply that of the SchrMinger equation for the
anharmonic oscil.lator. The familiar properties
of the solution to that problem in both the weak-
and strong-coupling limits can be traced simply
in the above discussion, setting D(0) =0 every-
where. "

—l&j-l. (D3)

Next we introduce creation and annihilation op-
erators through the Fourier expansion

Xf = 8 Xk
ikf

e$kf 1 t(„—), .( + ),

Pf =i ~ Pk

(D4)

discrete set of allowed momenta within one block
is

+2 + jj. )2+f +f
j, 2

(D1)

I'(J ) is defined as the lowest eigenvalue of H(J),
and we shall determine an upper bound on 1 (J )
variationally by calculating in the momentum
basis. An upper bound on the ground-state energy
will then be found as in (4.24) by minimizing

APPENDIX D: MOMENTUM BLOCK CALCULATION

In this appendix we give a simple variational
block calculation of the ground-state energy where
we use the momentum-space basis within the
block itself. The. block wave-function variation
formalism described in Sec. IV leads to a Schr5-
dinger problem as in (4.21) with a finite number
of degrees of freedom:

+

H(J ) = — [-,'P, '+))0(x,' —f,')' —Jx, ]
b =-l

e'"p, —' a, -at

and the state IO) =Q, IO(k)), where

aal0) =0.

For each fixed value J our variational wave
function will be

lqtnal)
e-f (0)Za I0)

where the &oa's and c =(x) are the variational
parameters.

Using the notation

I'( „)=(0 "IH(J)I4 "),

x'(k) = g ( e""a 'a)
(j, -j.)'

a =D(0),

3 1

(D6)

e(J) =I'(J)+Jx- ~d(L, )x2 (D2)

with respect to the Lagrange multiplier J. The we calculate

I'((u„c) = ( ))' cf')' + ' c-'- Jc+ = a+ +-g(La) 2
1 (o 4)).(3c~ -fm)+~ 3g 1 1

2 T~ 4 4k — 4 Lo ~k

Z &k(f, -f2)1 1 (-)'a '2 . 1

L, , L, , (j, -j,)' 4~a

(D7)

Varying with respect to uk and determining the
extremum 81'/a~a =0 leads to

&u,
' =x'(k) +4+ 4))(3c' f'+f ). —

Defining ~ =-&u(k=0) we get therefore

+f' —3c' =f (&u)
4XO

3 1
2L ~ [[x (k) —x (0)]+(u ) '~'

&usa = [x (k) —x'(0))+u a,

where + satisfy the integral equation

(DQ)
where we have used the fact that x'(0}+&=&(L,).

Varying with respect to c implies at the ex-
tremum si'/sc =0,
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(D11)

Equations (D9) and (D10) are analogous to Eqs.
(2.30) and (2.31) in the pure momentum calcula-
tion and Eqs. (C3) and (C4) in the single-site cal-
culation. For J=O, c~-, =(x)~~=0 due to the
symmetry of the Hamiltonian. For small J we
can follow the steps in the single-site calculation
and expand

In order for c, to be negative

(D19)

h(L~)
or f f(~ =+I (L ))o

—
b

For large L, we can approximate

4A., Bf
84)

QJ p

while, from (D14) and (D17) we see that e«1 if
either

c(J) =c,J(1+c,J'+ ~ ),

&u(J}=&u,(1+v,J'+ ).
(D12)

cj.
(dp

(D13)

Substituting these expansions into Eqs. (D10) and

(Dll) and equating coefficient of the same powers
of J, we find x2(k) —x (0) = k'+0 1

3 w m'

f(~ )= —ln —+ 1+
277 (d 2

0 0

(D20)

(D21)

(D22}

C3= 6
(dp

4A.

(do

4Xp

(dp

Bf —1
8(d

Bf +2
0

1 Bf
(dp 8(d

0

3
2(u '(I'+(o ')'i'

3
2w(d p

where &uo satisfies Eq. (D10) with J=0 and c =0:

0 ( }bf2 f( )
0

(D14)

In order for the ground-state energy to have a
minimum at small J different from zero, the co-
efficient of the J' term in the expansion of (D2}
must be small and negative. Recalling Eqs. (D2)
and (D12)

3
2vB (L,)

Substituting Eq. (D23) into Eq. (D19) yields

A( —6(L )b

while the substitution into Eq. (D18) gives

(D23)

(D24)

$(J ) = I'(0)+ —'c,[1—O(L )c,]J'
+c,c,[4 —C (L,)c,]J'+ ~ ~,

this condition requires

e =——1 +6(L,)c,&0

Using Eqs. (D13) and (D14), we obtain

(D15)

(D16)

c(J.}=-(x.}=[f'-f«"(4})]

where

(D25)

& = „,' [f'-f(~.)].
0

(D17}
Note that for f' —f(d, 'i'(L, )) and r held fixed,
(x,) is constant. Of course as L~-~ this means

The minimization of $(J) with respect to J for
&&0 and c3(0 gives the critical value 4, and there-
fore the expectation value of the field in the ground
state,

c(J, ) —= (x,)
2

1 1-0 recalls (L) - —,
Lb L

f'-f(c' '(Lo))

—ln

4A., Bf

=[f'-f (~0}] ~
(dp 8(d

(D18)

This is precisely what is needed to define a finite
Hamiltonian in the renormalization limit (see the
first part of Sec. IV for details).

It is easy to be convinced that in the limit L,
I'(0) converges to the momentum-basis ener-

gy density [Eq. (2.36)] for the case(x) =0. There-
fore, keeping r fixed and small, in accordance
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with Etl. (D25), so that the continuum momentum
case is guaranteed to have its minimum at ( x) =0,
the energy converges (from above) in the limit
I~-~ to the momentum-space result. Since r

and f'- f(n'~'(L, )) are held fixed, we get the
momentum-space result still having ( x, ) e 0,
namely, without encountering any unphysical tri-
critical. behavior.
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