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Stephen L Adler, Judy Licberman, Yee Jack Ng, and Hung-Sheng Tsao
The Institute for Advanced Study, Princeton, ¹wJersey 08540

(Received 26 February 1976)

%'e show that general phase-space considerations permit the scattering amplitude for two interacting massless

particles to develop a weak-coupling singularity in the ladder approximation. In the case of photon-photon
scattering induced by electron vacuum polarization, spin factors prevent such singularities from actually
occurring in unaccelerated flat spacetime, However, in the case of conformally Aat Riemannian spacetimes,
which can be studied using Feynman rules similar to those in the Minkowski-space case, a reevaluation of the
photon-photon scattering ladder sum shows that weak-coupling singularities do occur. %e conjecture that
such instabilities are a general feature of the non-Minkowski case and may provide a microscopic basis for
gravitation, with the gravitational fields identified with photon pairing amplitudes of a superconductive type.
According to this conjecture, the "graviton" ~ould not be described by a conventional local quantum field.

I. INTRODUCTION

Despite the continued progress in testing and

understanding the general theory of relativity at
the classical level, attempts to construct a con-
sistent quantized theory of relativity have met with
frustration. ' In the usual approach, where the
gravitational fields are treated as local quantum
fields, nonrenormalizable infinities are already
found at the one-loop level when matter couplings
are included. In this paper we explore the possi-
bility of developing an alternative approach to a
microscopic theory of gravitation, in which the

J
gravitational fields are composite "pairing" am-
plitudes which arise as vacuum expectations in a
local quantum field theory, but which are not
themselves local quantum fields. Thus we have in
mind a situation closely analogous to the Ginzburg-
Landau-Gor'kov theory of superconductivity, in
which the superconducting state is described by an
order parameter a(r) obeying a nonlinear wave
equation. Although the order parameter is an off-
diagonal expectation of local quantum fields, it is
not a quantum field variable and the mieroseopic
Bardeen-Cooper-Schrieffer theory of supercon-
ductivity is not obtained by second-quantizing the
Ginzburg-Landau equation. In the gravitational
analog about which we speculate below, the pair-
ing amplitudes would be off-diagonal expectations
of a pair of photon fields, with the pairing interac-
tion arising from the four-photon vacuum polariza-
tion interaction in curved or flat accelerated
spacetime. In the remainder of this section, we
discuss a simple scalar-meson ladder model for
the pairing interaction of two massless particles
and indicate, on the basis of this model, why vac-
uum polarization effects cannot produce a photon
pairing instability in flat, unaecelerated space-
time. 3 In Sec II we reexamine the photon ladder
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FIG. 1. (a) Scalar-meson ladder series. The wavy
l.ines aremassless scalar mesons; the solid lines are
scalar mesons of mass M. (b) Momentum labeling for
the order-N term of the ladder series.

problem in the special case of conformally flat
spacetimes (chosen because, with minor modifica-
tions, we ean continue to use Minkowski-space
Feynman rules) and find evidence suggesting that
a pairing instability does occur. In Sec. III we
briefly present some speculations (and counter-
speculations) on how this instability may become
the basis for a microscopic theory of gravitation.
Technical details, and some calculations dealing
with related issues which are somewhat off the
main line of development, are relegated to the
appendixes.

As a first orientation, let us consider the simple
but unphysical example of a pair of massless sca-
lar particles scattering through the exchange of a
scalar particle of mass M, as illustrated in Fig.
l. (For simplicity we neglect crossed diagrams,
which only change numerical factors in the calcula-
tion to be described. Symmetrization will be
properly included in the photon ladder calculations
of Sec. II.) For the Nth term in the ladder sum
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we get'

d'ky d'lg N t- ~.= II—j=l

V(k,. l q kq +,l q +, ) = (2w)'0 (ki „+l 1 „—kj —l ~ )( f g)'
f+1 f j ™

In evaluating Eq. (1) it is useful to make the change of variables

k& = —2s&+ r&, j = 0, . . . , X+ 1

1
l~ = 2s~ —ry

giving (with s = s„„)
(2)

(3)

In order to study the infrared behavior of this inte-
gral it suffices to make the approximation

(r) „—r))' —M' = -M

placed by

d'r
(

.
} f( ', s+r, ——,'s —r)

(2s)' '
( ,'s+r)'( ,'s r-)'-—

in the massive boson propagators (i.e. , we treat
the interaction of the massless scalars in the local
or effective Lagrangian approximation); this in-
troduces logarithmic ultraviolet divergences which
we control with a cutoff A which we expect to be of
order M. Equation (3) then immediately takes the
simple form

g
2

T„=(2n)'5'(s —s,),L(s),

(2w)' M' (-,'s+r)' (-,'s —r}'

1 A
dx f(sx, s(1 —x)) ln

0

+(finite terms as s'-0) .

Turning our attention now to Eq. (6), we see that
the denominator in the ladder sum vanishes for

s' = -A' exp(-16m 'M '/g'), (8)

and so for arbitrarily small g' there is a (tachyon)
pole in the neighborhood of s' =0. Note that such a
pole is not present if the massless particles are
given a mass p, , since then the s' -0 limit of T
exists and is given by

1 2

16m M

T =(2s}'5'(s —s, ) g,0 M2 2

1 —16w2M21n—

g2 A2
, ln +(finite terms as s -0},

and the ladder sum become&es

which is regular in the limit g-0. The important
qualitative difference between the massless and
massive cases is a reflection of the fact that phase
space for a pair of particles of mass p. is propor-
tional to

(10)

2

16g2M 2

Before going on to discuss the properties of T, we
note for use below that when the massless particles
have spin, rather than being scalars, each loop
integral contains a polynomial f(k&, $,.) in the nu-
merator, and the integral L(s) in Eq. (5) is re-

and vanishes at the physical threshold at s =4p'.
However, when p =0 Eq. (10) becomes

p(s) =1

and phase space is nonvanishing4 down to the
threshold at s=0. This permits the integral

, p(s')ds', (matrix element)'
red, old s —s
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2 2

Z, =,(46."+76').
45m

(13)

Here e = ~37 is the fine-structure constant, m is
the electron mass, and the electromagnetic field
invariants f and 9 are given by

7 = —'(B ' —E ') = Ii„„F""—

9 = B.E = -'e" '"'F F8 ]1v XG s

(14)

to develop a logarithmic divergence at threshold in
the massless case, provided that the squared ma-
trix element in the numerator [analogous to the
factor f in Eq. (7)] does not vanish at threshold
The phase-space behavior in the massless-parti-
cle case is similar to the form of the density of
states in the neighborhood of the Fermi surface in
a metal, and is one of the principal motivations
for our speculations about a superconductive analog
involving massless-particle pairing.

Let us now apply the lessons learned from this
simple example to the massless particles which
actually occur in the real world, photons and neu-
trinos. The ladder series for photon-photon scat-
tering is illustrated in Fig. 2; the basic interac-
tion mechanism is photon-photon scattering induced
by electron vacuum polarization, which for photon
wavelengths large compared with the electron
Compton wavelength is described by the effective
Lagrangian

+ + + e ~ ~

FIG. 2. Ladder series for photon-photon scattering
(with the blobs the electron vacuum polarization photon-
photon scattering interaction) or for neutrino-neutrino or
or neutrino-antineutrino scattering (with the blobs a
four-fermion effective interaction).

now constant matrices, with tensor indices con-
tracted from the upper to the lower side of the
ladder. The fermion propagators, when rational-
ized, give numerator factors l(& (l/&) on the upper
(lower) sides of the ladder; according to Eq. (7),
in the coefficient of the logarithm coming from
each loop integration these factors become an g
on the upper side and an g on the lower side of the
ladder. Commuting or anticommuting all g factors
to the extreme right end of the ladder, we see that
the N-loop term in the ladder contains, in addition
to a, factor [ln(A'/-s )]", at least N- 1 powers of
g', and so again there is no weak-coupling singu-
larity in the ladder sum in the vicinity of s' =0.

To summarize, while phase-space considerations
permit two interacting massless particles to de-
velop a weak-coupling singularity in the ladder ap-
proximation, in unaccelerated flat spacetime the
spin factors in the photon and neutrino ladders
prevent such singularities from actually occurring.

BAp BA
Bx" Bx" II. PHOTON LADDER-GRAPH SUM

IN A CONFORMALLY FLAT METRIC

Because gauge invariance requires the electro-
magnetic field amplitudes to couple through their
derivatives, when we set up the photon-photon
scattering analog of Eq. (1) the vertex factors V
are quadrilinear in their momentum arguments
(the precise form will be given in Sec. II below),

V(kq l, kq+, l)+, ) CC kq l)k~+, l) „. (15)

But then, according to Eq. (7), for each factor
ln(A'/-s') arising from a loop integration there
are four factors s, which upon contractions over
tensor indices give (except near the ends of the
ladder) two powers of s'. Hence the N-loop term
in the ladder series contains, in addition to a fac-
tor [ln(A'/ —s~)]», at least 2N-4 powers' of s, and
so the ladder sum contains no interesting weak-
coupling singularities in the vicinity of s' =0.

