PHYSICAL REVIEW D

VOLUME 14, NUMBER 2

15 JULY 1976

Dirac’s monopole without strings: Classical Lagrangian theory

Tai Tsun Wu*
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138

Chen Ning Yang'
Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794
(Received 16 March 1976)

The non-quantum-mechanical interaction of a Dirac magnetic monopole and a point charge through the
electromagnetic field is studied. A classical action integral which is multiple-valued is found. Stability of this
action integral against variations of the world lines of the point charge and the monopole, and against
variations of the electromagnetic potentials, yields the correct Lorentz equations of motion of the particles and
the Maxwell equations for the field. No strings are introduced in the formalism.

I. ELECTROMAGNETIC FIELD IN INTERACTION WITH
CHARGED PARTICLES AND MAGNETIC MONOPOLES

In this paper and an earlier one® on monopole
harmonics, we study some properties of the Dirac
magnetic monopole without the introduction of the
concept of strings. The two papers are, however,
logically and technically independent, and may be
read separately.

Consider first the familiar case of one positron
with world line x*. Then the electric current
density j* is

dx*
ds

j“(§)=4frefds 8%(& - x(s)), )

where £ designates a space-time point. This cur-
rent density leads to an electromagnetic field de-
scribed by the tensor f*=—f". Let f* be its
dual such that

E, =—f%=f2 H =-f3=-7% etc, (2)
[cf. (6) below], where the metric used is
dt? +dx? +dy? +dz? = — (dx°)? + (dx*)?
+ (@x®)? + (dx®).
Along a world line we define
ds = (dt? —dx? — dy? — dz?)/2
=dt(l - v2)2

The usual Maxwell equations for the electromag-
netic field are

14, (€)==t [ ds S sg-x(s)), 3)
and
fpu.)\(g)’*’fu)\,u(g) +f)\u .u(g) =0
or 4)
™ (&) =0.

Simultaneously, through the Lorentz force, the
electromagnetic field also acts on the positron to
determine its motion':

G e (o m ). )

The general definition of the dual field strength
F* is

Fr=—3etBf g, (6)
where
€123 =_1 B -antisymmetrical tensor. (7)

Next consider the more general problem of the
electromagnetic field in interaction with one posi-
tron with world line x* and one Dirac magnetic
monopole? with world line X*. (Generalization to
a finite number of positrons and a finite number of
Dirac magnetic monopoles is straightforward.)
The coupled equations of motion must be

fH,(8) = —4me fds ‘fi’;“ & (£ —x), (Me)

77.0(6) ==amg [ as B ou(s-x), ()

%’; == f“"%, (Le)
and

df: =—gf”"d7xsl (P“ =M5§;—), (Lg)

where p* and P* are the four-momenta of the
positron and the monopole, respectively, and g
is the magnetic charge of the monopole, positive
if the monopole is a north (i.e., north-seeking)
pole. We shall refer to these equations as the
Maxwell [ (Me), (Mg)] and the Lorentz [(Le), (Lg)]
equations.

It has been well known since the beginning of
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this century that classical electrodynamics (with-
out magnetic monopoles), as described by (3),

(4), and (5), can be formulated compactly in an
action principle. It is the purpose of the present
paper to generalize this formulation so that the
Maxwell equations (Me) and (Mg) and the Lorentz
equations (Le) and (Lg) for the interaction between
electromagnetism, charged particles, and mag-
netic monopoles are formulated compactly in an
action principle.

After Dirac introduced? the concept of magnetic
monopoles, he came back in 1948 to the question®
of the classical action principle. The aim of the
present work is exactly to rediscuss this question
of Dirac’s 1948 paper. However, we shall avoid
the introduction of the concept of strings attached
to monopoles, which was necessary in Dirac’s
formulation.

Dirac originally introduced the string because
his vector potential for a static magnetic mono-
pole is singular along a semi-infinite line in three-
space. Subsequently, the string has caused a
number of problems, including the following two:

(i) The Divac veto, The wave functions for all
charged particles vanish on the string. This prob-
lem has been discussed most explicitly by Went-
zel,*

(ii) Dynamic variables for the string. In studying
the moving magnetic monopole, Dirac? used an
infinite number of dynamic variables for the
string. The resultant formalism becomes ex-
tremely complicated.

