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Classical solutions of the massive Thirring model are found that describe the fermion
constituent solitons of multisoliton solutions of the sine-Gordon equation. The construction
of these fermion solutions is based on the inverse scattering transform for the sine-Gordon
equation. It is shown that the equations of the inverse scattering formalism transform into
the equations of the massive Thirring model through Coleman's correspondences between
the two theories. The charge structure associated with multisoliton solutions is made very
explicit by these correspondences. The 1-soliton, 2-soliton, and breather cases are dis-
cussed in detail.

I. INTRODUCTION

The sine-Gordon (SG) equation is an example of
a nonlinear field theory that possesses particle-
like solutions, the solitons and the breather, and
can be solved exactly by the inverse scattering
transform (IST) method. '' The IST provides a
powerful way of solving a wide class of nonlinear
equations whereby the nonlinear equation is re-
placed by an equivalent linear problem. ' ' Through
the inverse scattering formalism a 2-component
Dirac-type spinor is associated with each "con-
stituent" soliton of a multisoliton solution of the
SQ equation. On the other hand, the quantum SQ
field corresponds to the fermion of the massive
Thirring model. ' One can ask then whether the
IST formalism is in any way related to the mas-
sive Thirring model. In this paper we establish
such a relationship and show that Coleman's cor-
respondences' between the two theories can be
formulated on the classical level in a natural way.
The splnor associated with a constituent ' soliton
of a multisoliton solution of the SQ equation by the
inverse scattering transform can be interpreted
as the fermion wave function of that soliton in the
presence of all the other solitons. Using Cole-
man's correspondences the equations of the IST
formalism, for each fermion wave function, be-
come the equations of motion of the massive
Thirring model. A fermion field operator g(x) can
be defined within a given multisoliton sector. The
charge structure and the Pauli principle associated
with the corresponding multisoliton solution of the
SG equation are thereby brought out in a very
transparent way. The expectation values of all the
bilinear covariants of g in the multisoliton state
become sums over the individual "constituent"
fermion contributions.

In Sec. II we formulate the IST method in a way
that allows us to make contact w'ith the massive

II. THE INVERSE SCATTERING METHOD

The SQ equation in light-cone coordinates x
= (x' —x')/2, t = (x'+ x') /2 takes the form

Bx8,$ = sing . (2.I)

The defining equations of the associated inverse
scattering transform are'

&Ax
~xXx=2X2 2 Xz& (2.2a)

0 Sfx
~xX2 = 2X~+ Xp ~2

1
~(X' =2 e X2~ (2.2c)

1
~tX =2 e Xx (2.2d)

where we employ the notation $„=9„$. Equations
(2.2a) and (2.2b) can be considered as a linear
eigenvalue problem in x for any given t, where
the parameter a is the eigenvalue and the spinor

Thirring model and show how to construct the so-
lutions of the corresponding IST equations by
means of the BKcklund transformation. %'e dis-
cuss in detail the solutions of these equations for
the 1-soliton, 2-soliton, and breather solutions of
the SQ equation. In Sec. III we discuss the corre-
spondence of the IST with the massive Thirring
model and explicitly construct the fermion wave
functions for the 1-soliton, 2-soliton, and breather
solutions, and establish Coleman's correspon-
dences. In particular, the I-soliton solution of the
massive Thirring model turns out to be the same
as the one previously found, ' ' and we prove a
uniqueness property for it. In the Appendix we
discuss some aspects of the IST and the SQ equa-
tion.
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Q» = f»+2g sin

(2.4)

is the corresponding eigenstate; the spectrum of
g's depends on the "potential" Q„. The integra-
bility condition of the system of Eqs. (2.2) (i.e.,
S„a,y =S,a„y) plus the requirement that the eigen-
values a be t-independent implies the SG equation
(2.1). We shall also employ the notation