Turning next to the case of neutrino-neutrino (or
neutrino-antineutrino) scattering, we again con-
sider the ladder series in Fig. 2, this time with
fermion propagators along the side legs and with
the interaction supplied by a local four-fermion
effective Lagrangian. The vertex factors V are

We turn now to a reexamination of the photon
ladder-graph sum in Riemannian spacetimes. We
do not consider the general case, but rather, for
technical reasons, restrict ourselves to space-
times described by metrics which are conformally
flat,

d7' =g„„(x)dx"dx' =e~'"'q„,dx" dx", (16)

~pv Os p, 4V

g~ =1, q~~= —1, j=1,2, 3.

As we shall see, metrics of this type permit the
ladder-sum problem to be formulated in terms of
flat-space photon propagators, with the effects of
the metric transformed to a modification of the
interaction vertex. Techniques similar to those
of Sec. I can then be used to evaluate the ladder
sum in leading- logarithm approximation.

There are two situations of particular physical
interest which lead to conformally flat metrics.
First of all, the general Robertson-Walker cosmo-



logical metric, A second case which yields a conformally flat
metric is ordinary unaceelerated flat space

(21)

which when viewed from the coordinate frame ob-
tained by making the special conformal coox'dinate
transformation'

is conformally flat. ' Although the global transfor-
mations which show Eq. (1V) to be conformally flat
are somewhat complicated, it is easy to give an
infinitesimal coordinate transformation which puts
Eq. (1V) in conformally flat form through second-
order terms in the expansion of the metric about
the spaeetime coordinate origin. Thus defining
the standard cosmological parameters Ho, qo by8

lt(f, )
+Hot .H, q t, + ~ ~ ~,

we set

Xp + CpX
+1/ I+2c'x+0 g

has the metric

e~ =(1+2c x+e'x') ' .

From the inverse transformation

2
Xyp Cp Xyx I —2c'xg+ c xg

(22)

(23)

f, =f
12

(1+2qo)-HO + 2
f'

0 0 g 2

——Br+—H — — tr+ ~ ~ ~
1

0 4 0 g 2
0

we see that the origin x =0 in the new frame ap-
pears, to an obsexver in the original inertial
frame, to be uniformly accelerating when terms
of order g' and higher are neglected, '

x' =r I+4HO ——,r -Ht0
=cg1 —ee t +''' . (25)

+ —H 4@' +sea

In terms of these new coordinates, the line ele-
ment of Eq. (1V) takes the conformally flat form

dv' =e&dx',

(20)

Evidently, a conformally flat spacetime can be
written in explicitly conformally flat form in many
ways since, in addition to the usual freedom of
making Poincare transformations, one can make
arbitrary coordinate transformations of the form
of Eq. (22) and still preserve the metric form
given in Eq. (16). Of course, under such trans-
formations the eonformal factor e& will change;
for example, apart from homogeneous Lorentz
transformations the conformal factor

gives the general representation of the Robertson-
Walkel' llletl'lc ill 'tile fol'111 of Eq. (16), 'till'ougil

terms of second order in an expansion around a
fixed coordinate origin.

In order to evaluate the ladder sum, we must
find the appropriate photon Feynman rules when
the metric is given by Eq (16). The simp. lest way
to do this is to write the photon kinetic and effective
Lagrangian terms in generally covariant form,

2 =,(g —6+,(46."+VV'),2Q

g= —det[g„„],

yves, a1

=4m; -~g;x
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When the metric is conformally flat, we have

(26)

ki, a

= Vu pea (k)kaks k4)
and it is convenient to introduce rescaled electro-
magnetic field strength tensors defined by

ka, P k4, 8

BA„&A.„
Bx Bg

pp v qp Xqvap e2)I)Fp v

(29)

FIG. 3. Vertex part for the photon-photon scattering
calculation. The blob indicates the four-photon inter-
action generated by Eq. (30); the indices n, P, y, 6
label the photon polarization states.

The Lagrangian density then takes the simple form

2
Z = —6:+,(4f'+ 7g'),

(30)

which is identical in form to the Lagrangian den-
sity in unaccelerated flat spacetime, except that
the "mass" 8s has become coordinate dependent
through the conformal factor eBy'. [An alternative
way of deriving this result, given in Appendix A, is
to use general covariance to derive the change in
the Minkowski-space coupled Maxwell-Dirac equa-
tions when one goes to a conformally flat metric,
and then to use the Callan-Symanzik equations to
calculate the induced modification in the effective
Lagrangian. In Eqs. (2V) and (30) we have neglected
vacuum polarization correction terms involving
covariant derivatives of the field strengths, and also
corrections proportional to tensors formed from

the curvature tensor and its covariant derivatives
(which vanish in the Minkowski-metric case}. We
argue in Appendix A that such terms should not
spoil the ladder-graph arguments given below. ]
From the Lagrangian density of Eq. (30), we can
read off the Feynman rules needed for evaluating
the photon ladder-graph sum. Since the kinetic
term in Eq. (30) has the usual Minkowski-metric
form, the photon propagator continues to be given
by the usual expression

(31)

The vertex Feynman rule corresponding to the dia-
gram of Fig. 3 is just the matrix element of iC„
with Zy the interaction term in Eq. (30). Here
there is a difference from the usual Minkowski-
metric form, since the explicit x dependence of the
coefficient [2c4'/(45m')] exp[ —2((x)] results in a
breakdown of four-momentum conservation. We

readily find

V, k«(k, k,k,k,)=
'

e«k —24 —
) (2 )'4't«)k&k, 'k, k;U&„««, « (32)

K =k, +k, —(k, +kg,

4~2
( a)g«B)&(tXy)( B)a45 4( I() )ag BBln&t)BB)(~)yB lpga y )ayX)B)+( )ay)B)y)aX)y()()BB)Ba y)Ba)BB)

()&kB)ga )aa)BE)()By)qX )BX)y&t)]

+ 7['a~ BBey~«+' ~ a'yBB«+'a~Ba' Bay~]~.

Since we only plan to work through second-order terms in an expansion of exp[ —2$(x)] around x=0 [this is
the leading order in which interesting deviations from the Minkowski-space case appear; note that there
is a small subclass of conformally flat metrics for which the truncated expansion is exact], we write

exp[ —2)(x)] = 1+D H —',E,Hx"+-
When the conformal factor is chosen as in Eq. (26), the coefficients D„and E, are given by

D„=Sg„,

E» =y)„„4c'— Ha'+, + 2 (1+qa}Ha'+, y)„ay)„a+ 24c„c,.
0 0

(33a)

(33b)

Finally, we note that because the vertex of Eq. (32) is completely symmetrized, we must include a sym-
metrization factor of —,

' for each photon loop in the ladder to avoid overcounting.
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Using the Feynman rules which we have just derived, we may immediately write down an expression for
the Nth term in the ladder sum (with nf = cj„,„)3f= )3„,,),

" d4k " d4l N

(T )„, , =—g ( ), ( ), V„' '(k, l,k, l, ) II „, , V„," ' ' (kfl k „I„,) . (34)
1 j=l

Making the change of variables of Eq. (2), substituting Eq. (32), defining

1S) = 1+iD„+~E„"88~„"8 8~ 8 8~

and isolating the loop integrals by defining"

(36)

Eq. (34) may be rewritten in the form (with kf ——k„,„ lf = I„,,)
N

(r ), ,""=—II &'',} (& )'(1)r'(. '))rr. '( —(tr) „,(() „,(r. , ,

N

xII (r, , 'j'j(sj)[g,.6'(s, -sj„)]U&, &&t) „)( j 1~f ~ &«j (36)
/=1

The differential operators I),. in this equation act only on the 5 functions with which they are bracketed.
In evaluating L we keep all terms containing a lns' (factors of s' in front can be eliminated by the deriv-
atives conta. ined in the factors S) but drop terms which a.re polynomials in s' [they cannot contribute to the
(lns')" term in T„], giving

1 ALxoK ()))sh Qxog))(
(4v)2 n) s2

Qx(7$))(s) 1sx.s(1sps)) + 1 (rjxt)sos)) +)Ix.))s(1st +rjt)Isa. s)) +)I())sos(1)s2

——,'(g"s's'+n'"s's')s'+ ' (rj"rj'"+r}"r}'"+rj""rj")(s')'
Finally, it is useful to define