In this paper we circumvent all these com-
plexities by introducing ideas® borrowed from the
mathematics of fiber bundles.

Before going into the details, let us emphasize
that throughout the present paper, except for re-
marks in Sec. VI, we do not introduce Planck’s
constant I, so that the monopole strength need
not satisfy Dirac’s quantization condition. That
is, it is possible that

2eg .

—=

- integer. (8)
Because 7 is not introduced, the concept that elec-
tromagnetism is a nonintegrable phase factor® is
not used in the present paper.

II. EQUATION (Mg) AS KINEMATICS

The electromagnetic potential around a magnetic
monopole cannot be chosen without singularities.
This fact was proved in Ref. 5 for a monopole at
rest where, in order to circumvent the singularity
problem, the space-time outside of the monopole
was divided into two overlapping regions R, and
R, and singularity-free electromagnetic potentials

(A,), and (4,), were found in R, and R,, respec-
tively. We shall now use this same idea® to de-
scribe the electromagnetic potential outside of the
world line X* of a magnetic monopole of strength
g. The choice of R, and R, is very flexible. For
definiteness we shall choose to define R, and R,
in one Lorentz frame: For each {, R, and R, are
respectively the regions defined by
R,: 0s0<3m+6, all ¢, >0
a 2 ’ ¢’ (9)

R,: zn=0<@sm all ¢, r>0

where 7, 6, and ¢ are spherical coordinates with
the monopole position at that ¢ taken as the origin.
6 is a smooth function of ¢ satisfying 0<bd<3m.

Given an electromagnetic field satisfying (Mg)
we can find vector potentials (A,), and (A,), in
regions R, and R,, respectively, so that for
i=a,b,

fuu=(Ap,u)i_(Av.y)i (10)

in R;. In the overlap R,,=R,N R,, the two vector
potentials are related by the gauge transformation

(Au),,—(Au)b=a” in R,,, (11)
where by (10) @, must satisfy
@y y—ay,=0in R, . (12)

R,, is a four-dimensional region where loops
around the monopole cannot be shrunk within R,,.
Equation (12) asserts that

§ au©ag =k, (13)

where K is independent of any distortions of the
loop within R,,, and the integral is defined in the
direction of increasing azimuthal angle ¢ (cf.
Fig. 1).

To determine K we consider, at a fixed ¢, a
spherical surface S around the monopole. The
upper hemisphere S,, where §<3m, is entirely in
R,. The lower hemisphere S, is entirely in R,.
Hence

outward magnetic flux through S, = fﬁ (A,).a¢",
(14)
outward magnetic flux through S, =— f (A,),dtk.

Thus

outward magnetic flux through S

= f a, d&" around equator. (15)

In (14) we have used the sign convention (2). The
total outward flux is, of course, 4mg. Thus
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FIG. 1. Regions R, and R, at a given time ¢ . X is the
position of the monopole. R, is the region above the
lower cone. Ry is the region under the upper cone. The
loop is in the overlapR,, =R, NR,.

fau(g)dg“ =4mg (16)

around any loop in R,, which circles the monopole
world line X* in the direction of increasing azi-
muthal angle ¢.

Thus any electromagnetic field f,, satisfying
(Mg) is describable by (A ), and (A ), satisfying
(10), (11), (12), and (16). Conversely, any (A )
and (A, )y, satisfying (10), (11), (12), and (16) gives
an electromagnetic field fy, satisfying (Mg). To
prove this last statement, we observe that at a
point £* not on the world line of the monopole,
(10) implies the homogeneous Maxwell equation
(4). Thus f*” ,(£) is only nonvanishing on the
world line of the monopole. That is,

f“",u(a:fa“(s)ds64(e—X(s)>, (17)

where a*(s) is a four-vector defined on the world
line. In any specific Loveniz frame consider the
u =0 component of (17). Using convention (2), this
component reduces to
dXO -1
), 18)

ds

-V H| §=a°63(2—5{.(s))<

where on the right-hand side s is taken to be that
point on the world line where X°(s) = £°. At this
fixed £° we now integrate (18) over the interior of
a sphere around the monopole at i(s), The right-
hand side yields

aO dXO -1
ds :
The left-hand side becomes a surface integral
which is (~1) times the total magnetic flux outward
from the surface, which one can evaluate in the

same way as in an earlier discussion that led to
(15). If (16) is satisfied, this is —4ng. Thus

dx°\™! dx°
470 =a° o_ _ aa
4ng=a ( 75 ) , ora 4ng e (19)
Since (19) holds in any Lorentz frame, we have
dx"
F=a
a 4ng T

Substitution of this into (17) leads to (Mg).

