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Yang has laid the foundations for a "gauge" type theory of gravitation, reintroducing the Lagrangian

previously considered by Weyl and Stephenson. In this paper, I develop the full theory using a variational

principle on this Lagrangian with sources. Analysis of the full set of Euler-Lagrange equations shows that
Einstein spaces satisfying R„„=cog„„, with arbitrary cosmological constant co, are the only Riemannian

vacuum solutions. This rules out the nonphysical, static, spherically symmetric solutions of Pavelle and

Thompson; they only considered a subset of the Euler-Lagrange system of equations. The additional equations

become important when sources to the gravitational field are considered. The full set of equations with sources
have the following properties: The stress-energy tensor must be traceless. Other than a small exceptional class,
all matter solutions must be non-Riemannian. The stress-energy tensor is not conserved if torsion is kept. The
only Robertson-Walker cosmological solution which is Riemannian is static; all other homogeneous, isotropic
cosmologies are non-Riemannian. The equations do not reduce to Poisson's equation for weak, static
gravitational fields, thus violating the Newtonian limit. I finish by commenting on the "conceptually superior
... integral formalism" proposed by Yang and used as a foundation for his gauge-type gravitational theory.

INTRODUCTION

Yang has proposed an alternate theory of gravi-
tation to replace Einstein's. ' This theory was
previously proposed in greater detail by Stephen-
son. ' The most important difference between this
one and Einstein's is that they replace the Lagran-
gian of Einstein's theory which is linear in the
curvature by one quadratic. This Lagrangian is
one once proposed by Weyl for his unified field
theory of gravitation and electromagnetism. '
Though the Lagrangian is the same, the resulting
field equations are different owing to a difference
in constraints.

Thompson' and Pavelle' have shown that there
are nonphysical static, spherically symmetric
solutions of the resulting field equations. These
solutions either violate the Newtonian limit, or
give incorrect values for the perihelion precession
of Mercury. To get these field equations, one
must vary the connection and metric independently.
This is what one does when imposing the Palatini
variation on the Einstein Lagrangian. ' For the
Stephenson- Yang case, the connection must be
nonmetric and may be nonsymmetric. "' Since
the connection and metric are varied independently,
one gets two sets of tensor-field equations. Only
the first set was noted by Yang. Under the Rie-
mannian constraint of the solution set (i.e. ,
metric-symmetric connections), this first set is
equivalent to a set studied by Kilmister and New-
man, ' and Loos, ' and Loos and Treat. " The
second set comes from variation of the metric
and was not explicitly noted by Yang" but de-
veloped by Stephenson. ' Imposing this second set
eliminates all of the known nonphysical, static,

spherically symmetric solutions. Also, through
these second equations, rather than the first,
the gravitational field couples to matter sources.

In Sec. I, I will derive the field equations, mo-
tivating them as a GL(4, R) gauge theory following
Yang. ' In Sec. II, I will derive the second set of
field equations and show that in the Riemannian,
matter-free case, the only solutions are Einstein
spaces. It is this thai rules out the nonphysical
solutions. Section III demonstrates what occurs
when matter sources are introduced. I will show
that the matter stress-energy tensor must be
traceless, the Riemannian condition on the con-
nection cannot be kept, and the Newtonian limit
is only satisfied in part. In the last section, I
will discuss the theory in the light of the theo-
retical difficulties encountered. Also, I will dis-
cuss Yang's "integral formulation"' of gauge
fields and contrast it with the traditional approach.

I. THE LAGRANGIAN AND THE YANG FIELD EQUATIONS

The idea of gauge fields was first introduced by
Yang and Mills" who considered local isospin
transformations. This leads to the introduction
of a gauge- covariant derivative":

'« = .«r-@'.~'«».

This is needed because the partial derivative of
«, no longer transforms as an isospin tensor (i.e. ,
not homogeneously) under the local SU(2) isospin
transformation:

gg, =S(, (x)g~.

