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Ten generators for the Poincare group are exhibited, defining the kinematics of an object with an internal

space over two real variables. The Hamiltonian implies a general (Regge-band) discrete mass-spin relationship.

The generators are given in two forms: in quasi-Newtonian coordinates and in Minkowski coordinates, the

latter allowing one to introduce interactions.

I. INTRODUCTION AND SUMMARY

The essential problem posed by relativistic quan-
tum mechanics, as emphasized by Dirac, ' is to
find ten operators describing the system in space-
time whose commutation relations close on the
Lie algebra of the Poincare group. For elemen-
tary particles —which may be defined as effectively
structureless —the problem is well posed and the
complete solution has been given in the classic
1939 paper by Wigner' enumerating all irreducible
unitary representations of the Poincare group.

By contrast, for nonelementary "particles" and
for "particles" having internal structure there is
no consensus as to the proper basic concepts; it
is clear, however, that such systems necessarily
will involve reducible Poincare representations
having a finite or infinite number of irreducible
components.

Rather than attempt an a Priori categorization
of possible composite structures, we believe it
reasonable to employ empirical concepts. From
particle physics, it is found empirically that the
Chew-Frautschi hypothesis of roughly linear Regge
bands I(mass)'= linear function of spin] for related
families of hadrons appears to be valid. If one
idealizes this situation, by neglecting all decay
widths (in the way familiar from dual resonance
theories) one obtains the concept of an object hav-
ing internal structure, characterized by a denum-
erably infinite number of discrete mass states,
IVI, as a function of intrinsic spin, s: IVY = f(s) &0.
The discreteness of the mass parameter implies
that the object is indecomposable, that is, cannot
fragment. '

It is the purpose of the present paper to demon-
strate, by direct construction, that there exists a
precise (mathematical) realization for the kine-
matics of such an object, for which we exhibit the
required ten operators generating the Poincare
group.

Let us outline the plan of this paper. Since our
work is based directly on the results of Wigner's
1939 paper, we summarize briefly in Sec. II the
finite- mass Poincare irreducible representations
(irreps), and then give a uniform realization of the
ten Poincare generators in both momentum space
and in "quasi-Newtonian"4 form for the whole set
of (M, s) systems. Much of the material in this
section is well known, but we believe that our dis-
cussion of the generators (particularly for quasi-
Newtonian coordinates uniformly) has not pre-
viously appeared in the literature.

Section III contains one of the two principal re-
sults of the present work. We first develop the
necessary structures to be built on the internal
space (g„g,) of two variables over the real line,
and then develop the necessary Poincare genera-
tors for our object, first in momentum space and
then in quasi-Newtonian coordinates. The weaving
together of unlimitedly many Poincare irreps is
necessarily somewhat complicated, and the techni-
cal details as to precisely how this is done —al-
though mandatory for precision —may not be of
primary concern, especially on a first reading.
In this case zoe suggest that one consider Eqs.
(3.32)-(3.35) di ectly, since these equations stand
on their own and completely define the nature and
properties of our structural entity

In Sec. IV we discuss possible group-theoretic
views of this entity, and introduce the concept of a
"dynamical stability group. " It is this concept
which defines the entity globally, replacing the
unworkable (and according to O'Raifeartaigh's
theorem' impossible) concept of a global Lie group
(for our entity). By way of emphasizing this same
idea in a different context, we construct, in Sec.
V, a simple example of a model possessing rela-
tivistic SU(6) symmetry and having none of the
hitherto expected unphysical difficulties.

In Sec. VI we give the second of our two main
results, developing and exhibiting the ten Poincare
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generators, realized now in Minkowski coordinates.
These generators, Eqs. (6.9)-(6.12)—just as for
the equivalent generators in Sec. III—do indeed
stand on their own, but it is far from an easy task
now to prove that the Poincare commutation rela
tions are verified. The existence of a Minkowski-
space realization is essential in order to couple
the object to interactions.

Concluding remarks are contained in Sec. VII.

where

p'-=A(A)p, p'=p"=M', p'&0,

(2.1)

Here B& stands for the boost (pure Lorentz trans-
formation in the plane of the time axis and the
four-vector P) which transforms the (reference)
four-vector (0, 0, 0, M) into p. The hyperbolic
angle P of this boost is found from P, =Mcoshg.
The transformation B~ is then found to be

Ba= exp(a(j)(r p), (2.2)

where P is the unit three-vector in the direction of
the three-vector p and 0 stands for the Pauli ma-
trices. Equation (2.2) can be written" as

B,= ({p/M})'" (2.3)

II. REVIEW OF BASIC STRUCTURES

A. The Wigner representations {iNsf,
All of the constructions of the present payer will

be built upon the foundations laid by Wigner in his
famous, and classic, work' on the unitary irreduci-
ble representations of the Poincare grouy. Ac-
cordingly, it is helyful to briefly review Wigner's
results, restricted, however, to the finite-mass
case.

We use the name Poincare group, denoted by 6',
for the group of proper orthochronous inhomogen-
eous Lorentz transformations. The elements of the
covering group of (i) are (d;A), where d represents
a space-time translation and A a complex 2 && 2

matrix with unit determinant. Invariance for the
grouy 6' leads, for quantum mechanics, to a uni-
tary reyresentation of the covering group of 6, as
first shown in Ref. 2. The unitary irreducible
representation (unirrep) which corresponds to a
particle of spin 2 and mass M represents the
Poincare element (d, A) by the transformation

(()(d d)d) (d') = ' ' g (d dd )I (t (d)
j=l

By expressing cosh-, Q and sinha'(p in terms of
cosh(j), one can rewrite (2.3) in the form

(M+P, ) 1+o 'p
[2M(M+p )]'i' ' (2 6)

which is very close to the so-called Foldy-Wouth-
uysen transformation. From (2.2) and (2.6) it is
clear that

(M+po) 1 —(r

[2M(M+p, ))'i' (2.7)

Returning to Eq. (2.1), the functions (p, (p) clearly
satisfy

(O'- M')Ar(P) = o. (2 8)

Notice that the functions (t)r(p) are accordingly
really functions only of the three-vector p.

