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Koba-Nielsen-Olesen scaling and phase transitions of the Feynman-Wilson gas
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The implications of Koba-Nielsen-Olesen scaling on the thermodynamic properties of the Feynman-Wilson gas
are discussed. Consequences of the existence of a thermodynamic limit as a fundamental demand on hadronic
physics at asymptotic energies are deduced. It is generally found that the Feynman-Wilson gas undergoes a
phase transition at infinite energies. First-order transitions lead to average multiplicity growth like the rapidity
Y, while higher-order transitions correspond to the behavior suggested by the absorptive-model cutting rules

in Pomeron calculus. Possible links with the critical phenomena obtained in Reggeon field theories are
conjectured.

I. INTRODUCTION

In the present work we investigate the relevance
of the Koba-Nielsen-Olesen (KNO) scaling hypo-
thesis' to the thermodynamics of the Feynman-
Wilson (FW) gas. ' As has been widely advocated, '
the FW gas analogy could be employed as a useful
mathematical tool in the study of hadronic proper-
ties at high energies. In our analysis we shall in-
troduce the requirement of the existence of a
thermodynamic limit as a fundamental dynamical
assumption, which if supplemented with the KNQ
scaling hypothesis has several interesting conse-
quences for hadron physics. In this way, the
formal mathematical analogy between high-energy
physics and statistical mechanics will be given
serious physical consideration.

Outside the KNQ scaling framework, the FW gas
analogy has been extensively explored"' and the
thermodynamic limit has been considered. ' In
particular, it has been argued' that there is ex-
perimental evidence that the FW gas is at the
critical point at high energies, and this is best re-
vealed from the viewpoint of the grand canonical
ensemble. '

Since our approach is relevant to the s-channel
description of a process, we expect it to be com-
plementary to those emphasizing the t-channel
properties, namely the Reggeon field theories
(RFT).' In particular, we might expect the critical
phenomena which are related to the BFT to mani-
fest themselves in the FW-gas thermodynamics.
In fact, it has been argued' that approaching the
critical temperature from above, which in the
Pomeron-calculus language means that the Pom-
eron intercept approaches unity from below, re-
sults in the formation of high-mass clusters,
droplets, which resembles condensationphenomena
in the FW gas. Since the strong-coupling solution

of RFT resembles a higher-order phase transition
in statistical systems, there have been specula-
tions" that we could possibly dezzze the strong-
coupling solution of RFT assuming that there is a
higher-order phase transition in the FW gas. In-
deed, assuming a KNQ scaling function without a
cutoff, we shall show that the FW gas does have a
higher-order phase transition at asymptotic ener-
gies, leading to multiplicity and total-cross-sec-
tion behavior suggested by the absorptive-model
(AM) cutting rules in RFT.""On the contrary,
KNQ scaling function with a cutoff at a finite value
of n/(n) leads to a. first-order phase transition and
a logarithmic multiplicity growth, as suggested by
the simplest two-component model, ' or the sim-
plified-absorptive-model (SAM) cutting rules in
RFT»»&4

The plan of this paper is as follows. In Sec. II
we introduce our formalism and give a series of
statements on the behavior of the FW gas, result-
ing on rather general grounds from the KNQ
scaling hypothesis. In Sec. III we specify the as-
ymptotic behavior of the KNQ scaling function and
make several predictions on the behavior of the
average multiplicity and the total cross section.
Section IV deals with the large-order multiplicity
moments, their connection with the asymptotic be-
havior of the KNQ scaling function in our model,
and the relevance of their structure to the RFT
results. Finally, our conclusions are given in
Sec. V.

II. KNO SCALING AND FEYNMAN-WILSON-GAS
THERMODYNAMICS

With the assumption of KNO scaling (x =n/(n))

(~) ~.(&)/o, (F) =4(~),
the generating function
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Q(z, Y) =P z "~.(Y)/o, (Y), (2) energy, we have for the analog pressure (8)

which plays the role of the grand partition function
with z the fugacity and Y the rapidity, has the fol-
lowing integral representation at high energies
(w = (n) lnz):

Q(w) = g(x)e"*dx . (3)

The moments of the multiplicity c~ = (n~)/(n) are
given by

Cp q(x)x~dx .