To ensure that V'„«, is an isotensor, the gauge lin-
ear connection 4„,~ (also called the gauge poten-
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tials) must transform via

Introducing a matrix notation which suppresses the
Latin indices,

C „-@„'=S@„S-'-SB„S-'.

The 4„,f is therefore not an isospin tensor.
Introducing the field quantities 4„requires

us to specify their field equations. One does this
via an action principle. For a Lagrangian which
is both a scalar and isoscalar, one needs an iso-
spin tensor formed from 4„,f from which to con-
struct it. The isospin curvature (also called the
gauge fields) 4,„,~ defined by

(4)

$„„=28) 4„)—[4„,C'„] (6)

PK Q 'K

gl ' f% g~ $ 2 'l

The j",' is the gauge current and S& is the action
constructed from 2&.

Yang, ' and a number of other authors previ-
ously, ""have noted the following about the tan-
gent bundle of space-time: If x"'(x") is a change
of coordinates on space-time, vectors such as v"

transform via

v"' =A"'„(x)v",

A"'„(x)—= „(x).

The quantity 4" „(x), at each x, is a 4 x 4 invert-
ible matrix; therefore, it is an element of the
group GL(4, R). If one introduces a gauge-co
variant derivative for GL(4, R), as previously

is the simplest. "
The field equations are derived from an action

using

1

4f 2 Allgf 41$j 8

as the Lagrangian. The g "is the Minkowski
space-time metric, my choice of signature being
(+ —-- ), and f is the coupling constant of the
gauge field. Adding the Lagrangian 2„ for the
isospinor field g, gives a total Lagrangian = o
+ ~. The interaction is through minimal coupling
via the covariant derivative [see Eq. (1)]. These
considerations need not be restricted to SU(2),
of course, but can be applied to any Lie group in
some representation. Electromagnetism from U(1)
is the most weIl-known example. The choice of
Eq. (6) as the free Lagrangian for 4 „is by analogy
with electromagnetism. It is the s implest Lagran-
gian that one can choose. " The field equations
are

~P, KP +Xeg g g
K

(10)

as the free Lagrangian of gravity. This is in con-
trast with the Einstein Lagrangian

8r=-—R„~"g -=—R.1

At first glance, this seems an attractive idea.
One might easily see this as a first step toward
a unified theory of weak, electromagnetic, strong,
and gravitational interactions.

To vary the action defined by (10) to get the
equations proposed by Yang, one must act in strict
analogy with the general gauge case. Note these
two points: First, the connection I' „ is different
from the general 4„,.f in that the two lower indices
are of the same type. Since C„,f can have no sym-
metry between p and i, we should not assume any

symmetry of 1" „ in p, and x. Second, since the

C„,f has no dynamical relation to the metric g„„,
by analogy I'

K
and g~„must be varied indepen-

dently. In other words, the connection must be
nonsymmetric and nonmetric. ' It will turn out
that choosing the connection symmetric would
still give the same equations but would break the
analogy.

The Euler- Lagrange equations deduced by vary-
ing I „„"in the action of (10) are

gl /2gPff K
O (12)

The dots under the first two free indices indicate
that they have been raised from their defining
positions using the metric. Because the metric
does not commute with covariant differentiation,

outlined, one gets a gauge potential, denoted I'„„',
the linear connection of the tangent bundle. The
gauge field is the niemann-Christoffel curvature
of the tangent bundle

+P KX 2ef'. P, ~K]X 2~[PIA, I ~K]P

There are certain subtleties in treating the con-
nection of the tangent bundle as a GL(4, R) gauge
potential. ' I mention only one which is needed in

doing the action va, riations. Consider a general
space-time manifold (not necessarily Riemannian)
with metric g„K. The action for any physical sys-
tern is the integral of the Lagrangian with the in-
variant measure d p, =g' 'dv. The dv is the usual
volume element and g is defined from the metric
via g-=-det(g„„). When the metric is varied as a
dynamic quantity, one must vary both the Lagran-
gian and the measure.

