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Lifetime and decay of "excited vacuum" states of a field theory
associated with nonabsolute minima of its effective potential
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We discuss the decay of the excited vacuum states of a field theory associated with the
nonabsolute minima of its effective potential. Using the equivalence of the sine-Gordon the-
ory in (1+I) dimensions to Thirring fermion theory we demonstrate explicitly the nature of
one such decay and compute its lifetime. The fact that ordinary perturbation theory cannot
be used to describe the decay is also examined.

I. INTRODUCTION

In order to study the ground states of a quantum
field theory it is usual to consider the effective
potential" of the theory, whose minima. are can-
dida, tes for such states.

In perturbation theory it often seems possible to
have more than one minimum and these putative
vacua have either the same energy or an infinite
energy gap. In the later case the va, cuum state
should be unstable, a,s has been argued on general
grounds by Lee and Wick. ' One does not see this
instability in perturbation theory, however. This
paper is devoted to a discussion of this point and
to a calculation of the decay rate in a, two-dimen-
sional model where, for one value of the coupling
constant, one can get an exact result.

The first section is a general discussion of va-
cuum instability. The second reviews the main
ideas of the (1+ 1)-dimensional equivalence theo-
rems and the third and fourth sections discuss the
model and its generalizations.

where y = (0
~
p

~
0)z in this ground state. If we vary

J' so that ~0)~ is no longer the lowest-energy state
it may still be possible to analytically continue
E(J), and, f'urther, E may develop an imaginary
part which will give the decay rate of this state.
This continuation process is exactly analogous to
the way that one may continue the Gibbs function
for a thermodynamic system past a pha, se tran-
sition into a superheated or supercooled phase.

In rather more detail let us use

(0
i
0 ) e(w(J')

where

(2.2)

W(J) =
J~i dxE(J)=E(J)(VT') (2.3)

exp[-2 imE(J)(VT)] = g i(X~ 0„)i', (2.4)

and VT is the volume of space-time. The insertion
of a complete set of out states ~0,„,), ~X) into

(0„~0„)= 1 yields

II. GENERAL DISCUSSION

When the effective potential V((()) of a quantum
field theory has more than one minimum it is nor-
mally supposed that only states built on the abso-
lute minima a,re stable. "Vacua" built on other
minima are energetically capable of decay by
some kind of tunneling mechanism and in the ab-
sence of conservation Laws should actually do so.
Superficially one might object that the full quan-
tum effective potential contains in itself all the
quantum effects and that if a minimum in the bare
potential leads to an unstable state then radiative
corrections should fill it in. This is not neces-
sarily true, however, because V(y) has a physical
interpretation': —E(J)=V((())+J(() =groun'd-state
energy density for system with

Ha.miltonian = H+ Jy,

so that exp[-21mE(J)(VT)] )s the probability of no
decay in volume VT. If we divide space into a
number of independent regions, then this is the
product of the probability of no decay in each of
the regions separately. If these regions are so
small that much less than one event is expected,
then

(o-2)ms(z) volume
1 2 Im[E(J) )( Volume] (2 5)

and 2 ImE(J) is the probability per unit volume per
unit time of an event. This assumes that the vol-
umes are independent, and they must therefore be
larger than the scale of quantum fluctuations. This
is related to the interpretation of W(J) as the gen-
erating functional for connected Green's functions.
VVe need to take our volumes such that
Q„„(x,(=V,, x,(=V„.. . ) is negligible. This is con-
sistent with the idea that the imaginary pa, rt of a
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connected diagram with one point fixed describes
the creation of particles within the correlation
length of that point, ' where this length is the re-
ciprocal of a typical mass in the propagator.

In perturbation theory V(y), and hence E(Z), is
calculated by the following prescription. '

Write the Lagrangian 2(cp) as 2(qr'+ y). Use y'
as the quantum field to specify propagators and

vertices and sum all the one-particle-irreducible
(1PI) vacuum-vacuum graphs to obtain a function
of p.

Unfortunately, when one uses the prescription
to low orders in perturbation theory the vacuum
states seem to rema, in stable for much longer than
one would expect. Consider for example Acp4 theo-
ry with negative m:

xy' rn'y' 5 xy', ' ' Xy'/2 —(m'+is))
V(y) =

24
—

2
+ 64, 2

—m' ln

+ (finite polynomials in y depending on renormalization scheme) + O(k'). (2.6)

The -i& ensure that ImV is negative. The branch
cut appears when

—,Xy' —m'+ O(h) = 0,

i.e., at

O' V/9 y' = 0+ O(h) . (2.7)

v(q))

v(Q) + J tp

(0 14) I 0)
io)

To this order the state becomes unstable only at
the point of inflection on the graph of V. Since
the addition of a linear term Jy to V cannot alter
the curvature, the minimum of V+ Jy and the
point of inflection coincide when the second mini-
mum of V+ Jy vanishes (Fig. 1).