The obvious normalization conditions on the KNO

scaling function ((x) are

g(x) dx = xg(x) dx = 1 . (5)

f(x) & e

at large x, for any positive c.
We now form the quantity

P(z, Y) = —In@(z, Y) .1

If the thermodynamic limit

(8)

(7)

lim P(z, Y) —= P(z) (8)

exists, its finite value P(z) is called the "analog
pressure" of the FW gas, which is said to undergo
a phase transition of order n at z =z, if the nth de-
rivative of P(z) with respect to z is discontinuous
at z =z„but all lower derivatives of P(z) are con-
tinuous there "If so. me derivative of P(z) diverges
at z =zo, we are dealing with a A, transition, as in
liquid He'. " As suggested by classical statistical
mechanics, "we assume that the convergence of
P(z, Y') in (8) as well as the convergence of

(8/sz)P(z, Y') is uniform for z &1.
We now study some general implications of the

KNO scaling hypothesis on the FW-gas behavior.
By inspection of representation (3) of the generat-
ing function, several statements based on rather
general grounds can be made.

We start by noting that from (2) and (7) the quan-
tityP (z, Y) is a nondecreasing function of z [o„(Y)
& 0]. Moreover, we have P(z & 1, Y) & 0, P(z = 1, I')
=0, and P(z & 1, Y') & 0. Assuming that (n) increases
with Y and integrating (3) by parts, we obtain at
high energy for z & 1

Q(w) = +0(w ');60
w[

hence, if (n) does not increase like a power of the

The existence of the generating function Q(z, Y) for
z & 1 imposes on ((x) the bound

0& P(z) = lim —ln =0, 0&z &1 .q(0) (10)

In@(z, I') =wx, + 0 (lnw) .
Hence, if we impose the condition of the existence
of thermodynamic limit we obtain (n)- Y and P(z)- lnz, which gives a first-order phase transition
at z =1. Note that this is precisely the answer ob-
tained from a simple two-component model, ' with
a correlation-free multiperipheral component,
leading to a Poisson-type multiplicity distribution,
and a diffractive component responsible for the
first-order phase transition. Because of KNO
scaling we obtain (n~)- Y~, which is the result of
the SAM cutting rules of Caneschi and Jengo. ""
The conclusion of this discussion is that a neces-
sary condition for the existence of a thermodynam-
ic limit for z & 1 is the bound (n) & Y'. The equality
sign appea. rs when the KNO scaling function $(x)
has a cutoff at a finite value of x, and then the FW
gas has a first-order phase transition.

Lastly, we have forz & 1

s
( )

. J, p(x)x(n)z 'e "dx
(1 )sz „„Y'J'" g(x)e"'dx

which, because of the normalization (5) of g(x),

On the other hand, we have P(z =1,) =0 and
P(z & 1) &0 (and nondecreasing with z). Hence,
provided that the thermodynamic limit exists for
z &1, P(z) is a continuous function of z atz =1, but
unless P(z) —= 0 it cannot be analytic there Thus,
we conclude that at infinite energies, the EW gas
alseays undergoes a Phase A ansition at z =-l. The
above discussion leads to the physical picture that
as we approach the critical point z =1 from values
z &1, droplets are always formed in the FW gas at
asymptotic energies, resulting in zero pressure
forz ~ 1.

Let us now assume that the thermodynamic limit
(8) exists for z &1. From (3) we obtain

+~ & P(z) & lim —ln g(x,)5x, + 1im
1 lw[»,

I l y

for arbitrary x, if 5x, is sufficiently small. We
then have the following:

(i) If g(x) does not have a. cutoff, we can move x,
to as la.rge values as we like, and inequality (11)
necessarily leads to the bound (n) & Y'.