We have thus shown that (Mg), which describes
the generation of electromagnetism by a monopole,
is equivalent to the condition that the electromag-
netic field be described by (A,), and (A4,), satis-
fying (10), (11), (12), and (16). We shall now con-
sider (4,), and (A,), as independent variables
subject to conditions (11), (12), and (16). The
field strength f,, described by such electromag-
netic potentials automatically satisfies (Mg). In
other words, in this approach (Mg) becomes a
kinematic equation.

III. THE ACTION INTEGRAL

For the electrodynamics of positrons and elec-
tromagnetic fields described by (3), (4), and (5),
the action integral is

a(x, 4 =-m[ [as] - 6m [ ae s 07+

* dx*
+eJ:wAu(x)de, (20)

where the first and the last integrals are defined
along the world line of the positron and ds is real
and >0. Equation (4) is a kinematic condition.
Equations (3) and (5) are dynamical equations which
result from the condition of stability of @ against
variations respectively of A, (£) and of the world
line x*(s).

For the electromagnetism of positrons and mono-
poles described by (Me), (Mg), (Le), and (Lg) we
seek to find an action integral @(x,X,A), where
x,X represent the world lines of the positron and
the monopole, and A is the electromagnetic po-
tential defined in two regions R, and R, and satis-
fies (10), (11), (12), and (16). As proved in the
last section, (Mg) is a kinematic equation. We
expect (Me), (Le), and (Lg) to result from the
stability condition of @(x,X,A) against variations
of A, x, and X.

Equation (20) suggests

&(x,X,A):—m[fds] —M[st]
positron monopole

- a6 [d'E S (9 ()46,

1)

where
@], =e fAu(x)dx“ (22)

along the world line of the electron. We use an
unusual symbol for this last integral because its
definition requires careful examination. In par-
ticular, one has to define which A, [(4,), or (4,),]
to use as the integrand. We proceed as follows:
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(a) If the positron world line is entirely in one
region, R, or R,, then the f is defined to be the
usual integral with (A,), or (A,), as the inte-
grand. If the positron world line crosses from
R, through R,, into R, [Fig. 2(a)], the definition of
Q, is

@, =e )(A“(x)dx“

=e J: (A ) dx" +eB@) +e f: (A,)pdx"
(23)

where 3 is defined in R,, by
Bu=ay. (24)

Given (A,), and (A ), such a 3 exists, because
of Eq. (12), as a multiple-valued function plus an
arbitrary constant independent of space-time.

In view of (16), the multiple values are different
from each other by 47g times an integer.

The necessity of the term e3(Q) in (23) is demon-
strated by the fact that (23) is independent of
changing the point @ to another point @’ along the
positron world line in R,, (Fig. 2). To see this
we use (11) and (24). This demonstration is entire-
ly similar to, but not quite the same as, a corre-
sponding one in Ref. 5.

(b) We can rewrite the three terms on the right-
hand side of (23) in a convenient notation as fol-
lows:

G, =&l(°°a7Qa)+£(Qa!Qb)+al(Qb’ —-®,). (25)

We write ©, for © to emphasize that at [ == the
world line of the positron (in this case) is in R,.
A point @ in R,, is treated as two points @, and
@,, wWhich can be schematically thought of as on
different “floors,” as illustrated in Fig. 2 of Ref.
5. The definition of £ is

L@ R)=efR)=-L @, Q) - (26)

For a world line of the positron that goes in and
out of R, and R, as along the path (b) of Fig. 2,
we have many equivalent definitions of @,, such
as

F
D [
c }{ R
B Q ab
J £

(b) (a)

FIG. 2. Electron world lines (a) and (b) that go through
overlap R, .