Yang's idea for a gravitation theory is to take
the gauge prescription, including choice of dy-
namics, over entirely and to employ the Lagran-
gian
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I have employed this convention to remember the
now critical, hidden metrics. The g'i' comes
from the invariant measure.

Let us denote the covariant derivative of the
metric by

and the torsion by

(14)

fy, R«l)ly (16)

When contracted on p, and o and used with Eq. (15)
it gives the alternative form of (15):

[«X] (17)

The R„„=—R„„„"is the Ricci tensor.
Yang presents (17) as his alternate to the Ein-

stein free-gravitational-field equations:

If one assumes a Riemannian (i.e. , symmetric,
metric) connection with Q„„„and S„„"both zero,
(12) can be rewritten as

(15)

The Bianchi identity in a Riemannian space is

II. STATIC SPHERICALLY SYMMETRIC EMPTY-SPACE
SOLUTIONS AND THE OTHER SET OF FIELD EQUATIONS

ds' = df' —(1 —2MG/r) 'dr' —r'dQ.

Compare these to the Schwarzschild solution

(22)

(28)

ds' = (1- 2MG/r)df' —(1 2MG/r) 'dr' —r'dQ'.

Simply because the Schwarzschild solution satis-
fies the Yang equations (17) does not imply that
the light- bending and perihelion-precession tests
will be satisfied as Yang supposes. ' The Schwarzs-
child solution is the unique static spherically sym-
metric solution to the source-free Einstein equa-
tions (18). Yang's (17) is weaker than (18), and
one has no guarantee that the Schwa, rzschild solu-
tion is the proper choice."

Thompson' and Pavelle' have demonstrated a
number of other static spherica, lly symmetric
solutions of (17) which are not physicaL Either
they violate the astronomical tests and/or violate
the Newtonian limit. They are given by the line
elements

ds' = (1+MG/r) 'dP —(1+MG/r) 'dr' —r'dQ',

RQ„=0. (18) (24)

See the effect of the symmetry of 1 „„"in p, and w.

This equation is weaker than (12). Under Q„„„=O,
it is equivalent to

p R«()if') (20)

This still gives (17), using the contracted form of
(16), but now the symmetry of R „plays an im-
portant role in the derivation.

If one were to try to reduce (12) to a form sim-
ilar to (17), the result would be very complicated
and not at all illuminating. One must account for
the noncornmutativity of V„and g„„and the fact
that the Bianchi identity in the presence of torsion
is

P . 6 P
t:p, «l)fy (y, «X)sty (21)

He notes that all solutions of (18) are solutions of
(17) also, so that the Schwarzchild solution used
in the standard gravitational tests of Einstein's
theory is preserved.

Note that including torsion during the variation
is necessary if one is to keep the strict analogy
with the general gauge case. Suppressing it would
set apart, in some sense, this gauge field from
any other. Requiring S„„=Oin the variation gives,
instead of (12), the field equation

1 ~l /2RP(v «) 0P ~ 4

Pavelle' indicates that further restrictions must
be placed on the solution set of (17).

There are further restrictions on the solution
set. They are given by the second set of field
equations, coming from varying the metric. The
Euler-i. agrange equations obtained from (10) by
varying g "and using the identity 5g= —gg„„5g~
are

where

0 (25)

X P o « ~X P a
Hpg = Rp. ~ RK),p

—pe«R. . g R,gp e (26)

with R =—g~R„„. Noting the identity'

X P a «&X Pp' a Kxp 4g&C. ' a C&),p

one gets H„„ in the form

(28)

The field equation H~„=O was developed by Steph-
enson' and must be imposed on the solution set
of (17). Note that H„„ is traceless; H„".= 0.