(ii) If tlI(x) has a cutoff, x, may only be finite and
we obtain the bound (n) & Y. Moreover, assuming
a cutoff atx =x, in ((x) we can explicitly show that
the equality sign survives in this bound, while the
FW gas undergoes a first-order phase transition
at z =1. Indeed, integrating (3) by parts, we ob-
tain forz&1
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gives

Thus, provided that the thermodynamic limit
exists, because of our previous discussion, the
limit of the first derivative of the analog pressure
with respect to z, as z approaches unity from the
right, is always zero, unless g(x) has a. cutoff
when it has a nonzero finite value. Hence, we con-
clude thatfirst order-Phase transitions in the EW

gas at z = 1 at infinite energies are only allowed if
the KNO scaling function g(x) has a cutoff. If g(x)
does not have a cutoff the FW gas always under-
goes a higher-order phase transition at z = 1.

To complete this section we mention that a par-
ticular Van der Waals model of the FW gas (first-
order phase transition) with (n) —F has been con-
sidered by Arnold and Thomas. ' But this model is
outside our framework since it does not have KNO

scaling.

III. HIGHER-ORDER PHASE TRANSITIONS

Having established that the FW gas exhibits
phase transitions at asymptotic energies and that
first-order transitions correspond to a KNO scal-
ing function with a cutoff, we now study in detail
the nature of the transition obtained in the case
that there is no cutoff.

It is convenient to write

We shall show that the power k is connected to the
inverse of the critical exponent g defined in BFT.
Introducing (17) into the asymptotic expansion (16),
we obtain for m) 0

k/(k - y)

In(I)(w) = ct(h —1) — +O(lnw) .
ak (18)

Requiring in order for this analysis to make sense
the existence of the thermodynamic limit (8) as
Y- , we are led, together with the assumption
P(z)~O, to

1(n)-I" ", 0&q= —„&1.
From this relation and KNO scaling we obtain

(n'&- I'(' "', 0&))&1.

(19)

(n P) Fu(z+ q) (21)

which, anyway, because of inequality (11), does
not allow for a thermodynamic limit. Note that
the critical exponent q is identified as the inverse
of the power k appearing in the asymptotic be-
havior (17) of f(x). If we also assume Feynman
scaling, (19) means

It is worth noting that this behavior coincides with
the result of the AM cutting rules in AFT, at least
to the lowest order in the c expansion, "but dis-
agrees with the Abramovskii-Gribov-Kancheli
(AGE) cutting rules" which lead to the nonpertur-
bative result" (see also Ref. 12)

y(x) =g(x)e-'("),
cr,

- Y", 0&@&1. (22)
where g(x) is bounded by a power of x from above
and below, and because of the bound (6), f(x) must
be increasing faster than x at large x. Note that
such an asymptotic behavior of g(x) guarantees
unique solution of the moment problem. ' By
standard steepest descent" we find for z & 1

In(I) (w) =wx, -f(x,)
~1/2 g (2Fl)(x )

f"( .) ~ (24~i[f"(x.)]" '

(16)

where the saddle point x, is defined by w =f'(x,).
Since f(x) is increasing faster than x at large x,
f'(x) is an increa. sing function of x and the saddle
point x, moves to infinity when the energy becomes
very large. Therefore only the asymPtotic be-
havior of g(x) is relevant to the calculation of
thexmodynami c quantities at asymptoti c energies.
In particular, the critical exponents axe independ-
ent of the detailed behavior of g(x) at finite x.

We next specify the asymptotic behavior of the
function f(x):

f(x) =o.x, h) 1 .