To this order the vacuum remains stable until
the state is classical/y unstable —no tunneling.

It is not easy to see the persistence of this phe-
nomena, in formal perturba. tion theory, to higher
orders because the point of inflection shifts. To
find the new position of the branch cut even to
next order involves summing all the terms due to
mass insertions. A self-consistent Hartree-Fock
scheme in which graphs are resummed to 2PI
graphs with complete propagators" will show it,
but a. much clearer argument comes from per-
turbative unitarity and energy conservation.

s'V/sy'=0. (2.8)

Thus in general one expects perturbation theory
for V to indicate no tunneling. Nevertheless the
states can decay.

Consider for simplicity a. two-dimensional ver-
sion of our X@4 theory, that is, a "string" with
more than one equilibrium point. Assume that a.

Jy addition makes one minimum higher than the
other. Vacuum fluctuations cannot make the whole
string move as a block out of the upper trough
because it has infinite mass, but small sections
of it c3n tunnel to the lower region. If the length
in the lower trough is large enough, the energy
difference will be enough to "pay back" the energy
borrowed in order to tunnel. The final state will
be two solitons moving away from each other, the
space between them being in the lower state (Fig.
2).

We will not see this event in perturbation theory
unless we have a scheme embodying the off-mass-
shell propagator for the solitons.

The (1+ 1)-dimensional Bose-Fermi correspon-
dences do just this if we identify the sine-Gordon

The usual unitarity rules' which are summarized
in Fig. 2 give us an expression for the imaginary
part of the connected vacuum-va, cuum a,mplitude.
In this figure the lines represent states on the
mass shell and energy flows from + to —.To be
nonzero the right-hand side needs an on-mass-
shell particle with zero energy. The inverse
propagator at zero momentum must vanish, and

so

v imaginary
I

(a)

v imagin

(b)

FIG. 1. V{y) + Jy for typical system showing regions of
reality: (a) J =0; (b) J such that V(y)+ J'y becomes com-
plex in perturbation theory.

im

0 cuttings

FIG. 2. Optical theorem for vacuum-vacuum unitarity.
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(SG) soliton with the Thirring fermion. '~" We
will find, just as we expect, that the Fermi trans-
lation of the SG equation shows excited vacua de-
caying to solitons. For one value of the SG cou-
pling one can calculate the rate exactly.

Green's function for the interacting fields by use
of the Gell-Mann-Low formula and using (3.1)
term by term on the resulting free-field expres-
sions in the perturbation series.

For example, the Thirring interaction

III. EQUIVALENCE THEOREMS IN (1+1)DIMENSIONS

ill' g—4-r'44&„4

corresponds to

(3.5)

The work of a number of authors' "has enabled
us to build a dictionary between two-dimensional
Hose and Fermi theories.

The basic relations are expressed by the follow-
ing free theory equations:

=28'(I('~ 0 ~ (3.6)

zsgps 0 -2 & sA'&v, 3 9'=(1+g~ii)~g9's 9'

iggg —2~,ps (3.1a) P = (1+a&~)'"V'. (3 7)

o, = —,'$(1 ay, )g —rnN [exp(+ 2iWmy)],

(3.1b)

(3.1c)

Thus the effect of the Thirring interaction is just
a finite rescaling, (3.7), which identifies P as the
canonical Bose field.

In terms of y the correspondences involve the
pairs

where

N [exp (a 2iWmp) ]= exp[- 2 iii 6(0, m) ]exp(+ 2' m y ) .
i'=0&"4-2, e"s.p,

(3.3)
The sense of correspondence is as follows. Sup-

pose we calculate

&0~ Z~ (~)~,(0) ~0)

with the propagator corresponding to if'(. We
obtain

» z(1+&,)p2(1 —X,)—.

N. [em(iP9 )],

where

P'I«= (1+&/.)-'.

An even more interesting result" is the exten-
sion to include the (Schwinger) electromagnetic
interaction

iV'~4+ eA' 0+ (3.9)

while if

(2m)'c'I'(0
~
TN„[exp( 2i&mp(x))]-

x N [exp(+2zv my(0))]10)

into the fermion Lagrangian. As far as fermion
Green's functions are concerned an equivalent
addition to (3.9) is the nonlocal term

(3.3) d'~d'y~ (~)G„(~x-y ~)~"(y), (3.10)

is also evaluated using the propagator obtained
from the boson Lagrangian in (3.1a), we obtain
the same result, where we have used

~~(x, y, p, )=—ln[c'li'(x-y)'], (x-y)'p, '«1.
(3.4)

where G „denotes the photon propagator in some
gauge. To see this one may use a functional in-
tegral representation of the generating functional.
The electromagnetic terms are quadratic in the

field and may be integrated out to yield (2.10).