One gets a useful alternate form for the case
Q~z= 0 by expressing the curvature in terms of
the traceless Weyl conformal curvature, the Ricci
curvature, and the scalar curvature':

«
Rvp~"=Cvpg —2g'[v[~Rpjpjg + 3g[v[ygp] pig "R,

(27)
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(29)

It is obvious that (18) satisfies both sets of
equations. Are there other empty-space solutions'?
Consider the class of solutions where the Ricci
tensor has only a trace part: g„„=~ ~„,. Qne
may easily verify that this type satisfies H~= 0,
remembering that C„„q' is traceless. The Yang
equations (17) imply that It is constant; therefore
a class of empty-space solutions are the Einstein
spaces given by the requirement

for all constants co. I wish to argue that these are
the only empty-space solutions.

On the basis of (17), Loos and Treat" "have
shown that other than a small exceptional class
of solutions of (17) "of measure zero" the Einstein
spaces constitute a complete set. Unfortunately,
the static spherically symmetric solutions not
satisfying (30) fall in this exceptional class;
therefore, one cannot rule out these nonphysical
cases by their argument. But we have also the
second equation (25). It is strong enough to rule
out the exceptional cases (22) and (23). In fact
the following lemma is true when the geometry is
Riemannian: Bp„= g Bg~, if end only if H~= 0.
I noted the only if implic-ation above and it is
straightforward to show. For the if implication,
decompose H~ into its trace and traceless (de-
noted P~) parts:

curvature B and the gravitational invariants C„„
and C0202 Second, the off-diagonal set with

p. + z is six equations. They depend only on the
gravitational invariants C0$(}2 CD/03 C01]2 CQgj 3,
C»,» and C»», each equal. on contau&mg only
one. If any one of this second set of invariants is
nonzero, its equation implies that two of the
diagonal components of P„." are equal. The dia-
gonal equations plus P„."=0 are the four equations
to solve for three unknowns, which one can easily
show has only the solution P~ = 0. %hen all of
the second set of invariants are zero, one has four
equations for four unknowns which because of the
nonlinearities may have other solutions besides
P~=0. It is tedious but straightforward to show
that there are no others.

Applying this lemma, the Stephenson-Yang
equations give the Einstein spaces as the only
vacuum solutions. Dne can solve for the static,
spherically symmetric solution of (30) easily
following the dexivation of the Schwarzschild
solution. " Its line element is

+ d 2 2dg2'3
As one expects, the "cosmological constant" ~
has effect only at large distances r from the
source. It will have noticeably little effect on the
standard tests, unless ~ is large. This elimin-
ates essentially the problem of the nonphysical
solutions.

Substituting in (29) gives H~ as

IIpK= a gp. P),&P"'+ 3Pp & -2Pv Pa.+CmK P'P ~

(32)

The burden of proof is to show that H~= 0 implies
P„„=0. Choose a nonholonomic frame in which
both g~ and P~ axe diagonal and g~ is in Minkow-
ski form. " This is the frame used to define the
gravitational invariants" which can be taken as
the independent components of C ~& and the dia-
gonal components of R~. Equation (32) plus
P„."= 0 are up to 10 independent nonlinear algebraic
equations that the four diagonal components of
P~ must satisfy. Except when most of the com-
ponents of C„„~ axe zero, the solution set is
highly overdetermined and it is easy to show that
P~= 0 is the only solution.