@, =@, (%4, B,) + £(B,, By) +@,(B,, A,)
+£ (A, AL +@, (AL, ==,)
=@, (0, Cy) +L£(C,, C,) +8,(Cp, A})
+8(A,,A4,)+C (A, —,). 27
Notice the following identity:
@, (g, B,) =@, (%4, D,) +£ Dy, D) + @, (Dy, Cy)
+£(Cy, C,) +@,(C,, B,) . (28)

(c) How does an additive constant v (which is
independent of space-time) to 3 affect the defini-
tion of @, given above? To answer this question,
we notice that for a path that begins and ends in
the same region, R, or R,, the number of £ terms
in the definition of @,, such as in (27), is even
and the change 3- 3+7v does not change the value
of @,. For a path that begins and ends in different
regions, the number of £ terms is odd and the
change 38— B +y produces a change in @, by zey.

In the variational principle, where one keeps the
world line fixed at { =+, this additive constant

of +ey does not produce any changes in the final

result.

(d) Since B is multiple-valued, which of its values
should be chosen in the definition of @, such as
(23) and (26)? The answer is: Any choice is un-
desirable and we just consider @, as definable
only modulo 4meg. To see this let us consider the
world line (Fig. 3) and choose a specific value of
B() among its multiple values to evaluate @, in
(23). For simplicity we consider the case that the
monopole is fixed in space at the origin so that
X =0 for all times. Now continuously distort the
portions of the world line of the positron between
E and F so that it loops around the origin (i.e., the
monopole) and return to the original position, in
the direction of increasing azimuthal angle. The
point @ describes a loop as shown in Fig. 3. If
we use the azimuthal coordinate ¢ of @ to label the
acticn integral @(¢) for this one-parameter family
of positron world lines, then a comparison between
the two cases 6=0 and 6 =27 shows that g at @
is the only quantity that is different. More pre-

FIG. 3. Distortion of world line EF of the electron.
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cisely

a2n-a()=q,@n -q,(0)

=e§ a,dx*

=4rmeg. (29)

Thus if we want the value of @ to be continuous
with respect to the distortion of world lines, we
must define its value only up to modulo 4reg.

IV. CONSTRAINTS ON x,X,4 AND STABILITY OF
@ AGAINST éx# AND 64 ,

We have defined above the action integral
@(x,X,A) in terms of the dynamical variables
x, X, and A,. To be more precise, X(f) and X(t)
designate the world lines of the positron and the
monopole. They represent 2«2 jndependent dy-
namical variables subject to the constraints dis-
cussed in the next paragraph.

The world lines x and X are constrained to be
timelike. Furthermore, they must not cross.
That is, x(t) —X’(t)#O for all {. Without this condi-
tion it would not be possible to properly define
the action integral @. For example, the one-
parameter family of positron world lines labeled
by ¢ in the preceding section gives rise to an
action integral @(¢) which varies with ¢, with a
total variation from ¢ =0 to p =27 given by (29).
If we now distort these world lines so as to make
the loop described by @ shrink toward the mono-
pole position, we can only guarantee the continuity
of @ against such distortions if the condition is
imposed that the positron and monopole world
lines do not cross. The necessity of this condi-
tion had been discussed before by Rosenbaum.’

The dynamical variables A, (£) consist of (A,),
and (A ,), subject to the conditions (11), (12), and
(16). As proved in Sec. II, these conditions lead
to (Mg) as a kinematic equation.

We have to demonstrate now that the stability
of @ against variations of these dynamical vari-
ables, keeping the conditions discussed above
satisfied, yields the remaining Maxwell and Lo-
rentz equations.

It is easy to show that the stability of @ against
variations 8x(¢) gives rise to (Le), exactly as in
the usual case without monopoles. For varia-
tions of A,, first consider variations (A ), and
(6A ), in the subregions of R, and R, outside of the
overlap R,,. Stability of @ leads to equation (Me)
in these subregions. Next consider variations
(64,), and (6A,), in R,,, but with

5((Ap)a_ (Au)b)=0' (30)

Stability of @ against such variations leads to equa-

tion (Me) in R,,. Lastly we have to consider var-
iations (6A4,), and (8A ), in R,, that violate (30).
It is sufficient to consider the case (84 ,),=0.
Then conditions (11) and (12) require

(BA,), =00, =08, (31)
where we have used (24). Thus (21) and (23) give
0@ =0@, = -e03(@) +e63@) =0. (32)

Clearly this conclusion also holds for more twisted
world lines such as (b) of Fig. 2.

