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We consider a dual-charged test particle with electric charge eo and magnetic charge go moving in the field of
a dual-charged massive central body with charges e and g. A simple method used by Schwinger to study
charge quantization in flat space can be generalized to this situation to show that eog —gpe is an integer
multiple of I'c. It is remarkable that the curvature of the space plays no role and that this is the same result
that is obtained for flat space. We then show that the test particle can remain at rest in the field only if
ceo + ggo '

j
K MJtl and e ' + g

' = K M ', where K is the gravitational constant and M and p, are the masses of the
central and test body, respectively.

I. INTRODUCTION

Dirac's classic discussion of magnetic mono-
poles' provides such an elegant basis for under-
standing the otherwise mysterious quantization of
charge that many physicists continue to have faith
in the existence of such particles, ' independent of
the results of experimental searches with either
negative or positive results. ' In particular,
Schwinger has based his dyon theory of matter on
the existence of particles with both electric and
magnetic charge. ' In this context he has given
perhaps the simplest derivation of the classic re-
lation eg = nkc (n an integer) between the funda-
mental electric charge e and the fundamental mag-
netic monopole charge g.

In this work we study the effect of the nonlinear
nature of the Einstein-Maxwell equations on the
above electric-magnetic charge relation and re-
lated properties of magnetically charged particles.
In Sec. II we review for completeness the elegant
and elementary discussion of Schwinger on the
charge-quantization relation for two interacting
dual-charged particles; this yields a generaliza-
tion of the classic relation gep —egp = n.2c where
(e,g) and (e„go) are the (electric, magnetic)
charges of the two particles, and n is an integer.
In Sec. III we obtain the electric and magnetic
fields and the metric of a dual-charged massive
point particle, which we refer to as a dual-
charged Reissner-Nordstrom (RN) field. ' In Sec.
IV we study the motion of a dual-charged test par-
ticle in the dual-charged RN field, and demon-
strate the remarkable fact that despite the non-
linearity of the Einstein-Maxwell equations and
the curved nature of the RN space the above
charge-quantization condition still holds. In Sec.
V we show that the conditions eep+ggp=KM@ and
e'+g' = vM' are necessary to allow the test parti-
cle to remain at rest in the RN field; the first re-
lation expresses an obvious balance between elec-

tromagnetic and gravitational forces identical to
the relation necessary in flat space, and the sec-
ond is a more subtle geometric condition which
we refer to as optimally charged.

It must be emphasized that our study treats only
the central massive body nonlinear effects. The
test particle is assumed to have negligible effect
on the fields, e.g. , ep«e and is thus implicitly
treated in a linear manner. Hence our results
should not be assumed necessarily to hold for two
arbitrary dual-charged particles, although one
may feel intuitively that they should. Indeed, a
study by Parker indicates that for at least some
exact two-body solutions contrary results occur. '
Since the physical nature of the singularities in-
volved in these solutions is not totally clear, fur-
ther work should be of interest.

II. FLAT-SPACE ANALYSIS

Schwinger's derivation of the charge-quantiza-
tion condition on dual-charged particles is extra-
ordinarily simple, and we include it here for com-
pleteness. ' Consider a dual-charged particle with
mass p, and charges (e„g,) moving at nonrelativis-
tic velocity v in the electric field E and magnetic
field H of a stationary dual-charged particle with
charges (e,g). The equation of motion is a modi-
fied Lorentz equation"

dv ~ v
p —=e, E+—xH +gp H- —xE .

dt ' c ' c (2.1)

E = er/r', H =gr/r',
where r is a radial unit vector, we obtain

dv v
p.
—= (ee, +gg, )—,+ ( ge, —eg, )—x—,.

(2.2)

(2.3)

The second term is obtained from the first by the
dual replacements E- H, H- —E, ep-gp. With the
fields given by
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dv dr x9—,
= (ge, —eg0) ——

dt ' 'dt c
(2.4)

The torque acting on the mechanical angular mo-
mentum is therefore

with the charges e and g given by e cosy - e and
—e siny -g. In this the dual symmetric nature of
the field is manifest, i.e. , *F" is obtained from

8 by e -g and g- —e.

J =I x)2v —(ge, —eg, )r/c. (2.5)

It is clear that the second term in this expression
represents angular momentum contained in the
electromagnetic field; what is remarkable is that
it is independent of the separation of the dual-
eharged particles. Quantization of this component
of the angular momentum leads to a generalization
of the classical relation of Dix'ac

ge, —ego = nkc,

where n is an integer.

(2 6)

III. DUALLY CHARGED REISSNER-NORDSTROM FIELD

Thus the mechanical angular momentum is not con-
served but the following combination is:

IV. ANGULAR MOMENTUM AND CHARGE
QUANTIZATION

In direct analogy with the discussion in Sec. I,
we consider a dual-charged test particle with
charges (e„g,) and mass p, moving in the dual-
charged RN field. The equations of motion are an
obvious generalization of the Lorentz force law in
covariant form:

)2(x +(0 Jx"x') = —eP' 'x„g0*E 'x„-. (4.1)

In this section we will deal only with the angular
equations f = x' and 8 = x'. It is straightforwaxd to
obtain these from the metric (3.1) and the fields
(3 5).