The Lorentz transformation corresponding to
Ba, (ABa leaves the time axis invariant [since Ba
changes (0, 0, 0, M) into p, A changes p into
A(A)P =P', and Ba. ' brings P' back to (0, 0, 0, M)]
and is therefore a rotation of the little group.
Hence the 2&2 matrix, B~, 'AB&, is unitary.

The invariant inner yroduct of two Wigner func-
tions is given by

(2.9)

For a unitary matrix A (which hence corresponds
to a rotation), one finds from the definition of B&,
or via calculation using (2.6), that

B, 'AB =A for A c SU(2). (2.10)

(2.9')

Once again for A = SU(2) one has the special re-
sult

The case of particles of spin s is entirely analo-
gous to the spin-2 case. The only change is that
the 2&& 2 unitary matrix B~, 'AB~ is replaced by its
(2s + 1)-dimensional unitary representation
D') (Ba 'ABr, ), and that (j) now has 2s+ 1 compo-
nents. For the case of spin s, Eq. (2.1) reads

(U(ddld) (d') = ' g, „"' (B'AB )d„.(d). . ,

(2.1')

The functions (j) (p) satisfy Eq. (2.8), but (2.9) has
to be replaced by

where

{PIMlf= M {Po 1+p'(r).

Note that

(2.4)

(2.5)

D"',(B, 'AB ) =D'",(A), m= —s, —s+1, . . . ,s.
(2.10')

B. The Poincarb group generators in the Wigner form

Symmetry considerations play a dual role in
quantum physics, and lead not only to the structure
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of allowed states but also imply the yroyer observ-
ables (operators) of the symmetry. Thus having
constructed the set of [M,s}(P irreps, it is im-
portant next to construct the explicit operators
(observables) generating the symmetry structure.

It is clear from Eq. (2.1) that the displacement
generators, [P,}=(P„P), take the eigenvalues

p- p» (2.11)

P, =(P '+ M')" '-+(P+ M')" '. (2.12)

Noting that the three-space rotations obey the
simplifying result, Eq. (2.10), it is easily verified
that the rotation generators are [(ijk) =positive
permutation of (123)]

(2.13)

(2.14)

To generalize from spin 2 to spin j one need only
replace the 2 && 2 matrices o,./2 by the correspond-
ing (2j+ 1) x (2j+ 1)-spin matrices S in Eqs. (2.13)
and (2.14).

Note that —for the inner product given by Eq.
(2.9)—the operator M„. in Eq. (2.14) is indeed
Hermitian.

It is readily verified, directly, that the ten gen-
erators given in Eqs. (2.11)-(2.14) close upon the
commutation relations of the Poincare group. [This
uses the commutation rules S && S=iS, where [0}
are the (2j+ 1 && 2j+ 1}matrix realizations of the gen-
erators of SU(2).] Note that time displacements are
generated by the Hamiltonian H=P, =+(P'+M')'~',
I', & 0; hence the time, t, cannot correspond to an
oyerator but functions, correctly, as a c number.

It is quite obvious that the Wigner irreps, (M, s},
directly imply the momentum-space operator real-
izations given above; nonetheless these operators
are of importance on their own. To our knowledge
these operators have first been given explicitly
by Bacry. " (Newton and Wigner' gave the re-
sults only for spin zero. )

C. The introduction of quasi-Newtonian coordinates

The Wigner irreps (M, s}and the Wigner form of
the generators are realized in momentum space,
and it is an interesting question as to how to ob-
tain configuration- space realizations. This px ob-
lem was actually considered prior to the Wigner
construction (1939) by Schrodinger, in his studies

The really interesting generators are the boosts,
M„, and it is somewhat more difficult to verify
[from Eq. (2.1)] that these have the form

~2 2 lj2

on the Dirac equation. As we shall show here, a
comprehensive view can best be obtained directly
from the Wigner construction of the set [M,s};
from this point of view the existence of the Dirac
equation (for spin —,) is irrelevant, and the histori-
cal accident that this equation came first has great-
ly confused the initial, and subsequent, discussions
of the problem, based as they are on the particu-
larities of the Dirae equation itself.

The problem is this: How shall we introduce
configuration-space variables in place of the mo-
mentum-space variables of the Wigner irreps'?
At first glance, the question appears trivial; one
should simply use a Fourier transformation. The
difficulty is that the signer irreps are defined
only on the mass hyperboloid in four-dimensional
momentum space, and this constraint imylies that
the concept "Fourier transformation" is ill defined.

There are two distinct ways to proceed, leading
to two very different results. We will designate
the coordinates defined by these procedures as
follows:

(a) Minkowski coordinates (z„}(which turn out to
be the coordinates appropriate for coupling to the
electromagnetic field), and

(b) Quasi-Newtonian coordinates (X, f), which
have been discussed in the literature by a great
many authors. ' "

To introduce the quasi-Newtonian coordinates
one postulates the Fourier transform to be

From Eqs. (2.9), or (2.9'), one finds that the norm
((f), g) may be written in terms of these new func-
tions as

(2.16)

M=Xx P+S. (2.18)

From Eq. (2.12) one finds the Hamiltonian to be

Po=+ (P +M )'i . (2.19)

Finally one finds for the generators of the Lor-
entz boosts [using Eq. (2.14}, and by partial inte-
gration in Eq. (2.15)]

{Mo(}=—K= p(XP, +P, X)+tP, 'P

(Po+I) S X P. (2.20)

Several important remarks are to be made at

Once having this definition, the form taken by the
Poincare generators ean be found directly from the
Wigner realization, Eqs. (2.12)- (2.14):

(2.17)
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this point.
(1) The generators (2.17), (2.18), (2.19), and

(2.20) are Hermitian for the inner product (2.16).
That they satisfy the commutation rules for the
Poincare group is clear by the way they were de-
rived from the %igner generators; one can also
verify this fact directly. Note that I; is once again
a c number.