To summarize, we have demonstrated that sta-
bility of @ against 6x* [i.e., 0%X(t)] and 0A,, sub-
ject to the proper conditions, yields (Me) and (Le),
respectively. We emphasize that the multivalued-
ness of @ (which is defined modulo 47eg) does not
influence the validity of this statement.

Variation of the world line of the monopole is
more cumbersome to study since it necessitates
a change of regions R, and R,. We shall circum-
vent this complication by investigating the dual
action integral.

V. DUAL ACTION INTEGRAL

The dual field, designated by an overbar, has
already been used in Sec. I. Under the dual opera-
tion, &* does not change, but

€=g, Z=-e, fu=-2€,,,/°", (33)

E,=H,, and H,=~E,. (34)
Also

g=-e, g=-g, and fuy ==fu. (35)
Furthermore,

Fu ¥ == fu . (36)

In particular, this dual operation can be applied
to the action @ of (21) to give

(_i(x,X,Z)=—m‘:fds} —M[f ds]
positron monopole

- a6n [ @€ 7 (97 ()

+g)[Zu(X)dX“. (317)

In this formula we have introduced the dual poten-
tial A, defined by

Zu.u_zv,u=f_.;u/- (38)

Because of the presence of the positron, Zu is de-
fined separately in two regions R, and R,. At any
given time f, R, and R, are defined exactly as R,
and R, were defined in (9), except that 7, 9, ¢ now
refer to spherical coordinates with the positron
position at that time as the origin. The overlap
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size 26 need not be related to 26, The definition
of the integral f in (37) is the same as the corre-
sponding one in (21), except that the regions are
now R, and R,. Clearly,

G=@, (39)

and @ is defined modulo 4nge.

Notice that the [d*f terms in (37) and (21) are
equal in magnitude but opposite in sign because
of (35).

The discussions of Secs. II, III, and IV can of
course be duplicated with appropriate changes of
all quantities into their respective duals. For
example, (Me) is now kinematic, while (Mg) is
dynamic resulting from the condition of stability
of @(x,X,A) against 04,

Consider for fixed nonintersecting world lines
of the positron and the monopole x* and X* (both
of which are timelike) the quantity

@, (x,X)=extremum of @(x,X,A)
with respect to 64 . (40)

The field strength f,, generated from the extrem-
izing A, satisfies both Maxwell equations (Mg)
and (Me). Since it satisfies (Mg), according to
Sec. II, there exists an A, satisfying (10), (11),
(12), and (16). At such anA, @(x,X,A) attains
an extremum with respect to 0A since (Me) is
satisfied. We define

@,(x,X)=extremum of @(x,X,A)
with respect to 04 . 41)
Notice that the extrema (40) and (41) are attained

with potentials A and A that give the same field
strengths f,,. We shall later prove the following:

Lemma. @y(x,X)-@y(x,X)=integrals at infinity.

42)

Since integrals at infinity play no role in the
action principle, it follows from this lemma that
the stability of @(x,X,A) against all variations
gives all four Maxwell and Lorentz equations.

In particular (Lg) follows from the stability of @
against 80X because (42) implies 6@, =6@,, and
8@, =0 against 6X implies (Lg).

Proof of lemma. (a) First consider the special
case when there is a positron but no magnetic
monopole. In this special case

Go-§o=ef A, dxt

- @0 [ dE £ (0 @) (43)

Since the Maxwell equations are satisfied, (3) can
be used to rewrite the first term on the right-hand

side of (43):

e [ ayave [ae [ asLa @pE-n

=—@n [ dEA, 7,6 @)
Substitution into (43) gives
@, -y =—(m)" f FE[ALE)™E)],, (45

which is equal to a surface integral at infinity. The
lemma is thus proved in this special case.