From (8) and (18) we obtain the analog pressure
for z)1:

P(z)- (lnz)', v= = ) 1 .1 k
1-g k —1

Recall that for z (1, we generally have P(z) =0.
Hence, if v is not an integer we have a X transi-
tion at z =1 [see Fig. 1(a)], while if v is an integer
we have an ordinary phase transition of order v) 2 [see Fig. 1(b)]. Note that first-order phase
transitions are not allowed, in agreement with our
general argument of the preceding section. But if
h-~ [()I(x) falls very rapidly to zero], we have
g-0, v-1 and we obtain a first-order phase tran-
sition together with the results we had from gen-
eral arguments in the preceding section, where we
considered a KNO scaling function with an explicit
cutoff. If the second derivative of the pressure
with respect to z has a discontinuity at the critical
point z = 1, we have 1& v ~ 2, 0&g ( —,', k ~ 2. Note
that the values of the critical exponent g obtained
by c expansion of the loop expansion in HFT fall in
this range. '" If the discontinuity is exhibited in a
higher-order derivative we have v) 2, —,'&g&1,
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2 nd this range of the g values is consist-1&k&, an is
results inent with the high-temperature expansion resu

the allowed val-RFT. '" The connection between e
ues of the exponents k, g, v and the nanature of the
correspon ing p asd' h se transition is illustrated in
Fig. 2.

If instead of (17) we assume that f(x) has the
more general asymptotic behavior

f(x) =o.x (lnx)", k&1, -~ &A. &+~ (17')

the rectuiremen o e e 't f th existence of thermodynamic
limit leads to

,20'(n') - I'i'-&&(Inl)" &',

but the pressure (23) remains uncha. ghan ed. This
ns that the leading contribution to (n~) is

basically unchanged, and we have the same c 'critical
behavior o ef th FW gas at z =1. Note that if k=1
and A. &0 the generating i'unction Q(w) exists, u
the thermodynamic limit (8) does not exist for any
Y dependence o n . if ( ) This means that models with
a KNO scaling function of the form

-axgnx) ~
(24)g(x) =g (x) e "~'"", A. & 0

and in particular the model of Re .f. 17 which has
A. =1 cannot be accommodated in our scheme.

IV. STRUCTURE OF THE MULTIPLICITY MOMENTS

In this section we examine in somsome detail the
struc ure ot of the energy-independent quantities c&,

n are iven byh h having assumed KNO scaling, are given yw ic ~ a
E . (4). Their form for largeP reflectsts the as-
ymptotic behavior of g(x), which, as we have
shown, is connec e ot d t the critical phenomena in

&h4
~ -4

3

2hCI

st

-------- 1
ffi

CUt-0
I

I

I

I

I

FIG. 2. Illustration of the connec 'ection between theex, , d the nature of the various phaseexponentsk, g, v an e na
transitions of the Feynman-Wilson gas.

=e(p) '"'"
where Q(P) is polynomially bounde,nded the inverse
Mellin transform of (4) reads

(25)

(26)

rl if h(P) is finite for P-~, g(t) has a, cut-
off at a finite value of t since c may e m

far to the right as we like, but iut if h -~ for P
h toff exists. Conversely, assuming-~ nosuc cuo e i

that ( x a.s a cu( ) h utoff at x =x and integra mg (C

pa. rts, we obtain

th FW gas. On the other hand, the He geon fielde
which iftheories pre ic' s redict energy-independen c~,
rovidecompare wid 'th our results can possibly provi e

links with our s-channel approac .ach.
Writing

P't" '~) (Z)

P
(tv])

0

([v+ 9
P

0

(0)

2 z

2 z

I

2 Z

p )(z)

(z)

0

p(v) (z)

0

(b)

2 z

2 z

I

2 z

c~-x,~ p(p)

namel (25) in the special case h(P) =lnx, .namely, in
nts on the connectionAfter these general comments on

of the asymptotic behavior of x with the form of
we assume the general form (15) for g x, andc&, we assum

by standard steepest-descent methodsds" we obtain
from (4)

(27)

27TP~-f ( vo)
2f"(y )+p/y

g""'(y.) (28)~ (2~)'![f"(y.)+p/y. ']" '

where the saddle point y, is defined by y,f'(y, =P.
with (17) and (17'), provided that g(x) isHence, wi

nd below, thebounded by a power of x from above an
leading contribution to c~ for large P is

FIG. 1. Derivatives of the Feynmman-Wilson-gas
analog pressure near the crstica pl oint z =1. (a) non-
inte er v corresponding to A. transition, (b) integer v

corresponding to vtI1-or er or '

c~- (const)~p "~

and

c~- (const) p "~/(Inp) "

(29)

(29')
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respectively. Since we have g&1, it is easy to
verify that the sufficient condition

(30)

c~- 1+gP lnP (31')

and is tempted to conjecture that higher orders in
c will provide the remaining terms to resurrect
the dominant contribution to (29) by exponentiation,
while leaving the behavior (20) unaffected.