I will outline the proof. Divide the equations
into two sets: first, the setH„„=O where p. =K is
three independent equations which I wiQ caU the
diagonal set. They depend only on the scalar

III. INTRODUCING SOURCES TO THE GRAVITATIONAL
FIELD: THE COSMOLOGICAL SOLUTIONS

In introducing the equations, both Stephenson
and Yang left open the problem of sources to the
gravitational field. Consider a Lagrangian Z,„
for matter and radiation. The sources of equations
(12) and (25) follow from the dependence of 2„on
F„„~and g"", respectively. Constructing the total
Lagrangian g = gr-+ g„, and varying F~ and g""
gives the field equations

+ +i/2H PP K xl2~PK — v (34)PK P ''3 x gZ PK

xi2+ ~/2+ 58
gPK

'

'E~ is the stress-energy tensor of relativity; this
tensor is well understood. Equation (34) is the
equation introduced by Loos to describe spin
density in Einstein's theory. " J~

~ is nonzero
when S„depends on the linear connection I'„„".
Consider the following choices for matter and
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Equations (36) imply the Riemannian condition
V'„g„&=0, so that the connection 7„„"is just the
Christoffel symbol. Equations (37) are Einstein's
equations. Note that it is not Yang's equations
(15) but rather the second set (25) that correlates
with Einstein's equations. Yang's equations cor-
relate with the metric condition (34).

In Einstein's theory, the stress-energy tensor
is conserved:

yPK 0 (38)

This is a direct result of the Bianchi identity (16)
and the metric condition (36). Is T."." conserved
for the Yang theory' To check this, one must
introduce the Riemannian covariant derivative D„
constructed using the Christoffel symbols as its
connection coefficients which one forms from g„„.
When the geometry is Riemannian, V„and D&

correspond. Because of (38) and when the
geometry is Riemannian, the quantity

(39)

is independent of the three-hypersurface Z on
which it is defined if the vector field g" satisfies
the Killing equation

D(~ ~~) -0 ~ (40)

Each independent vector field $" solving (40) is
called a Killing vector field. Each g" is the flow
of an isometry of g~. When the geometry is not
Riemannian, Killing's equation (40) is still con-
structed using the Riemazmian covariant derivative
D„. Therefore, in the non-Riemannian geometry
of Yang's theory, one must have

TPrc 0

for conserved quantities, as in (39), to exist
One may compute D„T~ by expressing D„ in

terms of V„. The connections relate via

(41)

radiation Lagrangians: Klein-Gordon, Dirac,
Proca, Maxwell, Yang-Mills, and perfect-fluid
fieMs, plus couplings. " None of these depends
on the 1"„„~;therefore, J'""„=0in all these cases."
Since these, or some minor variant, are the
normal choices in physical theories of matter, I
shall take J~„=0 in all the following.

It is instructive to compare this set with the
set derived from (ll), the Einstein Lagrangian.
Einstein's field equations are

1 K
(v&)+ @(u&)

where („„"Jis the Christoffel symbol formed from

~un ) =~& (su&++ sr&a s~g'gx) . (43)

Expressing D„ in terms of V„ through (42), using
the field equations (36), (3V), the Bianchi identity
in the presence of torsion (21), and the definition
of Q„„„(13)gives"

m r""=D a""
pK a X. P X P a KP PRe ~ p R &0 +S p A~p R

(44)

Thus generally one only gets conservation of
stress-energy-momentum if there is no torsion.
Because of this, I conclude that we should con-
strain torsion to be zero. If this is done in the
variation, Eq. (19) replaces (34) when J:""„=0.
We are forced to break the gauge analogy noted in
Sec. I.

We can get rid of the torsion, and apparently
doing so is necessary, but can we recoup Rie-
mannian geometry with Q„„„=O'P This is not feasi-
ble. If we require Riemannian geometry, Loos's
previously noted argument"" on (17) gives Ein-
stein spaces almost always. But R„„=~g„„ implies
H".". =0, which implies T".". =0. T/zerefore, there
are almost no matter solutions to Fang's theory
which are Riemannian. Qf course, "matter" here
means any nongravitational source field. Since
Q,„„~0, Yang's theory falls prey to the difficulties
of Weyl's theory. '" Fundamental lengths change
under parallel displacement and would thereby
vary depending on their history. Elementary par-
ticle-mass values are such fundamental lengths.
Since particle masses show no such historical ef-
fect, the values that Q„„„could realistically take
on are limited significantly. But any restriction on
the magnitude of Q„„~ similarly restricts the mag-
nitude of T&„. Conversely, the sharply equal mass
values of equivalent particles could be used to
place a bound on Q„,q.