A similar result is obtained for any Green's
function evaluated in a similar way-modulo
infrared problems due to the strict nonexistence
of massless scalar fields in two dimensions.
These are discussed in Ref. 9.

We need the extension of the correspondences
to the Heisenberg fields of interacting theories.
That they remain true is seen by expanding any

(+)upper

FIG. 3. Shows how tunnel. ing over a finite region re-
so1ves into a soliton-antisol. iton pair.
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If we use the gauge in which A, =0 so that

G,„=—,'5„5„,5(xo)
~

x' ~, (3.11)

then we can simplify the interaction for the boson
theory equivalent to (3.10). Using (3.1) we get

The bare potential is periodic with discretely
degenerate minima, and since the theory is in-
variant under y - qr+ 2mP

' the discreteness of the
vacuum should survive quantization.

The one-loop contribution to V(y) is

dx d$ df g ~x2p ~x

2

d'x[V (x) —V'("))'

(3.12)

a '

l3 If a casPfp+EE)Vy = ——,cos y 1+ ln 2
p q 8m p,

+ O(h'), (4.2)

IV. SINE-GORDON MODEL

This (1+1)-dimensional theory has the Lagran-
gian

—29„ps~@+—', cospy . (4 1)

In (3.12) we have integrated by pa, rts. The value
qr(~) of q(x) for x-+~ is important as it allows
the Bose theory to be chiral invariant despite the
fact that it possesses what looks like a mass term.

where n is a renormalized coupling constant and
p, a renormalization mass.

This low-order potential has the reality prop-
erties we expect: real for positive O'V/&y' and
a negative imaginary part where o. cospy & 0. We
will see in fact that E(J), and hence V, is in fact
imaginary everywhere, but that for small J the
imaginary part is small, so the vacua are approx-
imately stable.

Translating (4.1) plus a Jy term into Fermi
language:

28 ye"q+ 2X,(co—sPq)+J(x)(y —q ) iKgq 2gj "j ~—+myq+eAj (x), (4 3)

ds SE(J)= —— —J'e cot(Jes)e4m, s (4.4)

Since cotx= (1/x)(1 ——', x'+ ~ ~ ~ ), the only diver-
gence in (4.4) is independent of J and can be ab-
sorbed into a trivial additive constant to the
ground-state energy. cotx has poles at x= n~, and
we take our contour above them. "

Then

ds m SImE(J) = —— —g m5(s —nm/e J)e
4m 0 s

1

J e-m nr /eZ1
4g n

where P'/4m= (I+g/m) ' and m, is proportional to
n. Wheng=0, m should be the physical mass of
the soliton, &,A'=J, and e =2m/P.

The equivalent Fermi theory is just the massive
Thirring model in an external electric field. So as
not to involve cp„we will assume that the electric
field is constant over most of space, but of com-
pact support.

The J term breaks the degeneracy between the
ground states, and we expect decay. We ean cal-
culate the decay to fermions in the Fermi theory
to the one-loop level (the details are given in the
Appendix)

V. GENERALIZATIONS

In the above case the fermions are not them-
selves sources of the field. The decay products
do not neutralize the electric field, so decay con-
tinues with (y) cascading down to —~. If we add
a mass term to the SG equation so that

Q 1 ep'
V, = ——,cosPV+2 2

- (y —y,„,—p„)', (5.1)

where we have included Jy by putting

This calculation is not in conflict with our pre-
vious discussion on energy conservation because
the electric field carries energy, and this energy
is enough to support a pair of real fermions in an
intermediate state.

For P' =4m this one-loop estimate is exact. If
p'&4m, the Thirring force is repulsive but short
range and should increase the decay rate. For
p' &4m, the force is attractive and will reduce the
rate to zero by the time P=0. There is no sign
in this calculation of a threshold at cosPy =0. This
would have been due to massless mesons, but they
occur as bound states of the fermions, which are
only possible if p' &4m. For small p and large J
there should be such a threshold.

[(I ~2m/e J)-z)
4m

(5.2)
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then the ground state remains stable until y,„,
= w/P when the second minimum has the same
energy as the original lowest minimum. This
corresponds to the electric field produced by
charges —„-'e near ~. This field is just enough to
create a pair. If the original field is produced
by charges +(—,e+ e), then after pair creation the
net field between the pair is due to charges
+(-,'e —&), and no further creation can take place.

The (3+ 1)-dimensional analog of this decay will
be similar to the w3y that superheated water
boils-the vapor phase spreading out from a nu-
cleus rather than boiling throughout the liquid.

Just as the two-dimensional decay rate is de-
scribed by the number I'/eJ= m'/(energy gap),
so the (3+ 1)-dimensional case will be charac-
terized by the ratio of the "break-even" radius
of the bubble Bo = 3 && (surfa. ce energy/energy gap)
to O'V/Sy' in the upper state.