~f +1 j+1 t 2+1 j+1)(s ) —L ~j~j (s )U ( j+1 f +1 ~)j +1 j+1)
(&~ "g)(8~&g) f (~~ &g) 4 (~g &g)( ~g &g)

allowing us to write TN in the compact form
N

t7'„).. ." ' = —ll ' d',)
'(2 )' 9, ((r,r—,)))r,"( ta,), „((,). U.

j= 1

N

x II [Mt y &~ s )
' + f + j + f + (s )[s 6 (sj —sj )J}.

j=1

(3 I)

(38)

(39)

k& = Hs, lf = (1 —8)s, (40a)

Because of the presence of the differential opera-
tors Sj, the expression for Ts in Eq. (39) has a
very complicated structure. If, for example, we
adopt the convention of successively integrating by
parts to bring all derivatives to the left so that they
act on the initial 6 function 5'(so —s,), we will find
a result containing tensor contractions of deriva-
tives of widely separated M's. However, there is
one special situation in which the structure can be
made to simplify greatly, so that an evaluation of
TN in leading-logarithm approximation becomes
possible. This is obtained by taking the final two
photons to be parallel and nearly on-shell,

while at the same time (to keep the residue of the
sum of leading logarithms from vanishing) keeping
the initial two photons off-shell,

k, 'w 0, l, 'w 0. (40b)

M f +1 j+li~ j+1 j +1)(s )(f}f~~~)( 8~&~ )

which stands immediately to the left, making pos-
sible an inductive evaluation of Eq. (39).

%'e then find, as shown in Appendix B, that the only
contributions to the leading logarithm come from
terms where the derivatives in each g)&, on inte-
gration by parts, act on the factor
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Since the results depend explicitly on the helicity
state of the final two photons, we must introduce a
notation for this. Let us take the momentum sf of
the final two photons as the three-axis, so that

Then the three possible polarization states of the
two parallel photons are described by

p(»), (~) *~(~)*
a8 -~a ~8

s~= s'(1, 0, 0, 1) = (s', s', s', s'), (41a) (42)

and let c('), & '), and g ')be the polarization vec-
tors

e~" = (0, 1,0, 0),

~(0) (+)* (-)*+ (-)+&(+)*"a8 =&a &8 +&a ~&8

(1) (1) (2) (2)a 8 + a 8

e~') = (0, 0, 1,0),

~(~) [e(~) + le(2)]

1= ~(0, 1, + l, 0).

(41b)
Denoting the polarization of the initial photons with
four-momenta k„ lo, by e(ko), e (l,}, the result of
Appendix B for the ladder sum in leading-logarithm
approximation is

e(k )"Oe(l ) '(T ) '~ &P I) =i(2v)'5'(s —s)(H 0 o ' 0"'U
0 0 N ap8p af 0 0 (ap~p)(80&0)

( txf ~f ) ( 8~a~ ) g( F ) j(af)t.f )(8fa )f fN= 0

22 (y' 1
x 1 —$(F) 15 45

—
4 (4 },s"s'E„,ln (43)

5(+2)=o, $(o)=1

HI"")~"")=e(k,)" ~(l,}"k,"I,",
IP~ y ) ~ s )

=P ) (ky)y (ly)

We see that Eq. (43) shows no instability when the final photon pair helicity is + 2, while when the photon
pair helicity is 0, the ladder sum develops a singularity in the neighborhood of s =0 as long as E „ is not
proportional to the Minkowski metric q„„. When s s E„,&0 for real s, the singularity occurs for real val-
ues of s; when s"s"E„„&0for real s, the singularity occurs for imaginary values of s =(s', s). In both
cases the singularity remains at finite s as E„,-O, and hence the ladder sum shows an instability for ar-
bitrarily weak coupling. For the particular E„„given in Eq. (33b), we have

1
', E „s)'s"~,2=, =2-(1+q,)H,'+, (s')'+24(c s)'

0

= 24(c s)' [accelerated frame conformal factor of Eq. (23)] (44)

=2 (1+q,)H,'+, (s')'[purely quadratic Robertson Walker conformal factor of Eq. (20)].
0

Thus for the case of flat space viewed from an ac-
celerating frame the singularity always occurs for
imaginary s, while in the case of the Robertson-
Walker metric the singularity necessarily occurs
for imaginary s for (1+q,)H, '+ k/R, '& 0, but can
occur for real s for (1+q,)HO'+ k/lt, '

& 0."
Continuing our examination of Eq. (43}, it is in-

structive to evaluate the curly bracketed matrix
element in the numerator and to compare it with
the standard expression for graviton exchange be-
tween photons in the kinematic configuration speci-

fied by Eq. (40). As shown in Appendix B, the nu-
merator matrix element, in the configuration P =0
for which the ladder sum becomes singular, is
given by

jj(apso)( 80&0) U (afkf )(8fa )/0)
0 ( apkp ) ( 8pap ) ( af~f )( 8f+f )

=——T""(T"))11 a'
45 m' f ~v.

(45)

Here T,""and (Tzi'))„„are the initial photon and final
photon matrix elements of the electromagnetic en-
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ergy- momentum tensor

&,'"=-F(u, )~'F(l,)",+ ,'q"-"F(u,)"F(t,),.+(y,-f,),
F(k,)""=f[c(k,)"k", -e(k, )"ko~],

F(l,)""=i[e(E,)~E', —e (f,)"P],

Tq'i"" = F(k—~)"'F(lf)", + ,'q"'-if'~)"F (l~)„
+ (kq —lq)

= 2P ~'i' 8(1 —8)s~s"

= —48 (1 —8)s"s'.

(45)

In the same notation, the graviton exchange matrix
element (for general final photon pair helicity F)
is proportional to

pp( + l&+) p&7 0 Plppgpg gpQRpp gp pgpgl + f

III. SOME SPECULATIONS |AND COUNTERSPECULATIONS)

From the calculations of the preceding section,
we see that while the photon-photon scattering lad-
der sum does not develop interesting singularities
in Minkowski spacetime, in a. general conf ormally
flat metric weak-coupling singularities are found
in the ladder sum, with the structure of the sin-
gularities bearing some intriguing resemblances
to graviton exchange amplitudes. While we have
concentrated on the conformally flat case for tech-
nical reasons, we suspect that the ladder-graph

Thus, for the E = + 2 case for which no ladder-
graph instability is found, the analogous graviton
exchange amplitude vanishes. [The vanishing of the
graviton exchange amplitude in this case is just a
reflection of the fact that the matrix element for
a real (helicity s 2) graviton to decay into two pho-
tons is zero. ] For the F =0 case, where there is
a ladder-graph instability, the numerator matrix
element in the ladder-graph sum is identical in
form to the residue at the graviton pole in the anal-
ogous graviton exchange amplitude.

In Appendix C we give a related calculation, in
which we examine photon scattering in a strong,
constant background electromagnetic field, in
Minkowski spacetime. Again a weak-coupling sin-
gularity is found in the ladder approximation. Fi-
nally, in Appendix D we formulate a simple phonon
scattering problem, which again develops a weak-
coupling singularity in the laddex' approximation.

15x 45 m ' (4w)'
le'I -m' exp— (48)

singularities found there are a general feature of
the non-Minkowski case. The results of Sec. II
naturally suggest the speculation that, in some
sense yet to be made precise, gravitation is as-
sociated with a photon pairing phenomenon. The
speculation is supported by the fact that even in the
case of flat space viewed from an accelerating
frame (where, according to the equivalence prin-
ciple, a gravitational f ield is present) an instability
is found 'n the ladder approximation. We note,
however, that the ladder sums do not yield the co-
vax'iant propagator for a zex'o-mass spin-2 parti-
cle; thus our speculation is that just as in the case of
superconductivity, " singularities in the ladder- sum
signal the instability of the conventionally assumed
vacuum state, but that the ladder approximation is
not sufficiently good to give the properties of the
true ground state.