(x.X.i' )t

Xa2)

to show the dependence on the parameter g. We
observe that X, transforms as a scalar under
Lorentz transformations and not as a spin--,'

spinor. The procedure by which $=$(x, i) can be
constructed from Eqs. (2.2) is described briefly
in the Appendix. Here, we are rather interested
in the physical interpretation of the solutions X,
for every g. An arbitrary solution P can have, in
general, three kinds of eigenvalues a associated
with it: (i) a finite number of real eigenvalues,
say, a; (i =1, . . . , n) corresponding to the soliton
content of the solution, (ii) a finite number of
complex pairs of eigenvalues, say, a;, a&~

(i = 1, . . . , m) corresponding to the breather con-
tent, and (iii) a continuous range of imaginary
eigenvalues, a =ik (k real) corresponding to the
so-called "radiation" part of f. Asymptotically,
as t- ~ the radiation part dies out and Q splits
into pg individual solitons moving with velocities
', =(a, —a, ')/(a, +a, ') (i=1, . . . , n) and intom
individual breathers with velocities
~&=(la&I —la, l ')/(la;I+la&I ') (i=1, . . . , m). In

this paper we shall be interested only in multi-
soliton-multibreatheI solutions P, i.e., solutions
with no radiation part. Closed forms for such so-
lutions have been given in the literature. ' The EST

equations are intimately related to the BNcklund
transformation for the SQ equation. This connec-
tion is brought out by defining' a function Q, for a
given g and

2a-'sin
2

Symbolically

(2.5)

4'(x, I) =4tsn-', g(x, t)
(x, f) (2.6)

where a sufficient (but not necessary) condition for
Q to be a solution of (2.1) is that g and f satisfy

fgi~+ gfx~ fr& —.«-gx =2gf~

gg x~-gA''~ =ffx~ fxft. -
(2.7)

The BKcklund transformation expressed in terms
of g and f is defined by'

(frig)&. (f+ig) =2(f+ig)(f+ig), (2.8a)

-1
(frig)s, (f+Q') =

2 (f+ig)(frig), (2.8b)

where Fa,G=FG„GF, The f-and g d.efined by
(2.8) do satisfy Eqs. (2.7), and 4 =4tan '(g/f) is
related to f by the usual BNcklund transformation
expressed by (2.4} and (2.5). The solution

The meaning of this transformation is that, from
a given solution Q, it defines a new solution Q
that contains an additional soliton (with parameter
a). It can be interpreted as a "linear superposi-
tion" of Q with this soliton. Multisoliton solutions
are obtained from the "vacuum" solution Po—= 0 by
successive applications of B„e.g., Q =B, ~ ~ 3,
x f, . The inverse of B, is B, ' = B,.

We shall use Hirota's method' of constructing
the solutions y to the IST, Eqs. (2). This method
utilizes a new form of the Blcklund transforma-
tion and applies to solutions g which are express-
ible in the form

through the equation

of the IST equations (2.2} can be expressed' now

very simply in terms of f, g, f, g satisfying (2.8}
as

X2 k(~+) /2

Xx
(2.3)

f ig f+ig-
f+ig' " f ig- (2.9)

It follows, then, from Eqs. (2.2} that Q is also a
solution of the SQ equation and Q is obtainable
from @ by the application of the BKcklund trans-
formation with parameter a,' that is,

That these functions satisfy Eqs. (2.2) is shown in
the Appendix.

The preceding formulation of the Bgcklund trans-
formation can be applied to all multisoliton-multi-
breather solutions. We now use this formalism to
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construct the solutions to the IST for the 1-soliton
and 2-soliton solutions of the SG equation.

A. The 1-soliton solution

This solution is characterized only by one ve-
locity parameter a and is given by

BaB-a4 p BaBa 4p 3I p

For definiteness we may assume that a2& b' (this
is a Lorentz-invariant statement). We find for the
functions g and f

y =4tan-' g,
y. =4tan-' g

g —
eea

/~ e-ea/2

e, = ax+-a 't =y, (x' —v, x'),
(2.10)

2 . Oa —8~
g = —(a+ b)sinh

K 2

2 Oa+ 8~f = —(a —b)cosh
K 2

(2.14)

a-a ' a+a

x., =(f. +ta'. ) ', X..=(f. -tg. ) '.
We also find the following relations:

1 -1
aXa2Xa2 & ~x4a & a XalXal 4~tea y

-2X.'lX..=-'(1-e ').