(2) Keeping (2.17), (2.18), and (2.19) one can
modify (2.20) so that it remains Hermitian and

keeps the correct Poineare commutation relations.
The most general form is'

K' = K+f( p, )p, (2.20')

with f(P,) real. This freedom corresponds to the
fact that instead of (2.15) one might have chosen

y (X i) =(2 )-"'
JI d '""'(p )-"'

)( ief'R)iePpty (P) (2.15')

In other words, these representations„correspond-
ing to different choices f(p'), are all unitarily
equivalent.

(3) For the case of spin s the only change is that
the Pauli matrices of the syin--,' ease are replaced
by the generators of the (2s+1)-dimensional uni-
tary representation of SU(2). Hence we have ob-
tained quasi-Newtonian coordinates for the general
(M, s) representation uniformly.

(4) The coordinates (X, I) have a number of less
desirable properties; this has been discussed in
the literature extensively. '"

{5)To our knowledge Eqs. {2.17)-(2.20) were
firstgiven in this generality by Thomas. "

The coordinates (X, t) have been designated
here as quasi-Newtonian" since X transforms
under rotations as a three- vector, but X is not
part of a (Minkowski) four-vector; a.s mentioned
before, t is a c number. These coordinates are
therefore nonrelativistie in appearance, i.e. ,
"Newtonian"; but since X properly belongs to
quantum mechanics as an operator (or q number)
we accordingly call these coordinates quasi-New-
tonian for short.

Such coordinates have been introduced many
times, ' "but it is chiefly the discussions of New-
ton and Wigner (1949)—"Newton-Wigner position
operator" —and of Foldy snd Wouthuysen (1950)—
"mean position operator" —that have been defini-
tive. There are major problems posed by quasi-
Newtonian coordinates (localization is not invari-
ant to Lorentz transformations; moreover, in the
next instant the system is completely dislocalized).
Physically the difficulty is that no interaction eou-
yles to this coordinate.

%e defer the discussion of the Minkowski posi-
tion coordinates to Sec. VI.

III. POINCARE COVARIANCE FOR A DEFORMABLE
COMPOSITE OBJECT

A. Dirac s new equation

J,= —,
' i(a,a, —a,a(),

{E]:E, = —,'(a, ' —a, '+a, ' —a,'),

E,= ——,'(a,a2+ a,(T, ) )
(3.1)

{Vj: V, = —,
' i(a, 2 —a, '+ a,' —a, '),

V, = —,i(a,a, —aA),

V, = —,'(a,a, + aA+ 1).

The Lorentz group generators S,„are the subset
Sij ~ijk ky Sio

All ten generators operate on functions P($„$,)
and all are Hermitian within the usual norm

((()) fd(,4.("((,„(=.)(((„(.). ().2)

In this way the ten generators of (3.1) provide a
unitary representation of the covering group of the
de Sitter group [Sp(2, 2)], which we denote by 'IL(S).
This representation induces a four-dimensional
nonunitary representation in the following way20:

&(S) L (S)=& (S) (3.3)

Dirac's new relativisticwave equation" describes
a comyosite particle, having intrinsic spin s =0
and mass M, whose internal structure is based
upon two (degenerate) harmonic oscillators (v„$,)
and (v„$,). Here )T,. and $,. are the usual dimen-
sionless momenta and coordinates [$„=((()p/h)'~'q„
v,. = (5()p, )

' 'p,.]. It is convenient also to use the
(non-Hermitian) operators 2'~'a, = iv, +—g,. and
2'~'a, =——Ar,-+ $, which obey the commutation rule
[a, , a,.] = 5, ,, all other commutators vanishing.

Dirac's construction —and the generalization to
spin s in Ref. 18—are based upon the fact that,
remarkably, the internal structure supports a
realization of the symplectic group Sp(2, 2) whose
en generators S „are give

{J):J,=-,'(a,a, +a,a,),
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A = exp n„„M„„, (3.4)

one has

where S(S) is a 4 && 4 matrix representing S. One
checks easily that (3.2) is true and that the matri-
ces 5&(S) form a representation of the de Sitter
group S. The covering group of the homogeneous
proper orthochronous Lorentz group is obtained
from S by restricting oneself to the first six gen-
erators of Eq. (3.1). Writing for an element A of
the restricted group

solution. Using (3.3), this verification becomes
similar to the verification that the relativistic
equation for the electron is invariant.

B. An alternative formulation

Let us return to the mapping defined by Eq. (3.3).
Consider an arbitrary transformation A, belonging
to the covering group of the proper homogeneous
Lorentz group ISL(2, C)], i.e. , + A leads to the
same Lorentz transformation A(A). Let us define
for an arbitrary (A)

'u(A)=exp Q'a, „s„).
arV

For the representation $(A) one finds

(3.5)

(3.6)

a, (A )

a, (A)

a, (A)

a,

=—ql(A) ' %, '(A).

a»

(3.9)

where the four matrices y„, p =1,2, 3, 0, are an
unusual representation of Dirac's matrices. Ac-
tually u(A) is equivalent to a direct sum of A it-
self and of its complex conjugate.

The new Dirac equation is based on Eq. (3.3) and
on the explicit form for I) given in Eq. (3.6). Dirac
writes

a,

(y" s, —M) ' P(x; $„$,) = 0, (3.7)

a»

where B„works on the Minkowski coordinate x and

where the a's and a's work on $, and $». The func-
tions (()(x; („$,) transform under (A, d) according
to

g'(x $ $ ) ~(A)(t)(A- (A)x d $ f ) (3.8)

where %,(A) is given by (3.5), with (3.1), and where
'u(A) operates on $, and $,.