The homogeneous isotropic perfect-fluid metric
of Hobertson and %'alker is used to pose the stand-
ard general-relativistic cosmology. " If one adds
the secondary constraint of Riemannian geometry,
Eq. (1V) implies that the curvature scalar R is
constant. This is sufficient to force the Robert
son- Walker solution to be static. One rules this
out by the observed Hubble red-shift. To get dy-
namical solutions, one must permit Q„„,4 0. Note
also that the Hawking singularity theorems no lon-
ger follow from the standard energy assumptions. "

One other unusual property of the Stephenson-
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Yang theory is that H".". is traceless. This forces
the stress-energy tensor T".". to be traceless also.
Normally the trace of the T".". for some matter field
is proportional to the Lagrangian mass term of the
field; in fact, any terms of the Lagrangian with
dimensional coupling constants will show up. Un-
less one wants only massless matter, some prescrip-
tion must be givento correct this. One could consider
intxoducing conformally invariant masses. "'~ Re-
place any mass m by mg'~' for constant m. This
changes the coupling to a new dimensionless con-
stant m, and causes T".". to be traceless. The full
effect of this prescription in field theoxy has not
been worked out.

IV. COMMENTS AND CONCLUSIONS

I admit my intention inlookingat the Stephenson-
Yang theory was to show that it cannot be a viable
alternative to Einstein's theory. But my first con-
clusions were promising. I ruled out a11 the un-

physical solutions previously considered. Matter-
free Biemannian solutions differ from Einstein's
only by an insignificant and arbitrary cosmological
constant. The theory, though, sti11 has serious dif-
ficulties which show up when matter is introduced.

The presence of matter forces us out, of a Bie-
mannian geometry. A whole new, additional set of
forces in the geodesic equation will arise from
Q„„„=--V„g„z. It is not clear what their effect will
be. Posing the matter problem is also beset with
the problem of needing T„~ =0. For a perfect fluid
this is equivalent to relating the density and pres-
sure via p= 3p, the normal prescription for a ra-
diation fluid. If one adopts a conformally invariant
approach to matter, then our normal interpretation
of the stress tensor T„„must change. The ques-
tion of how is not yet answered. Until it is an-
swered, one cannot pose the equivalent of the Tol-
man-Oppenheimer- Volkov equations of Einstein's
theory describing a static, spherically symmetric
fluid. "

There is one problem that I did not previously
mention, which I have saved for last; that is,
Yang's theory satisfies Newtonian correspondence
only in part. Newtonian correspondence is usually
spoken of in two forms. In the first form, one
has the Schwarzschild solution which effects geo-
desics for weak fields in the same manner as New-
ton's theory. It is this correspondence that im-
plies that the constant G in (24) is the Newtonian
gravitation constant. Yang's theory satisfies this.
In the second form of Newtonian correspondence,
one shows that in the limit of weak static gravita-
tional fields, Einstein's equations reduce to Pois-
so 'seq ato

The p is the mass density. The P is identified
with the k«component of the weak-field metric
g„„=g„„+h„„viah«= —2$. This limit does not
work for the Yang theory. Equations (34) and (35)
do not reduce to (45). We cannot make the identi
fication of the coupling v in (10) in terms of G as
in Einstein's theory. The weak Yang equations are
not even linear because H„„ is quadratic in 8,„„'.
Terms quadratic in h«and Q„„".are the lowest or-
der. This is a serious difficulty.

The Yang equations with matter will have to be
developed further before any other concrete con-
clusions can be made. But considering all of these
difficulties there is one question which needs to be
discussed: What good reason does one have to pose
a "gauge"-type theory of gravitation when one has
a perfectly good theory in Einstein'sV I can find
only two justifications for a gauge formulation of
gravity.