(2.11)

(2.12)

According to (2.9), in order to construct the cor-
responding X, solution to the IST, we must undo
the Mcklund transformation to find g, f", and

Q =B 'Q. But since Q, =B,pp with fp:0 it follows
that P =Pp=0, and for f, g we can choose f=1,
g =0. Then, the two components of X, are

8, =ax+a 't, 82=bx+b 't, r&—= (a' —b')'t'.

We choose g, f so that (2.8) are satisfied (see
Appendix). To construct the two solutions X, and

X, of the IST equations (2.2) we need to find the
corresponding &f&, g, and f. For X, we must undo,
according to (2.9), the Bhcklund transformation
B„and we obtain Q =B, Q Bypp = fy i.e., the
1-soliton solution with parameter b, and we have
already found the corresponding f, g. Similarly,
for the X, we have p=B, 'Q=B, Qp=p, . We have
then

fs —iA .f~ + iA
f+gg ' "" f -ig '

(2.15)

These will be used in Sec. III to establish Cole-
man's correspondences. The parameter a can be
positive or negative, corresponding respectively
to the soliton or the antisoliton; it can also be
complex, leading to a complex-valued solution
Q„such solutions are used to build the soliton-
antisoliton bound state, i.e., the breather. Com-
plex conjugation defines a different solution, i.e.,
(Q, )*=Q,2, therefore, in order to have quantities
referring to the same eigenvalue in the left-hand
sides of (2.12), we must define in this case X

=(x.*l)*, x.', =(x.*,)*.

B. The 2-soliton solution

f = B.B,Q, . (2.13)

When a and b have opposite signs this solution
contains two solitons (or two antisolitons), and it
contains a soliton and an antisoliton when a and b

have the same sign. This remark implies a cer-
tain Pauli exclusion principle associated with the
multisoliton solutions of the SQ equation: Two
solitons cannot be put together if they have the
same velocity. In fact, choosing b = —a in (2.13)
we obtain

This solution is characterized by two real eigen-
values a and b and is built from Pp—= 0 by the
BKcklund transformations

where f, and g, are given by (2.10), and similarly
for f, and g, with the replacement 8.—(9, . It is
straightforward (see Appendix) to show the rela-
tions analogous to (2.12), namely

'P 1

-1 P g f 1
Xa&xax - b XgxX&I. =~ ~4 y

~ t & !ax—lX alxa2+ 2X21X52

(2.16)

aXaaXa~

b(a' —b')
X52X22 8( 2+b2)

and

b(a' —b')
8("+b )

By choosing a complex and b =a* we can also de-

Asymptotically, as x'- +~ the right-hand sides
split into the sum of individual single-soliton
terms, which are matched term by term by the
left-hand sides. For example, since a'& b', the
b soliton is going to be left behind by the a soliton
as x -+~. Moving along with the b soliton
(x'=&~x') corresponds then to the limit 8, =0,
8, —-~ and we get in this case



14 SOLITON SOLUTIONS OF THE MASSIVE THIRRING MODEL 475

scribe by the same equations (2.15) and (2.16} the
solutions y for the breather which is defined by
P =B.B.+f, .

We have now analyzed the solutions to the IST
problem sufficiently to turn to the connections
with the massive Thirring model.