To check the invariance of (3.7) for Poincare
transformations (d, A), one verifies that (I)'(x; g„$,)
is a. solution of (3.7) provided that p(x; $„$,) is a

The quantities on the left-hand side have the same
commutation relations as the quantities sandwiched
on the right-hand side. If the original ground state
is u,'($„$,) then the operators on the left-hand
side of (3.9) define a new ground state

(3.10)

The ground state uo($„$,) is defined by

a,. u ', ($„(,) = 0, i = 1, 2. (3.11)

The first three generators in (3.1) make it clear
that u', ($„$,) is invariant for rotations; the next
three show that it is not invariant for boosts. In
this way the ground state uo($„$,) may be labeled
by the unit four-vector in the time direction:
e= (0, 0, 0, 1). The ground state obtained from
u', ($„$,) by a boost will be denoted u,' ($„$,); it
is characterized by the unit four-vector eB into
which (0, 0, 0, 1) is changed by the boost. Again
this is a good characterization because the ground
state u,'($„$,) is invariant for those transforma-eB
tions A which leave the four-vector eB invariant
(little group of es). We found, for a boost in a
spatial direction specified by 8 and f, and over a
hyperbolic angle X,

u', ($„g,) =)r(cosh'+ sinhy sin8 sing) 'I'

&& exp{- (2 cosh'+ 2 sinhx sin8 sing) '[($,'+ $,')+ 2i sinhy cos8$, $, + isinhy sin8 cos4)($,' —$,')]).

(3.12)

A useful alternative parametrization uses the unit four-vector P/M:

0 M "' M» 2zP» zP,",g ( „)(=((P P) xg —
2(p p) t(+(. ) — ~ (,(.~ ~ ((. —(, ) I. (3.13)
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The plane-wave solutions to Dirac's new equation
are given by

exp(iP x)us/M(&„$2), (3.14)

0 0 0 0 al(Bs)

0 0 0 0 as(Bs)
( )

0 0 1 0 a, (Bs)

where P' —M'=0. This should be no surprise, be-
cause for a plane wave of four-momentum p Di-
rac's new equation may be written using (3.9) as

boost, P denotes the initial four-momentum, and

AP = A(A)P denotes the final four-momentum just as
for Eq. (2.1).] As we remarked in connection with
(2.1), B» 'ABs leaves (0, 0, 0, 1) invariant, and,
therefore, is a rotation, R = B~ 'AB~. In this way

e(A) u,"„=Z(B„)u(R)Z-'(B,) u,"/ „
= ~(B„)Z(R)u,'

=m(Bs, ) Q g)', (R)u,'

0 0 0 1 a2(Bs) m'
R 'll, Bpp Qs™

where Bs is the boost which changes (0, O, O, M) in-
to the four-vector P. m'

&'. .(R)u''2" M . (3.19)

C. A uniform presentation of the Wigner basis functions

Once we have obtained this view of the structure
underlying Dirac's result, the generalization to non-
zero spin is immediate; the result will define the
Wigner basis functions for general spin. First one
defines the basis states for four-momentum
(O, O, O, M) as

Hence we find from (3.8) that the basis vectors
uss (P) transform according to

(d A) u" (P)-e' ~su, (R)us™'(Ap)

where

R =—B 'AB~.

(3.20)

The transformation (3.20) for the basis functions
(unit vectors in Hilbert space) implies the trans-
formation (2.1') for the components p'(i/) of a state

(+ ) sam(& )s-m

S (~1l ~2) [(s, ) ( (s ) t]
1/2 S(~ll ~2) &

(3.15)
&=Jt —,Q4'(P)usl (P)

which characterizes spin s and projection m for a
particle with four- momentum (0, 0, 0, M).

The spin states for a particle with four-momen-
tum p are then given by

l, (B,)]™l.(B,)] "„.
2 M 1 2 [(s +m) t (8 —m) t]1/2 2(/~Ml 2S

(3.16)

where B boosts (0, 0, 0, 1) to p/M, and where
us»M($„$2) is given by (3.13).

The corresyonding Wigner basis function, having
mass M, sharp four-momentum p, signs, and in-
dex rn, is then

uslm(P) e1gl sus/ m($ $ ) (3.17)

%,(A) ='u(BS )'u(B~p 'ABp)'n(Bs '),

which is an obvious identity. [Here B denotes a

(3.18)

[To make the relation to Eq. (2.1') clearer we have
suppressed the parameters M, $„$, in the Wigner
basis functions on the left. ]

Let us verify the transformations of these basis
functions under Poincare transformations (d, A).
The transformation of the functions u(p) is given
by (3.8), and the translation part checks immed-
iately; we are left with considering A.

Next, we write 'u(A), of (3.8), as

It is of interest to note that there is an alterna-
tive way to proceed. " To see this, let us use a
different identity for decomposing w(A):

W(A) =W(AB, B„-')W(B„)W(B,-'). (3.21)

The transformation AB~B~~ ' belongs to the little
group of AP, since B» ' takes Ap into (0, 0, 0, .VI)

and ABs takes it to A(A)P. Thus we may equiva-
lently write the transformation induced by (d, A) in
the form

D. Poincamf generators

1. Momentum-space coordinates (Wigner form)

Once one has obtained a uniform presentation of
the set of all Wigner-Poincare wave functions (on

(d A): u" (P)-e"2'5r (AB B ')u' '(Ap)

(3.22)

The significance of this alternative form of the
transformation, Eq. (3.22), is that it enables one
to give an explicit operator form of the generators
of the stability group (little group) of AP. This
stability group is generated by three operators
S,,(B»), i,j = 1, 2, 3, which are obtained by sub-
stituting the a, (Bs) and the a/(Bs) .for the a,. and the
a, in the first three lines of (3.1).
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the harmonic-oscillator basis above) the question
occurs as to whether there exists a unified set of
generators yielding precisely this set of functions.
It is clear, by analogy with the derivation of the
Wigner generators given in Sec. II, that generators
(for each mass separately) must exist, but the real
question is: Can one incorporate a nonconstant
mass parameter m? It is here that we go beyond
the concepts used in the Wigner-Poincare construc-
tion.