Presumably what is now needed is a reanalysis
of the Lagrangian of Eq. (27) using the extended
Hartree-Fock approximation; the idea would be to
assume a general background metric, to introduce
photon pairing amplitudes (E'(x)E'(x)), (B'(x)B (x)),
(B"(x)B'(x)), and then to solve for the photon
Green's functions in an appropriately linearized
modification of Eq. (27), looking for a prediction
of nonvanishing pairing amplitudes which could, in
some fashion, be identified with the gravitational
fields associated with the background metric. This
would evidently be a variant on the superconduc-
tive-type pairing calculation, in which the pairing
amplitudes would themselves, in a self-consistent
manner, be the source of the pairing interaction.
It is hoped that terms involving solely the pairing
a,mplitudes would then generate the gravitational
kenetic Lagrangian. The gravitational coupling to
matter generated by the metric would, as usual,
involve the matter energy-momentum tensor, as
required by tree graph 5-matrix arguments" which

apply even when the massless spin-2 "graviton" is
of composite origin. However, since the gravita-
tional fields would be pairing amplitudes of super-
conductive type, the "gravitons" would not scatter
electromagnetically (as might be expected for an
ordinary electromagnetic bound state), and the
field commutation arguments used to discredit the
neutrino theory of light" would not apply. Work
along the general lines outlined above is now in
progress. ""

We conclude with some cautionary remarks which
are a possible counter to the above speculations.
We note that the logarithmic term in the denomina. -
tor of Eq. (43) is much less than unity unless ls'l
is very small, of the order
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5 we associate a characteristic length l with this
value of s' by writing f '- ~s'~, then we readily see
that l is much laxger than the radius of the uni-
verse. Hence the singularities in the ladder sum
are of interest only if they signal the presence of
a vacuum state which differs from the normal one
by obsex'vable amounts; if this is not the case the
singulax'ities in themselves apparently pose no
problem since, in scattering amplitudes smeared
with physically realizable wave packets, their ef-
fects would be undetectable. An even more serious
objection, perhaps, is that our focus on ladder
graphs is simplistic; N-loop nonladder graphs gen-
erated by the Lagrangians of Eqs. (27) or (30), such
as those illustrated in Fig. 4, also behave as
(lns')" as s'-0. These additional contributions
could significantly alter the behavior of the photon-
photon scattering amplitude from what is found in
the ladder approximation. Again, as we have al-
ready emphasized, the ultimate significance of the
ladder approximation singularities which we have
found can only be determined by a reanalysis of our
model Lagrangians from a self-consi. stent extended
Hartree-Fock point of view.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE LAGRANGIAN OF EQ. (30)

We give here an alternative derivation of the
Lagrangian of Eq. (SQ}, obtained by applying gen-
eral covariance to the Maxwell-Dirae equations
and then using the Callan-Symanzik equations to
determine the effective Lagrangian implied by
the modified equations of motion. We also discuss
two related issues. First, in connection with
the kinetic term 4F™„,I'"', we show that one gets
different answers depending on whether one de-
fines asymptotic photon states relative to a gen-
eral conformal factor e '~"~ or to a Minkowski
conformal factor of 1, but that the two answers
become the same if the Callan-Symanzik function
P(o.) for electrodynamics vanishes at the physical
coupling n." Second, we discuss the effect of
vacuum polarization corrections, neglected in

writing Eqs. (27) and (SQ), which are proportional
to tensors constructed from covariant derivatives

FIG. 4. Some typica1. nonladder diagrams which can
make contributions proportional to gns2)N in N-loop
order.

of the field strengths or the curvature tensor and
its covariant derivatives.

Our starting point is the Dirac equation written
in generally covariant form, '8

iy', —I'V Q = mop, (Al)

The additional coordinate-dependent matric es
I', are determined by

with I'„"„the affine connection. Although we are
interested in the special case of a conformally
flat metric, it is convenient to start from the
somewhat more general situation of a general
orthogonal metric'9 (repeated lower indices will
be understood not to be summed)

g„, = G„(x)q„„ Gq &0. (A4)

Letting y" be the ordinary Dirac matrices which
satisfy

(A5)

we can satisfy Eq. (A2) with

Using Eq. (A6) and the affine connection

a ~ -i &Go a G) ~ ax~au
~'Ga y ~

p + p ~& ~)i.p~ rBx Bx ex

we readily find that the unique solution of Eq. (AS)

with the y" coordinate-dependent Dirac matrices
satisfying

(A2)
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satisfying Making now the rescalings of Eq. (29),

tr(r„) =O (A8a) Au A» Fuv -Fuvt Fuv =e-2$Fuv (A13a)

is

, BQ„I'v = —~4V ~ ruGV
uwv

(A8b) e -(3/4))II'@, y e-(3/4) 4 C}, (A13b)

as well as introducing a rescaled electron field
Q=C,

The condition of Eq. (A8a) just guarantees that
there is no part of I'v which could be reinterpreted
as an electromagnetic potential. Substituting into
Eq. (Al), we get as the Dirac equation for a gen-
eral orthogonal metric

we find that the coupled Maxwell-Dirac equations
take the form

i yv „+ie,~'A„4 =m,e«'C,
BX

i Z, +4& ln g™yGu Q=m P.~ v

Bx Bx
(A9)

Specializing now to the case of a conformally flat
metric with

Bxu

8 8

BX BX
Fuv+ v F) u+ u Fvt =0

BX

Jv= —e Cy"4.

(A14)

we get

(A10)

(A11)

Apart from the alteration in the electron bare
mass term, these are just the equations of Min-
kowski-space quantum electrodynamics. Since
the rescalings of Eq. (A13) also convert the kinetic
Lagrangian terms to their Minkowski-space form,

Introducing the electromagnetic field by the
standard prescription, we now find for the coupled
Maxwell-Dirac equations in a conformally flat
metric

Hg Eu.Fu v -Fu.Fu",
(A15)

8
(e22P2&) e22g&

Bxu t

8 8 8

BX
Fuv+ v F~u+ u F» 0

BX Bx

Av BA),Jv= —ega Q, F ),
——

8

Fv ~
+ v cK+ ~SF

(A12)

the rescaled fields satisfy the standard canonical
commutation relations.

Continuing from Eq. (A14), we wish next to find
the modification in the photon effective Lagrangian
resulting from the presence of the coordinate de-
pendent factor e~ ' in the electron bare mass term.
If we denote by S(, ) and m '2(4) the terms in Z
which are respectively of second and fourth de-
gree in the electromagnetic fields, then we ex-
pect that these will become functionals of g and
its derivatives as well as of the fiel.ds and their
derivatives. That is, we have

1 -„ 1 -„ 1 1
2( )

——Z( ) F", —BF", BBF",. . . ;g, —Bg, 88$, . . .'m 'm' 'm 'm'

1 1 -„ 1 -„ 1 „ 1 1
2( )

= g( ) F",—BF", BBF",. . . ; (,—Bp,m m ' ™tm 'm 'm

(A 16)

where the necessary electron mass factors have
been inserted to make the 2(, )'s dimensionless
functionals of their arguments. In writing Eq.
(A16) we have included a superscript r on the field
strengths to stress the fact that the effective La-
grangian, which is a mnemonic for calculating
renormalized Green's functions, involves re-

normalized field strengths F", rather than the
unrenormalized field strengths F which have ap-
peared above in the fundamental Lagrangian and
equations of motion. If we now consider both the
electromagnetic fields and the conformal factor
g to be slowly varying on the scale of an electron
Compton wavelength, then it is reasonable to
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1 1
m4 ~(4) m4 ~(4)[ i 0] i

(A17)

and so the problem of finding the g dependence
of the effective Lagrangian reduces to that of
finding the effects of the bare mass rescaling
m, -mpe~~' with g a constant.

Thus simpl, ified, the problem is evidently one
for which the Callan-Symanzik equations are suit-
ed. In applying them, we fol. low the procedure
of Ref. 17 and take e„m„and the cutoff implicit
in the renormalization constants as independent
variables, so that consequently e and m (which
are functions of eo, m„and the cutoff) are de-
pendent variables. The renormalized field
strengths F"„„arealso independent variables
(they are nothing more than kinematic quantities
of the form k„&„—k„&„, with k a photon four-
momentum and e a photon polarization), and so
are unaffected by differentiation with respect to
m, . Now for any function f(m, ) we evidently have

(A18)

so the effective Lagrangian with m, rescaled is
obtained from the original effective Lagrangian
for bare mass m, by acting with the differential
operator

develop Eq. (A16) in an expansion in powers of
I/m and to keep only the leading term. (Effects
of nonleading terms on photon propagation will
be discussed briefly below. ) Thus we approximate

2(»--i!(»[F";)I'],

Acting on the standard renormalized effective
Lagrangian (with superscripts r now suppressed)

2Q2 = —9'+, (4$ '+ 79'},
45m

(A24)

we get, to leading order in n,

B
D&Z = exp 2/m

Bm

2 2

45~me«2 ' (A25)

in agreement with Eq. (30) of the text.
So far everything is nicely consistent. However,

when we attempt to discuss the kinetic term to
nonleading orders in n, the question of how asymp-
totic photon states are defined comes in. Ac-
cording to the standard renormalization pre-
scription, the kinetic term in I, when g =0, is
given by

kifl (A26)

to all orders in the fine-structure constant n.
Hence acting with D& we get

(A27)

to all orders in o. , in agreement with the result
which would be obtained by the general. covariance
argument of Sec. II. However, there is an al-
ternative recipe for calculating Zk,.„ for the system
of Eqs. (A14), which gives a different answer.
Let us rewrite the Lagrangian for Eqs. (A14) ac-
cording to