The equation of motion for x'=f is

We need the electric, magnetic, and metric field
of a massive dual-charged point particle. Owing
to the symmetry of the Maxwell equations under
duality transformations it is clear that the correct
metric field ean be obtained from the classic RN
metric by simply replacing the square of the elec-
tric charge, e', by the sum of the squaxes of the
electric and magnetic charges, e'+g'. Thus in the
usual notation, for spherical coordinates,

ds' =g00c2df ' g„'dr -' —r '(d8'+ sin'8 dp'),

g„=1- +—,, I-=, , A =- —,(e'+g'),

F01 F10 e/r2(~) (~)

2p( )
= —+E( )

= e/(r sin8).
(3.3)

Thus the Minkowski tensor and its dual tensor for
the dual-charged system have nonzero components

y 01 @10 /r2

I'"= —E"= —g/(r ' sin8),
gP01 2y 10 g/r 2

= —*E = e/(r ' sin8),

(3.4)

where I(. is the gravitational constant and M is the
mass of the central body (We us. e the notation of
Ref. 4, but with cgs electromagnetic units. )

Similarly we ean obtain the Minkowski tensor for
a dual-charged source by a duality rotation,

=cosyp( )+s ny+p( )» (3.2)

where p(,8) is the Minkowski tensor for the RN field
of an electrically charged source and *P(,8) is its
dual tensor; these tensors have nonzero compon-
ents

—[p, r ' sin'8 jb + (ge0 —eg0) cos 8] = 0. (4.2)

(gr28) —)),r'sin8cos8 p2+(ge0 —eg, ) sin8$ =0.

(4.3)

This equation similarly expresses the conserva-
tion of total angular momentum, mechanical plus
field, along an axis orthogonal to both the ~ axis
and the radial direction.

It is quite remarkable that no gravitational ef-
fects of the central body are present in these con-
servation equations; they are the same as in flat
space. As in Sec. II, we may thus impose quan-
tization of angular momentum in the radial di-
rection to obtain the Schwinger relation (2.6). It
must be emphasized, however, that since we
deal with a test particle we must have (e„g,)
«(e, g) in order that the net field not be appreci-

We can interpret this easily. The first term in
the square brackets is the mechanical angular mo-
mentum of the test particle in the p direction, that
is the a component; it is not conserved. The
second term in the square brackets is (e,g-g, e)
times the ~ component of a unit vector in the
radial direction. We must interpret this term
as representing the angular momentum in the
electromagnetic field associated with the ex-
istence of the two dual-charged particles but in-
dependent of their separation, precisely analogous
to the flat-space situation discussed in Sec. II.
Only the sum of mechanical plus field angular
mornenturn is conserved. Note incidentally that
motion is thus not. in a plane.

For x2=6) we obtain
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ably perturbed by its presence, and similarly
the mass must be considered negligible. Thus
the integer n in (2.6) should be supposed large.
That is, (e, g) must be equal to many fundamental
charge units.

The above represents our main result, and in
the remaining section we will. discuss some re-
lated qu4 stions of interest.

V. BALANCE OF FORCES

It is evident that the results of the preceding
section are valid for general motion of the test
particle. Let us, however, consider the question
of under what conditions the test particle can re-
main at rest in the dual-charged BN field. %e
clearly expect such a possibility as the result of
a balance bebveen gravitational attraction and elec-
tromagnetic repulsion, and it is indeed known that

an analogous balance occurs in exact many-body
solutions. "

From the metric (3.1) and fields (3.5) we may
write the remaining x~=ct and x'=r equations of
motion a,s

[pc goof + (ceo +gg())/(rc)j = 0 )

c'f g~=D —(«o+ggo)/( «)
V (r +ogoo gooc f goo r /2goo goore

(5.1)

rs-ln Hg~ p ) = (ceo+ ggo)goo t'/(1 c) )

where D is a constant to be determined, and a
prime denotes differentiation with respect to r.
We seek a solution in which ((t =r = 8 =0. It is
clear that the angular equations (4.2) and (4.3) are
trivially satisfied, whereas the radial and time
equations imply that for consistency we must have

«.+o;, «vM (&-a/ &)I& —(88.+gg, )/g c] se, +)I),
}r'c' r'c' (1 —2m/r +A/r') pr c (5.2}

%e solve this by setting the quantity in curly
brackets equal to zero and equating coefficients of
the powers of r to zero, since we wish the force
balance to hold at any value of r. The result is

ee, +gg, = gmcD = I/. zMD/c,

m (ee, +gg, ) = pADc = I/. z D(e'+g')/c'.
(5 3)

In order to have the classical balance of force hold
in the nonrelativistic limit we must choose the con-
stant to be D=c. This choice of D can be obtained
in an alternative way. From (5.1) we see that for
r asymptotically large we can identify p.ca as the
total energy of the particle at infinity. Since we
are considering a situation where no forces act

e2 +g2 gMR

which we refer to as optimally charged.

(5.4)
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I

and the particle is at rest, we can move it adia-
batically to any position with no change in its en-
ergy, so that p, cD must be the rest energy p,c',
and D =c. %e thus see that a force balance can
occur as expected, but only if the charges and mass
obey
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