III. CORRESPONDENCE WITH THE MASSIVE THIRRING
MODEL

This model is defined by the Lagrangian

Z =$(fy" s~ -m)g+-,'gJ'„,

~„=Vrp4

with equations of motion

iyueug =mg -g Juyu (3 1)

(3.2)

Since we are interested in the classical equations
it is convenient for our purposes to choose m
= —'„g=1. Then, in the basis y =cr» y'=io» Eqs.
(3.1}become, for

(0

the following:

where we define a ~' =i(-a)'~' if a is negative; in
general, if a = (a[e' we choose a'~' = )a('~'e'e ~'.
Then, (2.2a) and (2.2d) become

1 1
~ex 41 24a2 2 Axial 7 (3.5)

The spinor g, (x, t) transforms as a spin-z object
under the Lorentz group. This follows from the
definition (3.4) and the fact that X, transforms as
a scalar. To find the connection of (3.5} with the
massive Thirring model let us consider first the
1-soliton solution for P. The relations in (2.12}
now become

1
~a Pa24a2 4~x qua t

1
&akalka1=48~%a y (3 6)

where e, =+ 1 or e, = —1 respectively as a & 0 or
g&0, i.e., for a soliton or an antisoliton. These
are Coleman's correspondences, and their sub-
stitution into (3.5) leads to the equations of motion
(3.2) for the ma, ssive Thirring model. This solu-
tion coincides with the one found previously. '
Using (2.10) and (2.11) it can be written in the
form of Ref. 7:

Coleman's correspondences' between the SG
theory and the massive Thirring model can be ex-
pressed as

1/2
Q 1 =ig 2 Sill-al 2 2

1/2
'I2 —' Sin ~~ ef&/'4

(3 '1)

1

:4141:—4~tf y

:y, P,:——,'(1 —e'~) .

(3 3)

If we naively substituted these correspondences
into the equation of motion (3.2} we would obtain

—ia,g, =
2 g2 —2Q„'fthm

i&,P, =-', p, ——,'(1-e' )p,

These equations look very much like Eqs. (2.2a)
and (2.2d} of the IST problem. To make this con-
nection more precise, we consider the IST equa-
tions for some multisoliton solution fbi) of the SG
equation, and for every eigenvalue z and eigen-
state X, we define a new function

This solution is unique up to a constant gauge
transformation in the sense that if it satisfies (i)
the equation of motion and (ii} the correspondences
(3.6) with some solution Q of the SG equation, then

P must necessarily be the 1-soliton solution and

g must be as given above. What really restricts
g to the 1-soliton sector are the correspondences
(3.6). To prove this uniqueness we require the
correspondence equations g,g, = @„/4, g,g, = P, /4,
and P,P, = (1 —e ~)/4, where P satisfies the SG
equation, and, anticipating the answer, we look
for solutl. ons of the form g, =op,e' 1 '~~, g2

=p,e'~' +~~, where p, = (g, (, p, = )g, ), and cu„
are to be determined. Now from P,P, =(1 —e ~)/4
it follows that

p,p, = 2 sin(p/2)

and

~,(x, t) = ~,(x, t ) + 2vn (x, t),

by

y., = ia-'~'X.„
1/2

Pa2 = & Xa2,

(3 4)

where n(x, t) is an integer and can be set equal to
zero since it would not contribute to p2. From the

2 21other correspondences we have p,p2= „QxQg.
Thus, Q„Q, = 4 sin2(Q/2). This equation plus the
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SG equation imply that p„/4i, is a constant. In
fact, differentiation with respect to x gives

at%..+4.4, ~ =44, »n -c»—
= 241)„sin(I)

Thus Q, P„=Q, Q„, implying 8,(g,/@, ) = 0 and
similarly with respect to t We. set Q, =a g, (a'
must be positive from the correspondences). This
can be expressed simply as P~ =0 in terms of new
variables $ = ax+a 't, q = ax —a 't. Then Q„=aQ &,

Q, =a 'P&, and g&'=$, $, =4si n'(P /2). The solu-
tion to this equation is nothing but the 1-soliton
solution Q, . Thus, we establish that Q must be
the 1-soliton solution by using only the corre-
spondences. The equations of motion for g imply,
in addition, that m, must be a constant independent
of x and t. Thus, 4 must be given by (3.7) up to a
constant gauge transformation.