CONCLUSION

FIG. 4. The graphs for pair production in an external
fieM. The external Lines represent a classical field
gP—

for the excited vacuum states to exist for a short
time.

APPFNDIX

The one-loop contribution to E(J) is given by the
graphs of Fig. 4. The combinatorics of summing
such one-loop graphs is well known. We shall es-
sentially follow the method of Brown and Buff" "
applied in two dimensions.

We need
Guided by the identification of the Thirring fer-

mion with the SG soliton and our' intuition as to
the nature of the decay, we have explicitly demon-
strated how excited vacuum states can decay as
soon as it is energetically possible. The decay
rate per unit volume is finite, making it possible

G=ln det[y'(-iS +eA )+m];
this equals" (put x- —x)

6 =ln det[ —y~(- is +eA, )+I].
So, using detA. 8=detA. detB, we get

(Al)

G = z»det[-(- &' —4e'E',~'x'+ iE~,x's~ —2o~ "E „)+m2],

here

o' = 2i[y, y'], A~ = —2E„,x", F2„=. E

All terms without explicit 0's have 2 x 2 identity matrices, ,understood. In terms of p's

G = —,'lndet( —p'+ I' —,'e'F' 8"+iF",—p„8'+,o'"E,„) . —

(A3)

(A4)

(A5)

We now use (d/dna)ln det(X+ I') = Tr(X+ m') ', so we need the inverse to (A3), i.e., G(p), such that
(-p'+ m' ——,'e'E'„8"+ eE~,p 8'+ ,'o~"E „)G(—p)= 1. We try the ansatz G(p) = f ds e~"~'c, where A, „and
C are functions of s. We find"

A „=[(eE) 'taneEs] „,
C = (m'+ —,'o~"E „)s ——,'Tr ln cos(eFs)

(A6)

So

Tr( ) ' = —,TrG(p)

1
,—.(v m)'Tr ds det exp[-(ns'+ ,v"E)s ——,Tr ln cosE—s]

taneFs
27r '2

0 eF

Tr ds sineFs—exp —(I'+-,e(r E)s ——,Trln
i4m 0 s eFS (Av)
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Now all we need are the traces over spinor in-
dices. To evaluate these we use a representation
of the 8's such that

=0'1~ P =ZO'2~0' =- So'3 )
1 . 01

has eigenvalues +E. So

sineEs &es
exp ——,Tr ln eEs sinews '

Tre "~""'~= 2 coseEs,

(A»)

(Ai2)

o' E= o 0'E + cr
' E01 10

together with the fact tha, t

0 E

(A9)
where the last expression takes case of the impli-
cit 1 factor. Integrating with respect to n~' and
using the boundary condition that G = 0 when m = ~
yields finally

ds—Ee coteEse
i4m ~ s

S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888
(1973); E. S. Abers and B. W. Lee, Phys. Hep. 9C, 1
(1973).

S. Coleman, in I.axes Of Hadrogic Matters, Proceedings
of the International 1973 Summer School "Ettore Ma-
jorana", Erice, Italy, edited by A. Zichichi (Academic,
New York, 1975).

T. D. I ee and G. C. Wick, Phys. Rev. D 9, 2291 (1974).
4A familiar example of this is the Stark effect for the hy-

drogen atom. Perturbation theory reveals the shift in
energy levels but fails to show that the eigenstates have
in fact disappeared because the electrons can now tun-
nel out of the 1/r potential.

~m &0 for the decays we want to study. In thermodynamic
1.anguage we are not at the critical point.

6The formal resummation of perturbation theory into
1PI, 2PI graphs is demonstrated simply in M. Stone,
DAMTP Report No. 75/1 (unpub1ished).

~J. M. CornwaH, R. Jackiw, and E. Tomboulis, Phys.
Rev. D 10, 2428 (1975).

G. 't Hooft and M. Veltman, CERN Report No. 73-9 (un-
publis hed) .

~S. Coleman, Phys. Rev. D 11, 2088 (1975).
~OS. Mandelstam, phys. Rev. D ].]., 3026 (1975).
'~J. Kogut and L. Susskind, Phys. Rev. D 10, 3468 (1974),

and references therein.
~2This choice of contour is equivalent to t¹ie prescrip-

tion. To get analyticity in the lower 2~~ plane the con-
tour should go along the imaginary axis. One rotates
through 2x to get the present contour.

~3J. Schwinger, Phys. Rev. 82, 664 (1951}.
'4M. H. Brown and M. J. Duff, Phys. Rev. D 11, 2124

(1975).
~~There is a 6 function implicit in all the differential

operator matrices. This yields the &(0}=V T factor in