It is the merit of the Galilean subdynamics ap-
proach" "that it suggests an answer to these
questions. By ascribing a literal meaning to the
composite structure it was demonstrated that this
imposed, consistently, a mass-spin constraint on
the set of Wigner wave functions. This constraint
takes the form

M'= f(s), (3.23)

where s is the spin such that 2s =n, the number of
quanta.

The form of the function f is arbitrary (but of
course M' must be non-negative). The special,
linear, form M' = n+8s is suggested by the em-
pirical data on hadronic Regge bands. (We dis-
cuss this case further in Sec. V.)

Since the number of quanta is the boson operator
2 Vo belonging to the generators of the de Sitter
group, we may give an operator formulation of this
constraint:

M' =f(a,a, + a,a, + 1). (3.24)

[Note, for preciseness, that these boson operators
are the original ones defined in connection with Eq.
(3.1).]

Let us now demonstrate that there exist genera-
tors explicitly validating these ideas. Following
the Wigner construction, we first define an in-
variant inner product

xp()i)2ip).

[P,PO]=0. (3.27)

Just as earlier the rotation generators follow
directly from the realization of the e»0, little group
by the rotation matrices. This now implies that

Space-time translations are now realized by the
operators

P~p
(3.26)

Po=—[P'+ f(a,a, +a,a, +1)]'~'-E=[p + f(s)]'~',

where

the rotations are generated by the operators

8 a
M)~ =i P] —P~ +Sg)

Pj i

Here the operators S;& are the boson operators J
given in Eq. (3.1).

Finally the boosts are found to be generated by
the operators

(3.28)

s (p xS), (3.29)

The existence of this operator realization de-
pends critically on the fact that the "mass oper-
ator, "M'=f(a,a, +a,a, +1), commutes with P, S,
and hence with M„„.

One may verify directly that these generators
(designated the "Wigner form") satisfy the Poin-
care group algebra.

2. Quasi-New tonian coordinates
for the generators (Thomas form)

xA(pi ~i@) . (3.30)

The norm now takes the form

(0, 0) = ~'X4, d$, 0*(X, t; (,h, ) 0(X, t; $, t', ) .

(3.31)

Introducing the Wigner form of the generators,
Eqs. (3.26)-(3.29), into Eq. (3.30), it follows that
the quasi-Newtonian form of the generators is
given by

p, = ts/sx, ,

P, =+[P'+f(a,a, +a,a, +1)]' ',
M;, = e()1(XxP)„+S;),

M„= 2 (X; Po+ POX;) +tP;/P,

(3.32)

(3.33}

(3.34)

+(Po +M) '
( e;) q P) Sq}, (3.35)

where S~ —= e, »S, ~ and M=—[f(a,a, +a,a, +1)]' '; cf.
Eq. (3.1).

It is verified directly that these operators close
on the commutation relations of the Poincare alge-
bra.

We designate these generators, in quasi-New-
tonian coordinates, Eqs. (3.32)-(3.35), as the
"Thomas form" since the equations have (for a
fixed numerical mass M-number) precisely the

It is straightforward now to introduce quasi-New-
tonian coordinates, (X, t), in complete analogy to
the earlier example in Sec. II. Let us define the
wave function by

d3
(X t ~ t ) =(2v) ' '

2 (p )I/2
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form given by Thomas in his discussion of an iso-
tropic spinning particle. " [There is a slight dif-
ference in that Thomas sets t=0, which is an al-
lowed simplification; compare remark (2) after
(2.20).]

It is remarkable, we believe, that such a simple
formulation exists for an object realizing all the
Wigner representations [M(s), s] each s once and

only once.
Having once obtained these ten generators, we

can forget where they came from and consider the
generators on their own merits. (Thus, for ex-
ample, our previous considerations of Galilean
subdynamics can be considered as heuristic only,
and, if desired, can be discarded ) T.he generators
given by Eqs. (3.32)-(3.35) define completely the

fusee motion of a relativistic composite object
sohose mass-spin quantum numbers lie on a dis-
crete Regge band, M~=f(2s); the Hamiltonian is
given by Eq. (3.33).

It will be observed that these generators are
actually in Hamiltonian form, and the operator P,
is indeed the Hamiltonian. The motion generated
is, however, the free motion of the object and
there is no essential dynamics involved. Thus the
real content of these generators is kinematical in

nature as emphasized in the title.
Let us remark, for completeness, that in their

comprehensive discussion of the theory of a rela-
tivistic spherical top, Regge and Hanson" arrived
at a canonical formalism for a constrained Hamil-
tonian system ("Dirac brackets") which is formally
quite similar in structure to the results above.
(Cf. Ref. 21, Sec. E, p. 535.) However, the Han-
son-Regge realization introduced a set of internal
coordinates R" which served as the carrier space
for the usual rotation matrices; this results not
only in a (2j+1)' multiplicity but also introduces
nontrivial ordering problems in realizing the com-
mutators. Hence, though similar in spirit, the
work of Ref. 21 is in actuality rather different from
the results given above.

[It might be of interest to note that a suitable
limit for the structure given in Eqs. (3.32)-(3.35)
yields the Wigner massless infinite spin irreps of
6.]

IV. DYNAMICAL STABILITY GROUPS

The existence of the ten Poincar6 generators
(P,M), given by Eqs. (3.26), (3.27), and (3.29), or
by (3.32), (3.33), (3.34), and (3.35) whose associa-
ted wave functions are the set of [M(s), s] Wigner
irreps, serves to define an entity which, for want
of a better name, we may call a (relativistic)
"composite object. " We seek, in the present sec-
tion, to understand better the structure of this ob-
ject.

The phrase "composite object" is meant in con-
tradistinction to the phrase "elementary particle"
(presumably structureless), since this latter must
surely mean, at the least, an irreducible Poincar6
representation, It would seem reasonable to con-
sider a composite particle to be one that belongs
to a Regge band; if the band has discrete masses
only then the particle presumably does not frag-
ment, but remains a single entity. ' The object
described by the generators (P, M) possesses these
characteristics of compositeness with no possi-
bility of fragmenting.