(b) Next consider the case where the world lines
are such that for all £, Z(¢)>z(t). In this case we
can construct a three-dimensional surface S which
at each fixed ¢ is the plane

d=3[z (@) +z ()], (46)

as illustrated in Fig. 4. S separates space-time
into two regions, an upper region G containing
the world line of the monopole and a lower region
E containing the world line of the positron. Fur-
thermore, E is completely in R, and G is com-
pletely in R,. We write

Go—é(,:efAudx“—g](KudX“

- (8n)'1fd4£fwf““

=By - Bg, 47

where
Bp=e fa,avt - @0 [ a6 s, Ge)
Bo=g fa,axt - @0 [ @eT . 6o)

Since the positron world line is entirely in E which
is in R,, we replace the A, in (48) by (A,),. We
can then process the right-hand side of (48) in
exactly the same way that we processed (43)-(45),
with the space-time region E replacing the whole
space-time. This leads to

Bp=-(4n)? f (A,),f* do, + terms at infinity,
s

(50)

where do, is the three-dimensional surface area
on S. Similarly,

B, =(4m)? f (A,)7 f*do, +terms at infinity .
S

(51)

The sign difference is due to the fact that G is
above S while E is below. Expressing f* in (51)
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11

region G

(Y]

region E

FIG. 4. Division of space-time into regions G and E.
The figure shows the division at one instant of time.

in terms of f,g and integrating by parts yield

B, =_(an)-leu"aﬂf (A,)7 fapdo, +terms at infinity
= (8n)‘1€“"aﬂjfu5(A%)d0u +terms at infinity

= () f F"(A,),do, +terms at infinity

=B, +terms at infinity . (52)

The lemma follows.

(c) Next consider the general case. Since the
world lines of the positron and the monopole are
assumed not to intersect, there always exists a
three-dimensional surface S that separates all
space-time into an “upper” region G containing
the monopole world line and a “lower” region E
containing the positron world line. But now E
(and S) in general contain both points in R, and
points in R,. Equations (47), (48), and (49) re-
main valid. But (50) should be replaced by

Bp=-(@n)' 4 A, f*do, +terms at infinity,
E S

(53)

where we have introduced a new three-dimensional
integral fs, which is a generalization of the cor-
responding one-dimensional integral f The pre-
cise definition of this new integral and its prop-
erties are given in the Appendix. Equations (51)
and (52) then remain valid with the }’s replaced
by f’s. The lemma follows.

VI. REMARKS

1. We have assumed throughout that m >0, M >0.
That is, the positron and the monopole both have
nonvanishing masses.

2. Clearly the definitions of R, and R, are quite
flexible. Given the monopole world line X*, con-
tinuous distortions of the boundaries of regions R,
and R, starting from (9) are allowed, provided
R,, R, together always cover the whole of space-
time outside of the monopole world line. Amalga-

mation of boundaries is not allowed in this process.

3. Under a gauge transformation A, -A/, pro-

vided f,, is unchanged and (16) remains valid,
@(x, X,A) changes by terms evaluated at infinity.

4. The condition A* ,=0 is not used at all in this
paper.

5. A key point of this paper is the reduction of
the Maxwell equation (Mg) to kinematics in Sec. II.
While the method used for this reduction is very
much in the spirit® of the Chern-Weil theorem in
fiber-bundle theory, there is considerable differ-
ence also. The present considerations focus on
the “exponent” of the phase factor of Ref. 5. The
phase factor itself cannot be given meaning without
the introduction of the Planck constant .

6. If one formulates, after Feynman,® the quanti-
zation procedure by path integration, one would be
dealing with integrals of exp(i@/%). Since @ is only
definable modulo 47eg, this process is meaningful
only if 4reg/F =2n(integer). That is Dirac’s quanti-
zation rule

2eg/% =integer

must be satisfied. We are currently working on
this problem.

7. When there are two or more neighborhoods
(e.g., R, and R,), the barred integrals such as
JCA“dx“ are the natural ones while the correspond-
ing ordinary integrals such as f Aydx" are not
even definable. Thus the bar is really superfluous.
We retain the bar in this paper only to draw atten-
tion to the special nature of the integral when it
spans more than one region.

APPENDIX

We assume throughout this appendix that (Me)
and (Mg) are satisfied, but not necessarily (Le)
and (Lg).