2 =4i [i y (8 +i e„A) —moe~i'] 4i —,'Fq, F""—
D& = exp —,g mp'Bm,

But now using the chain rule

(A19)
=4 [i y (8+i e,A) —mo]4 —,'F„„F""-m4—440', i

4 =e i' —l. (A28)
Bm B Btx B

m ' Bmp Bmp Bm Bmp BQ
=m +m

and introducing the definitions"

(A20)

1+6(n) =

1 Bn 1 BA
P(n) = —m = —[1+6(n)]m,u Bm a ' Bmp

we can write

(A21}

1 B B
mp' em, 1+6(n) sm

m + nP(n) —, (A22)
BQ

which expresses the differential operator in a
form where we can readily evaluate its action on

renormalized quantities,

1 B B
D~ -—exp —,()i m +ni)(n)1+6 n) ()m B(x

In the first line of Eq. (A28) we are regarding
m, as a parameter to be rescaled evexyzohe~e
where it appears (including in charge renormal-
ization counterterms) by a factor e~~', this is
the point of view which leads to Eq. (A27), and

corresponds to defining asymptotic photon states
relative to a metric with asymptotic conformal
factor e~i'+ 1. In the second line of Eq. (A28),
we have put all dependence on g into a fictitious
scalar field 4, the effects of which are to be cal-
culated as a perturbation series around the or-
iginal theory, with charge renormal. ization count-
erterms evaluated using mp as the bare mass;
this corresponds to an adiabatic switching off of
the conformal factor, so that asymptotic states
are defined relative to a Minkowski conformal
factor of 1. In this case, defining

(A23) i Zq ———imp@44', (A29)
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those effective Lagrangian. terms involving 4 but
not its derivatives are obtained by inserting in
all T products a factor

which on writing

(A3 Va)

exp a
~

d4~gs —— exp 4' d4x —gng044
~I derivatives

of+
neglected

d'x(- i m, 44)
nf

(A30)

C„„=1, C„„,= ——,'n(n —1),

and reexpressing in terms of renormalized quan-
tities gives

8 ]
C„, m +nP(n) — —+ v, (q')I+5 n Bm BQ Q

The two-photon matrix element with Eq. (A30)
inserted is

(A31),'F„„F—"'Q,nl„„~,( 0, n),
0 PZ ~

with I'&&~n(q /m', n) the renormalized amplitude
with two external photons carrying respectively
four-momenta q and —q and with n scalar in-
sertions —i m044, each carrying zero four-mo-
menturn. (In our definition of I'&&zn the charge
factors associated with the external photon ver-
tices have been stripped off, hence the explicit
factor of n in front. ) Let us now proceed to get
a low-energy theorem for I"&&an(0, n). Noting
that

=Iqq~n(q'/m', n).

(A3 Vb)

Let us now set q =0. Since x, (0) =0 independent
of the values of m and Q, we get the low-energy
theorem"

1 8 '1P C„, , nP(n) —= I~~,{0,n),
8Q Q

(A36)

which on substitution into Eq. (A31) gives for the
term in the effective Lagrangian involving two pho-
ton field strength factors2'

1 1——w(0) = —,
{A34)

can be rewritten as

m, —+~(q') =I'zz~(q'/m', n)
8PPl 0 Q0

Applying higher powers of the operator 8 jsmo
we get

8 " 1
m," —+ v(q') = I'z z ~~ (q '/m', n),

0 0

m, = (-im)'sm, p-m, p'-m, ' p-m,
= insertion of —im, 44, (A32)

we expect that 1 &»& will be generated from the
inverse photon propagator by application of
mo(9/Bmo)". This can be explicitly checked in

the n =1 case, by using the Callan-Symanzik equa-
tion for the photon propagatox'0 in the form

1 8 8 1

1+5(n) am
m +n p(n) ——+ v, (q')

BQ Q

=1 „„a(q /m, n),

(A33)

which using Eq. (A22) and the relations'0

v, (q') = w(q') —w(0),

(A39)

This recipe differs from that obtained from Eq.
(A26) by acting with the operator D„or by using
the general covariance argument of Sec. II, un-
less"

p(n) =o. (A40)

Note that the condition of Eq. (A40) involves the
physical, rather than the asymptotic, coupling con-
stant, because it was obtained by a low-energy-
theorem argument. Vfe have conjectured" on other
grounds that P(n) vanishes; if this is so, then the
same photon kinetic effective La,grangian is ob-
tained irrespective of whether the photon asymp-
totic states are defined relative to a conformal
factor of e~~' or of 1. Henceforth, we will continue
to use the result of Eq. {A2V) for Z„"„.

We turn finally to the higher terms in the 1/m
expansion of Eq. (A16), which we have neglected
up to this point. Such corrections to the interaction
Lagrangian m V «& should clearly have a negligible
effect, for wavelengths»m ', on the ladder sum
argument given in the text. However, since the
quadratic Lagrangian 2 &» determines the photon
propagator, and since we have seen in Sec. I that
even a very small mass term in the propagator
spoils the argument for a pairing instability, we
must address the question of what the effects of
higher-order terms in 1/m in Z,» might be. We
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do not have a way to do this in general, but can
make some useful statements in a. number of spe-
cial eases relevant to the discussion of See. II.
To proceed, let us return to the generally covari-
ant form of the Lagrangian given in Eq. (27), be-
fore conformal rescalings were made. In this
language, higher terms in the I/m expansion of
C„„will involve covariant derivatives of the field
strengths, or the curvature tensor and its covari-
ant derivatives, or both. " To discuss effects of
covariant derivatives of the field strengths, let us
consider the special case of a eonformal factor
e = (1+2c x+ c'x') ', which as we have noted in
Sec. II corresponds to flat spacetime viewed from
a noninertial coordinate system. In this case the
curvature tensor vanishes identically, so terms
involving the curvature tensor and its covariant

derivatives are absent. Furthermore, the photon
propagator in an inertial frame has the spectral
form

(x y )2 s(&/2&))(x&s(&h)))(y)(» y)2 (A42)

and rescaling out the conformal factors, we get
the photon propagator corresponding to the La-
grangian of Eq. (A28) in the form

+ d(p')c(p')&s(p', (x, -y, )'),
4m2

(A41)

from which by making the transformation of Eg.
(22), using the relation"

D (x y) y s(&/2&))(&)s(&/2&)&(v& d(p2)c(p2)g ( 2 (x y)
2s(&/)2((&t)

s(
&/)2())))))

(x-y '
4m2

(A43)

In the text, we have kept only the 1/(x -y)' term
in each photon leg of the ladder sum; when Four-
ier-transformed these become the 1/k' propaga-
tors which led to the pairing instability. Since
the Fourier transform of the spectral term in Eq.
(A43) with respect to the difference va. riable x -y
is finite at 02= 0, we can see no way for this neg-
lected term to remove the singularity at k'= 0
arising from the first term.

In cases where the curvature tensor is nonvan-
ishing it is hard to make general arguments.
There will now be additional terms in the kinetic
Lagrangian of the form

p46yV V pe V gV V, , ~
gP )t/Jy )t&y 2 )off + (A44)

as well as more complicated terms involving R
and derivatives of the field strengths. We confine
ourselves here to remarking that in the approxima-
tion used in Sec. II of expanding the metric in pow-
ers of x, g „=&)~„+O()x)+0($'x'), with $ a small-
ness parameter, and dropping cubic and higher
terms in $, the curvature tensor 8'"„willbeaeon-
stant. The effects of the term in Eq. (A44) will
then be to give the photon a refractive index n dif-
ferent from 1 (not a mass); in spherically sym-
metric metrics the refractive index will be inde-
pendent of photon polarization and will simply
change the photon propagator to

QV

k~ n —k +gq
(A48)

This can be changed to the usual photon propagator
by rescaling k, —k,/n, which results in no sub-
stantial change in the ladder sum argument. To
summarize, while we have not dealt with the higher

1/m terms in the kinetic Lagrangian in a general
way, we believe that the arguments just given
support the view that the possibility of a pairing
instability is a general geometric property as-
sociated with massless particle propagation, and
is unaffected by radiative corrections to the mass-
less particle propagator, or equivalently, to the
kinetic term in the effective Lagrangian.

APPENDIX 8: PHOTON LADDER-GRAPH CALCULATION
IN A CONFORMALLY FLAT METRIC

We give here details of the inductive argument
used to evaluate the ladder sum discussed in Sec.
II, and the algebraic reduction of its numerator.
We wish to consider the action of the matrix
M(,»(s,&" ' "8 ' '(s) defined in Eq. (38) on a paral-
lel photon pair wave function H(, .~,&+...&(s'). We
note to begin with that M has the following sym-
metry properties in its final four indices:

M ls antlsymmetl'lc ln Q X

antisymmetric in P'o',

symmetric under

pair interchange (o('&&')I (P'o'). (Bl)

Hence when M is contracted with a second M [or
with I/ of Eq. (32), which has the same final index
symmetries] on the left, we can drop terms in the
right-hand M which are symmetric in nA. , sym-
metric in Po, or antisymmetric under the pair
interchange (o.&&)—(Po). We will consistently use
these facts to simplify the expressions which fol-
low.