Let us now demonstrate that we can consider
this structure from a group-theoretic viewpoint
which unites the set of [M(s), s] irreps into an en-
tity. Let us take the object to be in its rest frame.
In this frame, the operators S„„—= (J, K) generate
two irreps of the Lorentz group (2):

(a) the half-integer band s = —,', ~, . . . , and

(b) the integer band s =0, 1, 2, . . . .

These two irreps are easily recognized as rota-
tional bands belonging to a (noncompact) version
of the rotator symmetry group SU(2)xSU(2).

If we now use the Hamiltonian of Eq. (3.26),
H =[f (a,a, +a,a, +1)]' ', we see that the two bands
each comprise states of different energies, and

that the bands exhaust the set of all eigenstates of
the energy. These properties identify the group
generated by S„,as a "dynamical symmetry group"
of the Hamiltonian H.

These considerations show that one may consi-
der the structure in two distinct ways:

(a) The rest-frame system is that of a harmonic
oscillator, with n=2s or

(b) the rest-frame Hamiltonian has a dynamical
symmetry group 2.

In both views the states split (superselection
rule) into two subsystems, the two bands above.

These results, which for p = (0, 0, O, M) are al-
most too obvious, become significant when it is
realized that they are Poincard-covariant. That
is to say, the structure is in view (a) that of a
relativistic harmonic oscillator, or in view (b)
that of a Poincard-covariant dynamical symmetry.
From this viewpoint the results are possibly sur-
prising.

We have based these results on considerations
for P =(0, 0, 0, M). But if one recalls the proofs in
Sec. III C it is clear that, by using boson operators
adapted to general p/M, precisely the same group-
theoretic properties obtain. In other words, one
has, in view (a) a relativistic harmonic oscillator
of the stability group for general P/M, or in view
(b) a dynamical stability group for P/M. (The
relevant generators are the S„, using bosons
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adapted to p/M. )
There is a third view of this structure which is,

to us, the most physicaQy appealing. It is well
known that, because of parity, the Regge-band
structure (for integer spin) splits into bands having
steps of two units of spin. To incorporate this
feature, Dothan, Gell-Mann, and Ne'eman" pro-
posed that the appropriate dynamical symmetry,
for both hadronic and nuclear physics, was not
the rotator (g) but rather the group SL(8,R)—the
group of rotations and volume-preserving de-
formations (shears) of three-space. To incor-
porate half-integer spin the (twofold) covering

group cov[SL(3, R)] must be used.
Let us demonstrate that the cov[SL(3, R)] group

is indeed a dynamical stability group for our com-
posite object. It is convenient to realize this
group by choosing the representation (3.32)-(3.35)
[or alternatively, (3.26)-(3.29)] as the structure
into which to introduce cov[SL(8, R)]. The repre-
sentation (8.32)-(3.85) involves the original boson
operators, defined in connection with Eq. (3.1).
Using these same boson operators, the group
cov[SL(8, R)] is generated by the vector operator
J; of Eq. (8.1) and by the quadrupole operator T„
defined by

31,

(2 +m)!(2- m)!

- i/2

(y )-~i~[(a )2+"(a )~-" y( a }2+&(a }~-&](y )-&i~ (4.1)

where V, is the number operator given by the last
line of Eq. (3.1). It is easily verified that T, is
Hermitian and transforms as R quadrupole opera-
tor under J. Hence we get the desired commuta-
tion rule

[g Ts] g212 Ts+ i (4 2)

All remaining commutation rules of cov[SL(3, R)]
are obtainable (by commutation with Z) from a
single relation, the cov[SL(3, R)] condition:

I, =-,', (J —~T )-4, I~ 0 (4.4)

corresponding to the generalized Young pattern
labels [P, q, 0]P=2, q=0. [Here T' is just+(-1)"
T,"T,", the usual invariant. ] Note in particular
that these eigenvalues belong to the discrete
spectrum.

One recognizes at once that since T transfers
four-quanta, the space Qf, sj splits into four dis-
joint pieces, namely 2s =—2k (mod 4}, k =0, —,', 1, 2.
Thus our construction yields three distinct primi-
tive unirreps"

(a) s=0, 2, 4, . . . (k=0),
(b) s = 1, 3, 5, . . . (k = 1),
(c}s = as 2, g ~ ~ ~ ~ (k = ~2)~

(4 3)

where u" is defined by Eq. (3.15}.
One can verify, after a bit of algebra, that the

quadrupole operator T,", Eq. (4.3), does indeed
satisfy" Eq. (4.3). We have thereby proved that
our realization does indeed generate cov[SL(3, R)]
on the given basis. '

It can be shown" that the two invariant operators
I, and I, of cov[SL(8, R)] assume the unique eigen-
values on our basis,

Rnd R fourth quasll ep

(d) s=2) 2t 2$''' (k p).lJ

Since these four bands have precisely the content
of four known Regge sequences" one may label
them as the n, p, N, and 6 Regge trajectories if
desired.

To summarize: We have shown that the most
interesting way to view this "relativistic compo-
site object" is to view the structure as realizing
four distinct Regge bands and incorporating the
dynamical stability group cov[SL(3, R)], the group
of rotations and volume-preserving deformations
of three-space. " We suggest that the concept of a
dynamical stability group is the proper concept to
replace the unworkable concept of a global Lie
group symmetry in relativistic quantum mechanics.
[It may not be amiss to remark here that in the
"bag" models of hadrons it is an essential struc-
tural feature that the (energy/volume) be constant.
This feature implies that SL(3,R) is an inherent
symmetry of the overall "bag-model*' structures. ]

V. AN OVERLY SIMPLE, BUT CORRECT,
RELATIVISTIC SU(6) MODEL

The present section is in the nature of an appli-
cation of the model-building concepts exemplified
in the preceding sections. We wish to apply these
ideas in a straightforward way to construct a
logically precise relativistic model displaying a
discrete Regge band incorporating SU(6) symmetry
in a nontrivial way. The model is intended as a
cautionary example, and since it experiences,
clear defects (e.g. , an observable 6-piet) we do
not wish it to be taken overly seriously.