Before defining the three-dimensional integral
DC and proving (53) and (52) we shall need two pre-
liminaries.

1. We shall rewrite the integral in (50) as fol-
lows:

JAurdo, == [ A, 1" eyppedx™
s

=—%fA;f,,;dx5"‘, (A1)
where we use the usual notation
dxt™ = ™8 = — gy BEm,
We have assumed that S is in only one region R, or

R,.
It is easy to prove that
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Q

FIG. 5. Three-dimensional surface S divided into
S, and Sp. S, isinR, and S, inR,. s is the two-dimen-~
sional surface between S, and S, . PQ is the boundary
of s and is a one-dimensional loop.

f;Axf“dx“"’ =—fRf‘,,,f“"d4x (A2)

if S is the boundary of a space-time region R en-
tirely in R, or R,, which contains no parts of the
world line of either the positron or the monopole.
2. The one-dimensional integral £ defined in
Sec. IOI has the property that if a loop L is the
border of a two-dimensional region Y, then

fAudx“=—§f Fupdxtdx®. (a3)
L Y

This formula is obvious if Y is all in R, or all in
R,. If Y is partly in R, and partly in R,, (A3) is
correct because of the terms £ in the definition of
JC, as in (25) or (27). The negative sign in (A3)
derives from the usual convention of a right-handed
loop for the sense of L.

We proceed now as follows:

3. Consider a three-dimensional surface S that
is divided into two parts S, and S, with the boundary
s between them, as illustrated in Fig. 5. We de-
fine

f Axfuvdxx“v =f (‘A)\)a fuudx Aty
s Sq
+ f(A)‘)bf—”ydx"“"'

+fs BF pydx " (A4)

where s is taken to have the normal to it in the di-
rection from S, to S, as indicated by the arrow in
Fig. 5. The surface s is, of course, in R,,. If we
fix its boundary PQ, which is a one-dimensional
loop, and move s, within R,,, to s’, it is easy to
show that according to (A4), the integral 7C is un-
changed, provided S does not intersect either the
positron or the monopole world line.

Thus the three-dimensional integral on the left-
hand side of (A4) is dependent only on S and on the

loop PQ which divides the boundary of S. Changing
PQ on the boundary of S does lead to a change in
the integral, just as in the one-dimensional inte-
gral case where

@,(B,, D,) #@,(B,, D,) .

Now if S itself is a boundary of a four-dimension-
al region R, then S has no boundary of its own.
Thus there is no PQ and the integral defined by
(A4) is well defined. We have assumed that the
world line of either the positron or the monopole
does not enter the region enclosed by S. In fact,
in this case,

fs AnFudx™ == [ £y, fvatx, (A5)
R

which is the generalization of (A2), and is analo-
gous to (A3).

4. Equation (53) is now easily proved if we take
R to be the lower region E which contains the elec-
tron world line. One has instead of (A5)

[ Swrrats =f aFuan
E N

- 87re)[ Aydx*

+terms at infinity. (A6)

The first integral on the right-hand side is equal
to, by the reasoning that led to (A1),

-2)5 A, fdo, .
N

Equation (53) follows immediately.

5. It remains to prove the generalization of (52),
when S, the boundary of E, is not entirely in R,,
and not entirely in R,. We shall only demonstrate
the proof in the case that S is entirely in B, but
not entirely in R,. Divide S into regions S, and S,
as in Fig. 5. Then (53) states that, omitting terms
at infinity,

87By = :F A)\fuu dx My
S
=f Ax}_;,,,,dx“‘"+j Ay Fyydac MY
Sa Sp
+f37uudx“”
8

-8B, = fs Ay frpdst

where we have used f==—f. Thus
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8w(33-30)=2f (A)\Z“).,,dx"‘“wzf (A)\Ku)’,,dxx“”+fﬁfm,dx“”
Sa Sp s

=—2fs(A,\)af4—udx"" +2fs(A)‘)qudx"“ + fsﬂf)\,,dx)“‘

=f(—2B_,\K,,+Bf>\u)dx"“=—2f(BK“)'>\dx"“ )

Since the boundary of s is at infinity we have

By - B; =terms at infinity.
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tem of equations does not possess any finite solution.
We are here not concerned with such questions of
infinities.
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