Next, we consider the 2-soliton solution 4') given
by Eqs. (2.14). Then, with the definition (3.4), the
relations (2.16) become

Thirring model and the SG theory. These equa-
tions reflect a certain normal-ordering prescrip-
tion of the interaction terms in the field equa-
tions (3.2). To see this, we define a fermion field
operator acting in the 2-fermion sector by

g(x) = c,P,(x)+c,P, (x)

if a and b are both solitons and by

4(~) = c.4.(~)+ d', 0,(~)

if a is a soliton and b is an antisoliton. The c,
and db are annihilation operators for solitons and
antisolitons satisfying canonical anticommutation
relations. Then, by taking the expectation values
of the normal-ordered bilinear covariants of P in
the 2-fermion state, i.e. in c~c~ ~0) or ctd,'~0), we
can rewrite (3.8) as

(3.10)

(3.8)

I

A.0,) 0
c=a, b

(3.9)

where g, =~1 depending on whether the a con-
stituent is a soliton or an antisoliton, and simi-
larly for the b constituent. " Thus, the charge
structure of the 2-soliton solution fIe) is made ex-
plicit through the above correspondence. Substitu-
tion of (3.8) into (3.5) leads to a classical formula-
tion of the massive Thirring model where g, (x) can
be interpreted as the fermion wave function de-
scribing the a-constituent soliton in the presence
of the other. Each constituent fermion interacts
with the sum of the currents of all constituents.
We obtain

= —,'(1- ei+),

where d' = 1. These are Coleman's correspon-
dences. If we rewrite the field equations (3.2)
with the normal-ordering prescription

—ze„g, = ~ g, —2:A/2

~8(42 = —:4& —2-4&42-4x,

then to obtain (3.9) we replace the normal-ordered
factors by their expectation values given above,
i e tgg2 ( g2g2 ) t/rig~ ( P, g2 ) This pro
cedure represents a self-consistent Hartree- Fock
type of approximation which linearizes the equa-
tions of motion. Our explicit construction shows
how self-consistency is established through the
correspondences (3.10).

IV. CONCLUSION

and similar equations for the gb wave functions.
There is a certain asymmetric treatment of these
two equations. One might have expected the inter-
action term in the second of Eqs. (3.9) to be of the
form

as was suggested for example in Ref. 6. However,
the above formulation is necessary if one wants to
have the correspondence between the massive

We have shown how to formulate the classical
correspondence between the SG equation and the
massive Thirring model through the inverse scat-
tering transform. The fermion character of the
soliton is thus clarified and provides an explana-
tion for the charge structure and the Pauli princi-
ple associated with multisoliton solutions of the
SG equation. Although we have considered only
the 1- and 2-soliton solutions, the generalization
to higher-multisoliton solutions is fairly obvious
and we expect again the correspondences
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n
1

ea((I)a(& (I)a(= 2 ~ 82(t' i
=1

for an n-soliton solution (t). Other nonlinear field
theories which are soluble by means of the IST
with Dirac-type equations might correspond to
some fermion field theory in much the same way.
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APPENDIX

In this appendix we consider some aspects of
the inverse scattering method. A complete dis-
cussion can be found in Ref. 1.

(a) In matrix form Eqs. (2.2) are expressed a.s

1
X„=M X —= 2(a&( —ip,&2)X

a '
X& =iV X = (cosfo'(+ sin(t)o2)x .

2

(Al)

(A2)

Differentiation of the first with respect to t and
of the second with respect to x leads to the in-
tegrability condition

I am indebted to Robert Wang and Dieter Maison
for very interesting discussions.

equations (A2} lead to very simple equations for
the t evolution of the scattering data.