Shortly after the impressive success of SU(6)
symmetry in accounting for the 56-piet of baryons,
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and the 35-piet of mesons, hasty attempts were
made to construct relativistic symmetry structures
by the abuse of group theory. The defects in these
approaches led to a number of theorems (Mac-
Glinn's theorem, O'Raifeartaigh's theorem)
sharply delimiting the scope of such model build-
ing. The contrary view then became prevalent-
as for example in Dalitz's summary at the Berke-
ley conference" —that relativistic SU(6) was not
possible. " Further attempts avoiding earlier
errors and using infinite- component wave func-
tions30 seemingly ran into equally severe prob-
lems" [e.g. , violation of the spectral conditions
(spacelike and lightlike solutions)].

To demonstrate explicitly the feasibility of a
relativistic SU(6) model, let us give an improved
version of the model of Ref. 32. The improved mo-
del is invariant for all Poincard transformations
and has all the properties which one would like a
simple relativistic SU(6) model to have. The mo-
del is obtained by extending the construction of
Sec. III to three pairs of oscillators: The gener-
ators act on wave functions of the form

(f)(p. {$"]},i =1,2, A=1, 2, 3,

with inner product

(5.la)

P=p,
q l/2

P =+ p +f g a",a,"+a,"a,"
A=1

(5.2)

(5.3)

(5.4)

(5. lb)

In momentum space the Poincard generators take
the form

the (totally symmetric) SU(6) irrep [n0]. The
standard reduction" shows that, for example, the
zero-quanta state has spin 0; the n =1 multiplet
is an SU(3) triplet of spin- —, states; n = 2 has a 6-
piet with spin 1 and an antitriplet with spin 0; n = 3
is the familiar SU(6) 56-piet.

Breaking of SU(6) symmetry is achieved easily
by giving the three oscillators instead of a common
f three different f's.

This simple model suffices to show that a fully
relativistic SU(6) model does indeed exist having
the following properties:

(a) Poincard covariance,
(b) distinct, discrete SU(6) mass multiplets,
(c) no spurious (spacelike, timelike) states,
(d) the symmetry is not trivial [not the direct

product SU(6) x(p],
(e) the dynamical stability group is realized by

unitary operators acting in physical Hilbert space.

The model does not contradict O'Raifeartaigh's
theorem since this theorem contains the extremely
stringent hypothesis that the entire structure of the
system be comprised in a finite-rank Lie group.
There is no such overall Lie group for our model,
and the theorem is accordingly not applicable.

Actually this situation is already clear from
Sec. IV. There we demonstrated that the set of
states belonging to each of the three bands (0, —,',
and 1) formed the carrier space of a dynamical
stability group and a,lthough fully relativistic, the
structure wa, s certainly not a direct product with 6'.
These results emphasize once again that the rele-
vant structure for physics is the Hamiltonian and
its symmetries (dynamical or otherwise); the prob-
lem posed by relativity is to complete the set of ten
Poincarb generators. It is an unnecessary and
overly restrictive view to require that the (P gen-
erators plus the symmetry generators must them-
selves fit into a single overa, ll Lie group.

t A=1

1
3

(A) AX 2&]~~ p) J~ —p~ J~
A=1 A=1

(5.5)

These generators can be written in the Thomas
form by introducing quasi-Newtonian coordinates.

The masses described by this model clearly fall
into SU(6) multiplets, since they belong to eigen-
states of a 6-fold degenerate harmonic oscillator.
Denoting the total number of quanta by n, one finds
that the mass eigenstates are characterized by the
Regge band

M' =f (n+ 3), n = 0, 1, . . . . (5.6)

For each n the associated mass multiplet belongs to

VI. INTRODUCTION OF MINKOWSKI
POSITION COORDINATES

Let us now complete the program begun in Sec.
II and introduce Minkowski position coordinates in
place of the quasi-Newtonian coordinates discussed
there (and in succeeding sections). The use of
Minkowski coordinates is essential in constructing
electromagnetic interactions.

The first step is to change from the Wigner mo-
mentum-space wave functions to wave functions
more appropriate to describe interactions. For
the spin-& case there are two possibilities leading
to the introduction of either dotted or undotted
spinors. Let us sketch the development, for un-
dotted spinors, and then proceed to a similar con-
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stx'uction for the composite structure described in
Sec. III.

From Sec. G we found the signer representation
to be

[U(d, A)4] (P') = ""' (B 'AB,);,0;(P);
al

{6.la)

observe that the spin matrix transformation de-
pends on the value of p. This is often inconvenient,
and the inconvenience can be removed simply by
defining the undotted spinor X,(p) as

2

p( p; $„&,) from p [P' determined via (3.27)] to a
unit four-vector l4 parallel to p [the length, M, of
the four-vector p is given by M'= f(a,a, +a,a, + 1)].
Then, the transformation 'u(B4) depends, via (2.2),
only on L~ and not on the length, M, and the trans-
formation (6.6) is well defined. The unitary simi-
larity transformation %(B4) changes the operator
a,a, +a,u, +1 xnto

'lL(B4)(a,a, +a,a, +I@ '(Bp) =a,a, (B4)+a,a, (Bp)+1,

using Eq. (3.9). Hence, in the new coordinates
Eq. (3.24) reads

x ())= P(&,)gp, ()). (6.1b) M' =f{a,a, (B4}+a,a, (B~)+1). (6.8)

Clearly then for the Poincare element (d, A), we
obtain the representation

2

Xl()')= P(4, ),P)()')

The infinitesimal generators are given most easily
by considering the p in X(p; $„(,) to have four in-
dependent components,