First, there is the hope for a unified theory of
weak, electromagnetic, strong, and gravitational
forces. Putting the Lagrangian for gravity in quad-
ratic form as in (10) makes gravity more obviously
like attempts at unifying the first three. '6

Second, Yang derives this choice from an "inte-
gral formulation" which he feels "is conceptually
superior to the differential formalism and allows
for natural development of additional concepts. "'
This integral approach "further allows a mathe-
matical and physical discussion of the gravitational
field, as a gauge fieLd, "' resulting in the equations
I have discussed.

Yang's integral formulation is not "conceptually
superior"' to the standard formulation in terms
of differential geometric concepts. It is rather
only a rewrite of results related to the study of
the holonomy group in the standard differential
formulation. " The two appxoaches are equivalent;
his formalism no more strongly leads to the quad-
ratic gravitational Lagrangian (10) than the tra-
ditional approach. Utiyama first noted the simi-
larity between gauge-field concepts and the con-
cepts of Riemannian geometry in Einstein's theory,
and caQed Einstein's theoxy a gauge theory. "This
is because the kinematics of gauge theories and
general relativity are the same. This has been
long known by those who study the two from the
unifying point of view of fiber bundles. " "Yang
believes it "an unnatura1 interpretation of gauge
fields" to call Einstein's theory a gauge theory. "
He reserves the term for use only by those the-
ories having a dynamics following from the La-
grangian quadratic in the gauge curvature, given
by (6). For an arbitrary gauge space erected on
space-time to house the gauge-tensor fields, Uzes's
theorem" "indicates that the quadratic choice is
best. But if the gauge space should have additional



390 EDWARD E. FAIRCHILD, JR. 14

structure, then other interesting choices for dy-
namical statements are available. The tangent
space, whose gauge field gives rise to gravity, has
such additional structure; it is "soldered" to the
mainfold, to use a term of Trautman, ' in a way
no other gauge space is. This permits us, only in
this case, to have a Lagrangian linear in the gauge
curvature and yet to have yroper hyperbolic field
equations. An additional example of a special case
is the Dirac spin space. The linkage of the spin
space to the tangent space via the Dirac matrices
lets one have standard gauge fields, but with
masses without introducing any symmetry break-
down. ' '" It is because these are special cases
that one would probably not want to take the "gen-
eral" yrescription.

Also, the different character of gravity is felt by
the way the metric interacts with matter in a char-
acteristically nonpolynomial way. " A factor of g' '
coming from the invariant measure multiylies each
term of the Lagrangian. Interaction via the con-
nection I'„„"in a minimal coupling through the co-
variant derivative is characteristically not impor-
tant. Minimal coupling is normally the only type
of interaction for a gauge field. But it is just this
difference which to me sheds doubt on a single uni-
fied theory of weak, electromagnetic, strong, and
gravitational forces in a theory purely of the Wein-
berg-Salam type. '

Independent of these somewhat philosophical
considerations, one has a number of difficulties to
be explicitly resolved to make a viable theory: (l)
How can the full Yang equations be made to reduce
to Newton's? (2) What is the strength of the coup
ling constant a in this theory? (3) Can we live with
a traceless stress-energy tensor'? (4) How does
one treat the necessity of having V'„g„,& 0 when

matter is present? What interpretation are these
added degrees of freedom to have, since they show

up in the geodesic equation of a test particle? (5)
How should homogeneous, isotropic cosmological
solutions act? (6) Although Yang's theory satisfies
the three traditional tests, does it satisfy the full
range of gravitational tests? (7) Since the interac-
tion with matter is so different in Yang's and Ein-
stein's theories, one should be able to construct
some experiment which will differentiate the two.
What would one be? These are only a few of the
questions that must be posed and answered defini-
tively in favor of the theory to settle firmly the
question of the viability of this type of gravitational
theory.
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