Let us now postulate H(„., &(s...)(s') to have the
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following properties:

I (1) 0 or
Ia S H(oft)tt)(gt tyt)~

I Is(i )sa's~ ~

I (2) 0 ors H(oft)„t) (gt g)
I I Is (2t)sot s)tt p

(i) (2) 0 or
IIa g H(&t)tt)(I)t g) ~

Is(jt)s(2t) p

(1)= any index from first pair (n')('); (1')= re-
maining index in the first pair;

(2) = any index from second pair (P'o'); (2') = re-
maining index in the second pair. Obviously, II
implies that

))())(.)))(()(') '""'"'(8')=0 ()).a&~. -))a a&a~)H'""""'( ') = o

and it is also easy to see (by taking 8' as an axis) that I implies that

~(ak)(() )( )

(a3)

allowing us to drop the first term in the square bracket multiplied by 4 and the first term in the square
bracket multiplied by V in Eq. (32) for U, before evaluating M from Eq. (38). Substituting Eqs. (32) and

(37) into Eq. (38), reexpressing terms quadratic in the Levi-Civita tensor & in terms of the Minkowski
metric g, and contracting with H, we find

4 2 A2
(e')t') {B'o') I 'iH~(a)t)(a )

X [asgsaS S

+ a ('g)(aS 8 + )iySaS + f/ ')(8 +)1 Sgsa)8

a(g)(SaS + ) aS)(8 )S

.'. (n,.n(—"+n!n". n,"q.')(") 1

AS yy8
(ok) (I3n) H(4')(na) H{of4){f)I3) H(f f2) (Bn)

-14(-pa()H„(+ qaa ()(+ q(()H„(( —q(aHa(())}

(4)

(S5)

with

Il Zr I 41
(ey) ge) ~ (0,'X) (Pfy) + (gg) (~X) 'L

S S (()) S 8) S 8) S (8 8 I IH~&=H{») &)+H(~»(& -H(»)« -H{&e) &) =H« ~s „s &
by II.

On contracting terms (1) through (4) with the quantity in curly brackets in Eq. (85), we find that every term
contains a double zero when s' is set equal to s. Thus, when we integrate the operator L)„off to the left,
a nonvanishing contribution to the ladder sum results only when both derivatives 9/Ss„ in K)„act on the fac-
tor M(8„) standing immediately to the left. Acting on Eq. (B5) with ,E„„(s/ss,)(s/88„) —(the single derivative
term D„S/88„makes no contribution) and then setting 8' = 8 we get

A'
~(3) Ly (4)

4 (4 )2 10 in Sa ("(a)()(()a)+ (ak)(Ba)+' (ux)(8a)+" (ax)(8a)1 (Bva)

with the respective contributions of terms (1) through (4) given by
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~(l ) 6 f' ~8
(+)t) (Be) 3 )t fyL (aft)(Bn) + (fe) (n8) ' (OC)(flS) (4O ) (jIjgp + 3 & e ™

-H @AS —H -HH(u3)(Sa& e L lkaL (ue)(83) (as&(Be)+ (ea)(sS& rr &su)(eB) (ae)(38& H(us)((8) (eu&(Bs) (sn)(Be)]
~S AS AS+Sa[H(ue)(83)+'r(eu&(38) "(ne)(XB) "(eu&{su]+S3[H(ua)(Be)+"(aa)(eB) '~(na)(e}& H(au)(Be)]]'

——",[q„,(s Hs, +sBHB, -4eHB, ) q-B(s+„,+s3H )], (8'lb)

AS ~8 ~8 ~8
Pr(uL)(Ba) e I. aL" ( a})t(Se}+H(xu&(te) "(ux)(te) ' (}ta)&Se)] xL" (ue)&Sa& (ea)&te) (ue)(aS) r (ea&(Ba)]]

a( iaB e}t+ i}tB eu) }t( iuS ae + iua Be)] r

(u}t)(Ba& 8 L%0' uB ' (u))(Btr)+ (3a )(trB) H(aX}(aB) H(Xa }&Btr)+ (aa}(8}t) (tru)(38) (utr)(38& (trn)(BX)]

3 e( 4%aHBu 2 iaBHLa+ jaaHBX+ LBHau) r

with

e —s s Eeuy

~8 zy S &y

X)(g ) ( X)(JS ) (as)(88) ( X)(8 )

e'= 2E'"s„.

(86)

It is now straightforward to verify that H"', . . . , H"' each have properties I and 11 of E(l. (82). So we have
a procedure which can be used recursively, starting with the differential operator SN furthest to the right,
then proceeding to 5)„,and so forth, which makes each && act only on the M(sz) standing immediately to
the left.

Now let us take the factor H on the extreme right to be H&(F„'&&8,
&

of E(I. (43). Since this satisfies proper-
ties I and II, the inductive argument which we have just developed applies. Substituting into E(l. (BV), and
simplifying by using the right-index symmetries of the M standing to the left, we find

2 2

, —,', ln, i&(l —8)[eP„'8)s,s,(-2 —4+12 —6)+ eq Bs„s,P(F);(~3+—", —28+~)].

Now for E= +2 we have P'F '; = 0, and since the first term in s(luare brackets in E&l. (89) vanishes by de-
tailed cancellations among the contributions of terms (1) through (4), we simply get zero. On the other
hand, for E=O we have P(~),'= -2. Although q z is not identical to I'~~', it is easy to see that

(Q)
~ea = +os —sess+ so&a+ ~essy

s=(1, 0, 0, 1)=s/ss, &r=(1, 0, 0, 0),
(810)

and since the three terms involving s each make a contribution symmetric in Q, , A., in p, 0 or in both pairs
of indices, we can drop them and make the replacement q,B--P,"8'. Thus for E=0, E&l. (89) becomes

2 24+ ~ I ~
H (Q) g vE

4 (4 )3 3 n 3 H (a).)(Ba)s s rttr 3

Hence, via our inductive argument we have shown that"

«(u )"«(l )"(T ) ~'a "' = 3(2v)'6e(s —s)[H'"3 """'U
N aQBQ erat)f Q Q (eQx )(eQeQ)

(ny3y)(Syaf)H (F) ](ay xy) (8f y )

(811)

((+2) = o, t(0) = 1,

~2 ] p2 —N

&& $(E) —e ( ), s"s"E „ln (812)

from which E&l. (43) immediately follows.
To derive the result of E(l. (45) for the residue of the ladder sum, we note that it is just the initial pho-

ton to final photon matrix element of

e (46:3+793),' 45m4

+p v g
I ~p vXtyg

4 fi v y 8 vu Xc"

(813)
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Def ining the additional electromagnetic Lorentz-invariant

which is related to F and 8 by

8= 49'+ SS',

it is convenient to rewrite Eq. (B13) in the form

2 2

gq ——
~ [-~~ (FF)2 + 4 (FFFF)],

(FF) =F~ "E„", (FFFF) =F„'F„~Fq'F t'.

(B14a)

(B14b)

(B15}

Let us now substitute F =E, +E, +F, +F„and keep the terms quadrilinear in 1234. (We will identify 1 and 2

with the initial photons, 3 and 4 with the final photons )T.hen we get for the matrix element of 2,
4a'

~ 4 {-—',
~ [(F,F )(F,F ) + (F, F ) (E2 F4) + (E, F )(F2 F }]+ 4 [(E,E, E, E4) + (E, F, F4 E~) + (F, E, Em F4}]].. (B16 }

Restricting ourselves now to the case where photons 3 and 4 are parallel and have helicity zero, as speci-
fied in Eqs. (40a} and (42), we make the replacement

F,„SFz~- i'&(I —8) [s„ea"s ep'+s e'8' s e~ +antisymmetrizations],

which on use of Eq. (B10}simplifies to

+saB E4 & 0(1 —e)(s~s T/Sg —s 8s 'g~g —s~s gg8 + s 8sgYj~ ) .

Substituting this expression into Eq. (B16)we readily find

44(y2

45m4

and since s'=0 we are free to add a multiple of q & to the tensor multiplying s s&, giving

11II=, T~»[-4B(1 —e)s s ],

(Bl va)

(a17b)

(a18)

(B19}

with T,",& the initial photon matrix element of the electromagnetic energy-momentum tensor. Changing to
the notation used in Sec. II, this immediately gives the result quoted in Eqs. (45) and (46).