(6.9)

= e*'"4 A „X,(p).
=1

(6.2}
and by introducing the mass spectrum via the sup-
plementax y condition

x(x) =, —e' x(p}.
P0

(6.3)

The transformation matrix A. ,&
now depends only

on the I orentz group element A, as desired. The
functions X(p) are much easier to use in construct-
ing invariant interactions and Lagrangians. One
can also, with their aid, easily construct Minkow-
ski wave functions by using the Fourier transfor-
mation

P'= f(a,a,(B4)+a,a, (B~)+1),
the remaining generators being given by

a 9
M;)=i P; —P~ +S)~,

Pg Pf'

a . a
M0] =i P0 + P' +S;,

BP) BP0

(6.10)

(6.11)

(6.12)

Clearly then one finds

X'(x'}=AX(A '(A)x —d). (6.4)

Using this procedure, which is standard, as
the proper approach let us now apply it to the
momentum-space wave functions of Secs. III C
and IIID. From Eq. (3.20) we find these functions
transform as

with S„„given by Eq. (3.1)."One can verify" that
the argument a,a, (B4)+a a2(B&)+1 of the right-hand
side of (6.8) commutes with the generators (6.9),
(6.11), and (6.12).

Having the functions X(p; $„$,), which transform
according to (6.7), it is now possible to define
Minkowski coordinates x by a Foux'ier transforma-
tion, just as in (6.4):

[U(d, A)p](p', $„$,) =e'4 "u(B, 'AB )

x (p(p, $„$,),
x(»; 5„5.) =- e"'*x(p; („5.).dp ip x

PO
(6.13)

where Bz '49& is a rotation and where U is de-
fined in Sec. IIIA. This form suggests that one
define, in analogy with Eq. (6.1),

x(P; t„5.) =-~(B,)A(p; t„5,). (6.6)

Then for a Poincare transformation (d, 4) one has

X'(P', t„ t-) = e"""~{A}X(P;(„t,). (6.7)

The transformation (6.7) can indeed be carried
out, but needs some elaboration as the boost
U(B4) contains p, defined as an operator by (3.27).
To proceed, one first changes the coordinates of

It follows from (6.7) that X(x; $„$,) transforms
under the Poincare element {d,A) as

X'(x; $„5,) =&{A)X{~{A) 'x - d; $„5.)

The generators on this structure are P„=-fS/Sx",
M „„=q „~P~+ S„„,where the S„„are listed in
Eq. (3.1), and are taken in the fixed frame a„etc.
The functions satisfy, by construction, the wave
equations

(0-f[a,a, (B4)+a,a, (B~)+ I D X(x; („],) =0.
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Vector and tensor fields can be constructed
with the aid of the operators of (3.1), where a
Minkowski-space vector field is given by

V„(x) =
Jl dh, dI„X*(»;k„h, ) p'„X(»; I.„k.) .(6.16)

A spinor field can be constructed as

distinguishing Minkowski vs quasi-Newtonian
variables (recall the similar behavior of the
"mean spin'* and "mean orbital. angular momen-
tum" as discussed by Foldy and Wouthuysen).
That this behavior occurs here, uniformly for all
the many spins, we regard as an encouraging
feature of the model.

s, {x)

s, (x) 4,4.x*(x; h„h, )

s,(x)

s,(x)

x (x; $„$.).

(6.17)

These Minkowski-space fields, really wave func-
tions in the sense of quantum mechanics (i.e., not,

yet field operators), should be useful in construct-
ing interactions, in particular with the electro-
magnetic field and for our earlier example of a
dual. resonance model.

The Minkowski-space wave functions g have
several remarkable features that distinguish them
from the quasi-Newtonian form given in Sec. III.
The Hamiltonian, 0= Po, has the unusual form,
as one sees from Eq. {6.15},

H = P, = + i P ' +f[aP, (B~)+a,a, (B~) + 1]j 'I~.

(6.18)

This result was found earlier in studying Galilean
subdynamics and posed difficult questions about
the consistency of that approach. The problem,
as one can see from Eq. (6.10), is that the oscil-
lators (defining the "mass operator") are io be
adajted to a frame determined by the four-vector
momentum ope~ato~s themselves. The consis-
tency, even the lack of circularity, of such a
structure was not evident; here the consistency
is guaranteed by the properties of the ten Poincarh
generators in the quasi-Newtonian coordinates
of Sec. IIID.

lt was argued after Eq. (6.12) that the operator
a,a, (B~) +a,a1(B~)+ 1 commutes with the generators
(6.9}, (6.11}, and (6,12) therefore the Hamiltonian,
P„commutes with the rotation generators (6.11).
However, the orbital (X x P) and spin (S„)angular
momenta do not separately commute with the
Hamiltonian Po. This is a characteristic feature

VII. CONCLUDING REMARKS

We have, throughout the previous discussion,
kept the form of the mass-spin relationship es-
sentially arbitrary, but empirically the linear
form M' = as+ p is strongly indicated„and there
is some reason to believe the slope is character-
istic for hadronic physics.

The results presented above indicate quite a
different reason to prefer the linear form. From
Eq. (3.2V) one sees that the use of a linear Regge
band implies that the Hamiltonian belongs to a
quadratic form in 1vhich a single dimensional con-
stant sets the relative scale hetseeen the internal
and external spaces. Equally suggestive is the
fact that such an eight-dimensional quadratic form
has a unique factorization over the Cayley numbers
which does not increase the space-time-spin vari-
ables (beyond adjoining negative mass). The re-
sultant structure {ifit can be implemented con-
sistently) suggests the possibility of new intrinsic
superselection spaces. "

Interesting as such possibil. ities may be, they
remain at present speculations which are quite
independent of the validity and usefulness of the
present entity. By virtue of the exjlicit realiea-
tions given for the Poincare generators in Secs.
III and VI, this deformable object is established
in its oson right, and merits consideration on its
OR'n.
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