(b} Next, we illustrate how the functions X given
by (2.9} satisfy the IST equations (2.2). For ex-
ample, using (2.8} we obtain

tX2 t

(f —2g) s (f+2g)
(f -tg)'

a ' f+ig
(f ~

)
(f 'g)

a '(f+ig)'

a '
x2 1

(c) Here, we demonstrate that the functions g
and f of Eqs. (2.14) for the 2-soliton (t) satisfy
Eqs. (2.8}for the corresponding f's and g's, so
that X, and X~ are indeed solutions of the IST equa-
tions. For example, we must have

(f ig}s (f-+ig)=2 (f+ig)(f -ig, ) (A5)

with f,g, f2, g2 given by (2.14) and (2.10). Equation
(A5) is equivalent to

M, -N„+ [M, N] = —i'((t)„, —sing) =0 . (A3) 1
gg2(+ff2( g(g2 f-(f 2= 2-a (ff2+ gg2) i (A6)

Thus, the SG equation implies the consistency of
the system (Al), (A2). Usually, ' the IST equa-
tions are formulated in terms of the variables v„
v» and f given by

X, =v, +iv„X,=v, — v„tC=ia/2 (A4}

and by replacing (t)- —p in (2.2).
The procedure by which (t)(x, t) is constructed

via the IST is as follows: (i) Given the initial data
(t)(x, 0) the eigenvalue problem in (Al) is solved,
thereby determining the corresponding range of
eigenvalues a and the corresponding scattering
data (e.g. reflection coefficients). The scattering
data are determined by the asymptotic behavior of

X as x- + ~. The function (t)(x, 0} uniquely deter-
mines the scattering data and can be reconstructed
from them. (ii) The t equations (A2) are used next
to find the time development of the scattering data.
(iii) Finally, from the knowledge of the scattering
data at time t the function (t)(x, t) can be recon-
structed. Solitons correspond to "bound states"
of the scattering problem (A1), while the radiation
part of ft) corresponds to the "scattering states. "
The real advantage of this method lies in the fact
that only the asymptotic values (as x-+~) of (t)

and of the solutions X are needed, so that the t

1 1 -1 -1
g = —g = —e()2 f = —f= —ee

2b

Eq. (A6) becomes

a —b a+b
f(f2+«g2 2ab ggb 2ab». (A8)

Since

[ e(()2+ ()2) /2 e- (()2+ ()2)/2]
2ab

[ e (i)2- ()()) /2 + e(8(i- 8 )/2]
2ab

we assert that

f,f2+g, g = ——2e 82/2coshe2,t b

a —b a+b
2ab gg2 2ab ff2 ab

e coshs

which verifies (A8). The rest of these equations
are shown in a similar way.

1
fg22 gfM A g2+ g(f2= 2a (gf2 fg2) ~ (A7)

Since
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(d) Here we illustrate Eqs. (2.16), which form
the basis of Coleman's correspondences. Since
the 2-soliton solution is given by p =B,B~p, we
have

a+b 1 f f~
a —b (1+T2)(1+ T T,)~ f2+g2

From Eqs. (2.10) we have also

(A11)

0 tan a b (AS)

%'here Q =B Q0, Qb=Bbp0, $0= 0. This is the
basic equation for Backlund transformations. ~

From it me obtain

a+ b y y~„(1 +T,2)(1+ T~2)

4 a —b 4 4 (1+T')(1+ T, T,)' '

ax(1+ T 2) gTa e

T,f 2=g,f,=l .
Then, (A11) and (A12) imply

(
a+ b y (1+ T,')(1+ T,') f,'+g, '
a —b 4 (1+ T')(1+ T, T,)' f'+g'

(A12)

(Al. o)

where T=glf= ta—n(p/4) and T, =g, lf, =tan(—P,/4)
(c = a, b). Using (2.10) and (2.14) we can write

and this implies

and a similar equation for p,„-p,„and 1,-X,.
Finally, (A10) becomes

t
4 4~ = ~XuXg2 —~42&b2 ~

The rest of Eqs. (2.16) can be shown in a similar
'WRQ.
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