APPENDIX C: PHOTON-PHOTON SCATTERING IN A CONSTANT BACKGROUND ELECTROMAGNETIC FIELD
IN MINKOWSKI SPACETIME

In this Appendix we discuss photon-photon scattering as described by the Heisenberg-Euler effective
Lagrangian in Minkowski spacetime. We show that, in the presence of a constant background electromag-
netic field, the eighth-order effective Lagrangian term provides an interaction which leads to a singularity
in the ladder sum for photon-photon scattering.

We start from the Heisenberg-Euler Lagrangian in the form"
00

—,e ' [(es )'L -1 ——', (es } 6:],
0

(cl)

cosh{es[2(F+ zQ)] ~')+ cosh{es[2(6' —iQ)] ~']
cosh{es[2($'+ iQ)] +') —cosh{es[2(6 —iQ)]'~) '

and expand out to eighth order, giving

32 lT2 =-6'+
45 4 (46' +79') —

8 (128%+2086'9')+» (3846' +7046' 9 +1529~)+
45m 315 ms 945 m" (C2}

Let us now substitute E„„-F„„+f„„with F a constant background electromagnetic field and with f a wave
field. A "pairing" interaction leading to a (Ins')" contribution to the N loop ladder term T„-can come only
from terms in 2 where each f is contracted, through an 7 or 9 structure, with a background field factor
F, since f,„„f,"' =e&"~f,„„f,~, =0 when f, , are the field strengths for parallel photons. Hence the n'
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term in Eq. (C2}gives a pairing interaction, and we readily find, in the notation of Sec. II,

V~8 ((k,k2k~ k~}=)(2v} 5 (K}k(k,"k~k~ U&~()(sq)(y))((~),
TET y' T y T Pllllllg~ (a()(B7})(yX)(bo) ~ (nK)(B&) (y)(. )(ha) + ~ (aE)(B7})(y~)(ba) &

with the lowest-order contribution U given by Eq. (32}of Sec. II and with U g given by

PRImlg 16n'
U(n()(BI})(yx)(6o) g45 12 ~ nE Byt y& «

(c3)

XoE~„—-e ~, ), E

A A

+704)(2(F~(F8qE qF(, +E„(F) F8q F(,a+F~(E(gF()q F ), +E()q F ) F~(E(;

E8q F(g E„(F q+F qEg~ F~( Fsq}+19)(24F„(Faq F ), Fg~] (C4)

For the N-loop term in the ladder sum we find, when refractive index complications are ignored (see be-
low},

N

UT (nl 1 ( Bl 1 TT I~T j+I j+1 j+1 j+1 &(S
healp p p p j=l

,
'")'(~&'("8)'( )')'(s}=L '()")'(s}Ur j+1 j+1)(Bj+1 j+1)(aj)i ~) (8~a~) (Xjoj) i (ajar j)(Bjqj)

L~'("(s}= —ln s s's s" +(terms which vanish at s'=0}.1 A ) a
(4w}2 30 —s2

(cs}

Again taking the two photons at the right end of the ladder to be parallel, so that kf ~ Lf cc s, and contracting
with polarization vectors, we find

gc(k }"oE(l } o(T } "fs~P'~' = (2(}'v5(s —s}[H'"o ()" 0'O'U
l(

nf )(.f ) ( Bfof ) ~(F )
P P N noBO af Bf 0 0 (ap)(.0) ( Bpa0) f f)(Bfaf)N=p

g(F) 4 A2 -1
X A

m12 945 " -s'—ln (Cs}

where we have assumed P' B' to be an eigenvector of the following matrix t B y z with eigenvalue ~' ':

y&
—768 X 24Ens E' Bs Ey s Eh s

+ 704x 2(F„,FS, F» Fs, +Ee(&E»F»F(, +F~F(;,F»E»+F8, F»E„,E» +F»E»F~, F»+F»F»E„,F»}
+19X24En, EB E Ea (C 7}

En, =FnB S, E =EaBSB;
y~ p(F) y(F) p(F)aB, nB ~

To show that there are some nonvanishing eigenvalues, we consider the special case where the external
field is a pure magnetic field transverse to s,

s =so(1, 1„0,0},
B=F, = F, e0, F~„--O, (p, v}e (12},(21}, (csa}

fOr Which tnB q beCOmeS

t () ~
——(soB)4[766x245„,58,5„,5~,

+704xS(5 5e 5,5q, 5„,+5 5,85q +5,58,5,5~, +5„,58 5,5q, +5„~5e,5„5~ +5„5~,5„,5q, }
+ 19x 24 x 165,5 8,5,5~, ] . (csb}

It is easily verified, for example, that P $ ~y2~$3
+5&,5(;, is an eigenvector, with 704)(16(soB}4as
eigenvalue; two other eigenvectors of the form
P,~ = A. &y2&~2+B&y3&~3 can be found, and also have

nonvanishing real eigenvalues.
The calculation described above is oversimpli-

fied in one important respect: As is well known, "
a photon in a constant electromagnetic background
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7~2 g2
n =1+

(C9}

Since these differ, we must really regard II and &

polarized photons as distinct particles, and re-
strict all the photons in the ladder sum to have
one definite polarization to make the argument for
a singularity. In the case described by Eqs. (C8)
and (C9), this is easily done by picking out of
t

& „2 the parts that scatter two parallel (per-
pendicular) polarized photons into two parallel
(perpendicular) polarized photons,

t'„2' 2 =(s' B)' 678x24 5„26226, 6,2,

t'„2 „3 = (s' B)' 19x 24 x 16 6 35 236 3„6.

The denominator in Eq. (C6) is then replaced by

(C 10)

field propagates with polarization-dependent re-
fractive indices which are different from unity.
For example, in the case of a photon propagating
normal to a constant magnetic field, the modes
with photon magnetic field vector respectively
parallel to and perpendicular to the constant field
have refractive indices

4~2 g2
nII —1+

90

APPENDIX D: A SIMPLE PHONON SCATTERING MODEL

H0=2 dx V(t) x Vp x +v x2

H =—', d'xg V' x Vgx (Dl)

H=H +H,

together with the canonical commutation relations

[P(xt), P(yt}] = [v(xt), v(yt)] =0,
(D2)

In this appendix we describe a simple phonon
scattering model which shows ladder-graph singu-
larities analogous to those found in Appendixes B
and C. The model is motivated by considering the
situation in which two longitudinally polarized
phonons multiply forward scatter through the four-
phonon anharmonic interaction. Because the inter-
action vanishes" as any of the four-phonon momen-
ta approach zero, one effectively has a quadri-
linear gradient coupling, suggesting the model
Hamiltonian (we take the phonon velocity &u/k as
unity)

4 AII, J 1

2m" 945 " -( )s'n 3'+s' (C 11}
d'k

[P(xt), v(yt)] =i, e'"'" ~' 8(kD —k)

X2 —768 x 24 (s' B}'

&,=19x 24 x16(s' B)',
and evidently a weak-coupling singularity is still
present in both polarization cases.

The model is automatically ultraviolet-finite be-
cause of the presence of the Debye frequency kD

as a short wavelength cutoff.
The Feynman rules corresponding to Eqs. (Dl)

and (D2) are

g
phonon propagator e(ko —k),

k 2-k2+i&0

four-phonon vertex —i —(k, k,k, k, +k, k,k, k, +k, k,k, k3)(2v) 6 (k, +k, —k, —k,).
(D3)

Remembering the symmetrization factor of —,'-" in
the N-loop ladder term, the phonon-phonon scat-
tering ladder sum denominator analogous to that
of Eqs. (43) and (C6) is

g ~
A2

32v2 30 (k 2 k2) (D4)

with A a cutoff of the order of k~. For arbitrarily
small g, Eq. (D4) vanishes for k, -k, argk =0,
n/2, v, 3v/2 for g&0, and for k2-k, argk= 2/4,

3v/4, 5v/4, 7v/4 for g&0, so again there is a weak-
coupling singularity in the ladder approximation.
Evidently, the model of Eq. (Dl) is only one of a
large class of models which can be generated by
applying derivative couplings to a basic (t)4 inter-
action. When there are no derivatives, the model
shows weak-coupling singularities only when g&0
and then is essentially the negative-coupling P4

model first discussed by Symanzik" as an example
of an asymptotically free field theory.



14 PHOTON PAIRING INSTABILITIES: A MICROSCOPIC. . 377

*Research sponsored by the Energy Research and De-
velopment Administration, Grant No. E(11-1)-2220.