Finally, let us mention that the SAM-cutting-
rules result to first order in c, ll namely cp =1,14

is equivalent to a Poisson distribution, ' which
again implies that (n)- Y, consistent with the SAM
result as mentioned in Sec. II.

V. CONCLUSIONS

We have taken seriously the analogy between
statistical mechanics and high-energy multihadron
physics assuming that the latter possesses a
thermodynamic limit at infinite energies. We

for the uniqueness of solution of the moment prob-
lem' is fulfilled in both cases. Note that the be-
havior (29) or (29') corresponds to the case h(P)

~ for P-~, previously discussed.
Having calculated c~ we can now continue the

comparison of our results with the recent findings
of Reggeon field theories. As already mentioned,
the results obtained with the AGK cutting rules
cannot be accommodated into our scheme in the
sense that they do not allow for the thermodynamic
limit.

With the AM cutting rules, to the lowest order in
the e expansion c~ are calculated by Caneschi and
Jengo" to be

1 2 p 1cp=1+ P — + ——1+12,=, l I(l —1) 2 ~ I

(31)
Their conjecture c&-e" for large P is not con-
sistent with the assumption of the existence of a
thermodynamic limit since (i) from our analysis
such a behavior implies a KNO scaling function
with a, cutoff, which in turn leads to (n)- Y, but
(ii) to lowest order in e the AM cutting rules lead
to the result (20) withe = —,', e &0,' which allows for
the thermodynamic limit. Instead, replacing the
sums in (31) with integrals for large P, one obtains

armed our formalism with the KNO scaling hypo-
thesis which leads to an easily handled integral
representation for the generating function. We in-
sisted on comparisons between our results and the
findings of Reggeon field theories. Our main re-
sults may be classified according to the behavior
of the KNO scaling function $(x) for large x:

(i) If g(x) has a, cutoff at a finite value of x,
then the Feynman-Wilson gas has a first-order
phase transition at z = 1 at infinite energies as sug-
gested by the simplest two-component model. The
multiplicity grows like Y, as suggested by the
SAM cutting rules in Pomeron calculus. The same
result is also suggested by Q' considerations in
Reggeon field theories relevant to the s-channel
discontinuity of the scattering amplitude. We find
that the moments of the distribution behave like
c~ - (const)~ for large P, and assuming Feynman
scaling we are led to a constant total cross sec-
tion.

(ii) If g(x) does not have a. cutoff, but obeys the
bound lit(x) &e '" for any positive c, for large x,
we find that the Feynman-Wilson gas undergoes a
higher-order phase transition at z =1, at infinite
energies, which in general is a A. transition as in
liquid He'. The requirement of the existence of a
thermodynamic limit puts on the average multi-
plicity the bound (n) & Y'. We calculated (n )- c~ Y~&' », 0 & g & 1, and assuming Feynman scaling
we found g, —Y". These results are similar to
those obtained by the AM cutting rules in Pomeron
calculus, at least to the lowest order in the e ex-
pansion. They also follow from Q' considerations
in Reggeon field theories relevant to the calculation
of the s-channel discontinuity of the scattering
amplitude. The dominant contribution to the mo-
ments of the distribution has, for large P, the
form c~-P "~, and we were tempted to associate
this behavior with the lowest-order-in-e AM-
cutting-rules result c~- 1+gP lnp.

We believe our approach provides interesting
links of the critical phenomena obtained in Reg-
geon field theories from t-channel-unitarity con-
siderations, with. the critical behavior of the
Feynman-Wilson gas at asymptotic energies.
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