R. P. Feynman, Acta. Phys. Polon. 24, 697 (1963);
B. S. DeWitt, Phys. Rev. 162, 1195 (1967); 162, 1239
(1967); in Relativity, Groups and Topology (Gordon
and Breach, London, 1964); G. 't Hooft and M. Veltman,
Ann. Inst. Henri Poincare 20, 69 (1974); S. Deser and
P. van Nieuwenhuizen, Phys. Rev. Lett. 32, 245 (1974);
Phys. Rev. D 10, 401 (1974); 10, 411 (1974); S. Deser,
H.-S. Tsao, and P. van Nieuwenhuizen, ibid. 10, 3337
(1974).
Ladder-graph instabilities, related to the work des-
cribed in Sec. I, in the context of the 1/N expansion in
Q4 field theory and in asymptotically free field theory
models, have been noted by D. J. Gross and A. Neveu,
Phys. Rev. D 10, 3235 (1974); S. Coleman, R. Jackiw,
and H. D. Politzer, ibid. 10, 2491 (1974); and H. J.
Schnitzer, iMd. 10, 1800 (1974). Recent attempts to
build strong-interaction theories by analogy with super-
conductivity theory are described by T. Eguchi and
H. Sugawara, ibid. 10, 4257 (1974), and A. Chakrabarti
and B. Hu, Phys. Rev. D 13, 2347 (1976); the basic
early reference here is Y. Nambu and G. Jona-
Lasinio, Phys. Rev. 122, 345 (1961). For an at-
tempt to get the graviton as a collective effect in the
Nambu-Jona-Lasinio model, see P. R. Phillips, Phys.
Rev. 146, 966 (1966); see also a discussion of the pho-
ton as a collective excitation by J. D. Bjorken, Ann.
Phys. (N. Y.) 24, 174 (1963).

We follow the metric and y-matrix conventions of J. D.
Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965), Appendix A.

'Equation (11) is of course just a reflection of the well-
known fact that the phase space for a massless particle
to decay into two massless particles is nonvanishing,
as expressed by the easily verified identity [which shows
an obvious structural resemblance to Eq. (7)]

A case in which the matrix element for such a process
is nonvanishing is photon splitting in a strong magnetic
field; see S. L. Adler, Ann. Phys. (N. Y.) 67, 599 (1971),
for a detailed discussion.

The momentakp l p kpf+f l+ f and the four polarization
indices at the ends of the ladder could each, in princi-
ple, absorb one factor of s.

6A residual factor of g could remain at the right-hand
ends of the upper and lower sides of the ladder.

L. Infeld and A. Schild, Phys, Rev. 68, 250 (1945);
G. E. Tauber, J. Math. Phys. 8, 118 (1967).

S. Weinberg, Gravitation and Cosmology (Wiley, New

York, 1972), p. 441. Hp and qp are, respectively, the
Hubble constant and the deceleration parameter.

9T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys.
34, 442 (1962); D. G. Boulware, L. S. Brown, and
R. D. Peccei, Phys. Rev. D 2, 293 (1970). The higher-
order terms in c& in Eq, (25) can be interpreted as
relativistic corrections to uniformly accelerated mo-
tion [T. Fulton, F. Rohrlich, and L. Witten, Nuovo
Cimento 26, 652 (1962)];possible difficulties with the
notion that special conformal transformations are
"acceleration transformations" are discussed by

Kastrup [H. A. Kastrup, Phys. Rev. 150, 1183 (1966).]
' In evaluating L an ultraviolet cutoff of order m is un-

derstood. Note that the photon-photon scattering box
diagram vanishes rapidly for photon four-momenta
» m; it is only in the effective Lagrangian approxima-
tion that the ladder sum is ultraviolet-divergent.
In the absence of a cosmological term in Einstein's
field equations, in the present matter-dominated era
the cosmological parameters appearing in Eq. (44) are
related byk/Rp = (2qp-1)Hp [see S. Weinberg, Ref. 8,
p. 476]. Hence (1+qp)Hp +k/Rp =3qpHp and has the
sign of the deceleration parameter qp.
For a discussion of the failure of the ladder approxima-
tion in the case of superconductivity, see J. R.
Schrieffer, Theory of Superconductivity (Benjamin,
New York, 1964), p. 164-169.

3S. Weinberg, Phys. Rev. 135, B1049 (1964); 138, 988
(1965); R. P. Feynman, California Institute of Tech-
nology Lecture Notes, 1962 (unpublished); D. G.
Boulware and S. Deser, Ann. Phys. (N. Y.) 89, 193
(1975).

4M. H. L. Pryce, Proc. R. Soc. London A165, 247
(1938); K. M. Case, Phys. Rev. 106, 1316 (1957).

~One possibility under investigation is that, in
Riemannian normal coordinates, the pairing amplitude
proportional to ) (,Fq„Fz~+F), ~F~„) is to be identi-
fied with the curvature tensor R»&~. If this can be
made to work self-consistently, then the vacuum ex-
pectation of the electromagnetic kinetic Lagrangian
—4vgF»F"' could give a gravitational kinetic Lag-
rangian proportional to vgR. See S. L. Adler, follow-
ing paper, Phys. Rev. D 14, 379 (1976).
Some related questions are the following: (i) Do neu-
trino pairing effects occur in external gravitational
fields~ (ii) Does the quartic anharmonic phonon-
phonon scattering interaction induce phonon pairing
effects~ (iii) Do pairing effects occur in non-Abelian
gauge theories with massless quanta ~ Furthermore,
if gravitation is related to electron vacuum polariza-
tion forces operating at a characteristic distance ~ ',
then gravitational effects should show qualitative de-
partures from the Einstein theory predictions at wave-
lengths shorter than ~ ~, at temperatures greater
than 5&& 109 K, and possibly (as suggested by the cal-
cul.ation of Appendix C) in the presence of very strong
electric and magnetic fields.
S. L. Adler, Phys. Rev. D 5, 3021 (1972). We are
grateful to Dr. S. Joglekar for clarifying the relation
between the definition of asymptotic photon states and
the calculation of Zk;„.
V. Bargmann, Sitzber. Deut. Akad. Wiss. Berlin,
Math. —Naturw. Kl. 1932, 346 (1932); L. Parker, Phys.
Rev. D 3, 346 (1971).
If some of the G&'s are negative, we can make them
positive by altering the signature of the Minkowski
metric g».
Our notation here is that of Ref. 17, except that we
denote the bare charge appearing in the Lagrangian
and the corresponding fine-structure constant by e p,
0.'p rather than e&, G. q . Equation (A33) follows immedi-
ately from Eqs. (12) and (43) of Ref. 17, while Eq.
(A34) is a consequence of Eqs. (7b) and (13) of Ref. 17.
Since P (0 ) = 2n /(3x) +, to leading order in e the
n = 1 term of Eq. (A39) is 452m/(3x), in agreement
with the expression given by Schwinger for the lowest-



ADLER, LIEBERMAN, NG, AND TSAO j4

order effective Lagx'angian for scalar-meson decay
into two photons [J.Schwinger, Phys. Rev. 82, 664
(1951), Eqs. (5.1) and (5.6) withg/M =1]. Then =1
case of the low-energy theorem of Eq. (A38) is just
an analog, for the vertex(scalar) 2y, of the Adler-
Bardeen low-energy theox'em for the vertex (pseudo-
scalar) 2p derived from the theory of the axial-vec-
tor anomaly. The derivation of Eq. (A38) from the
Callan-Symanzik equations is analogous to the deriva-
tions of the Adler-Bardeen theorem from the Callan-
Symenzik equations given by A. Zee, Phys. Rev. Lett.
29, 1198 {1972), and by J. Lowenstein and B. Schroer,
Phys. Rev. D 7, 1929 {1973).

22Similar statements should hold in other renormalizable
field theory models.

2~The only tensors which can be formed from the metric
tensor and its derivatives ax'e obtained as contractions
of the metric tensor, the curvature tensor, and co-
variant derivatives of the cuxvature tensor. See A. Z.

Petrov, Einstein Sjcces (Pergamon, Oxford, 1961),
p. 36.

24See, for example, D. G.Boulware, L. S. Bxown, and
R. D. Peccei, Phys. Rev. D 2, 293 (1970), Eq. (15).
In the transformations of Eqs. (A41)-(A43) we
cavalierly neglect the issue of Green's function bound-
ary conditions, so these are very schematic ax'gu-
ments at best.

@We replace X)p5 {so sg) by & (so s~) since the nonde-
rivative term in I) survives here and we axe txeating

D& and E» as small quantities.
2~See, for example, J. Schwinger, Phys. Rev. 82, 664

{1951).
+For a detailed discussion, see S. L. Adler, Ref. 4,

Sec. 3A.
R. K. Peierls, Quantum Thegry gf Sggids (Cl.arendon
Press, Oxford, 1956), p. 37. ~e wish to thank R. F.
Dashen for a discussion about this.

29K. Symanzik, Lett. Nuovo Cimento 6, 77 (1973).


