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Breaking of conformal invariance and the quark-counting rule for form factors
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Conformal-breaking terms are calculated by iterating the conformal-invariant vertex function of a particle
belonging to the fermion-antifermion channel (e.g. the pion) by means of a massive kernel. The resulting y, -

odd breaking terms have the effect of adding to the conformal-invariant result (—q')' " for the form factor
(d = dimension of the particle field) a term (—q') ' for constituents of canonical dimensions. Thus the
conformal-breaking terms reconstitute the agreement with the quark-counting rule of Brodsky and Farrar and

Matveev, Muradyan, and Tavkhelidze, also for spin-1/2 constituents. The stability of such conformal-breaking
terms is proved in a particular case.

I. INTRODUCTION

In this paper we shall examine the effect of con-
formal-breaking terms on the high-energy be-
havior of on- shell amplitudes. High- energy,
large-momentum-transfer phenomena such as the
form factors and fixed-angle scattering have been
framed in the so-called "quark-counting rules"
derived by Brodsky and Farrar and by Matveev,
Muradyan, and Tavkhelidze. ' Such rules are es-
sentially derived by examining the high-energy
behavior of lowest-order graphs connecting a
cluster of elementary particles (quarks) which
constitute the hadron. The main results are that
the fixed-angle differential cross section do/dt
behaves like s' c", where Zn is the sum of the
number of elementary constituents of the four
particles appearing in the initial state and in the
final state, and that the form factor of a hadron
composed of n guarks behaves like (-q')' ". One
should like to prove such rules from field theory.
However, owing to the fact that these phenomena
are not, strictly speaking, short-distance phe-
nomena, the problem is far from trivial. The
problem is further comylicated by the fact that,
as the external particles are composite, and thus
described by fields of high dimensions, a jump
occurs when one goes from off-shell to on-shell
amplitudes, ' and thus one cannot work with off-
shell amplitudes. Thus perturbation and renor-
malization-group techniques are not directly ap-
plicable, and one needs a rather detailed knowledge
of the vertex functions of the composite objects. '
A further difficulty apyears in gauge theories ow-
ing to the gauge dependence of the vertex func-
tions. ' In theories with anomalous dimensions,
where conformal invariance' is realized on the
light cone, ' a careful computation of the form
factor" using the conformal wave function gives
an asymptotic behavior (-q2)' " for an ob-
ject described by a field of minimal dimen-

sion d connected to the quark-antiquark channel
(e.g. the pion). The asymptotic behavior ( q')' ~

is due to the absence of infrared singularities in
the form-factor graph computed using the con-
formal wave function. Such a result may be em-
barrassing because if we admit that dimensional
anomalies in nature are small and thus attribute
to the pion d = 3 we would obtain E(q')- (-q') '
for the pion form factor which goes against the
"quark-counting rule". " For "scalar quarks, "
on the other hand, one would obtain d= 2 and
I" (q') (-q') '. This is the main motivation why
we investigate in this paper the conformal-break-
ing effects.

There is, as far as we know, no general treat-
ment of conformal breaking, The reason appears
to be that Schroer" proved that the trace of the
energy-momentum tensor is soft only at the Gell-
Mann-Low point g=g„. Such a result is clearly
enough, by examining directly the asymptotic be-
havior of vertex functions, to prove that at short
distances conformal invariance is realized also
for gag„, but in doing so one avoids understanding
the nature of the breaking terms. One has to re-
sort directly to the structure of field theory. In a
rather artificial model with only scalar particles
in six dimensions we have shown" that such con-
formal-breaking terms are actually unimportant
as far as the high-energy behavior of on-shell
amplitudes is concerned. On the other hand, if
we deal with fermion constituents the problem is
more complex. In fact the Dirac y matrices can
produce polynomials in the numerators of Feynman
integrals resulting in more singular behavior of
the vertex function when one squared momentum
goes to infinity.

The breaking scheme we shall adopt in the pres-
ent paper is the following: Starting from the y, —

even conformal vertex function" of the composite
object, we shall iterate it by means of a kernel
given by the simplest skeleton graph, i.e. , the
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triangle skeleton graph, where the massless prop-
agators and in particular the fermion propagators
have been replaced with massive propagators.
Thus the main idea is to start from the exact ver-
tex function on the light cone as given by the con-
formal invariance and to move inside the light
cone by means of a massive iteration. Such an
iteration obviously produces breaking terms and
in yarticular y, -odd-breaking terms. A rather
simple argument (see Sec. II) gives for such y3-
odd terms a behavior, when only one squared mo-
mentum goes to ~, (q') ' which, when properly in-
serted in the form-factor graph, adds to the above-
reported (-q')' " behavior the contribution (-q') '.
With regard to the contribution due to massive
kernels of the crossed type, one expects a con-
tribution to the limit when one squared momentum
goes to ~ not higher than the one given by the tri-
angle skeleton graph. The reason is that the large-
one-momentum-squared contribution is, as ap-
pears clear from the treatment in Sec. II, an in-
frared effect. As argued in Ref. 5, such infrared
effects should be dominant in the triangle graph
which is of the disconnected type.

Some care has to be exercised in dealing with
such y, -odd-breaking terms. In fact, the same
power-counting argument would also give a (q') '
behavior for the terms containing two Dirac y ma-
trices in the vertex function; however, we know
from a general argument" that such (q') ' terms
cancel out exactly. Thus we must make sure that
the coefficients of the y, -odd terms behaving like
(q') ' do not sum up to zero. Such a job is under-
taken in Sec. III, where it is shown that for a par-
ticular choice of dimensions of the fields (and thus
in general), such cancellation in the y3-odd-break-
ing terms does not occur. In the same section we
examine also the problem of the stability of the
breaking, i.e. , whether further iterations of such
breaking terms with the same massive kernel
(which qualitatively speaking correspond to moving
further inside the light cone) break the above-re-
ported result. The outcome, again for a special
choice of dimensions, is that the second iteration
modifies in an unessential way the breaking term,
and that after the second iteration the breaking
term becomes stable.

Finally in Sec. IV we examine the role played by
these breaking terms in determining the form fac-
tor. One has to examine both the interference of
the breaking terms with the unperturbed wave
function and the convolution of the breaking terms
with themselves. As already reported above the
result is to add to the dimensional contribution
(-q')' d the contribution (-q') ' (which obviously
dominates for d& 2), thus reaching agreement
with the quark-counting rules' also for spin- ~

constituents. Such an additional (-q') ' contribu-
tion is a conformal-breaking effect.

1j'2 —d,~2 P-1 2 /2d[g/( I -g )]d / 2-1/ 2d g
1/2+ d/2

where

F = ( q,2+rn2)Z+ (-q22+212')(1 ——Z),

(2.1)

(2.2)

while the left upper vertex with boson propagator

FIG. 1. Iteration of the on-SheII vertex function.

II. BREAKING OF THE CONFORMAL VERTEX FUNCTION

As we described in the Introduction, we shall
compute conformal- (and dilatation-) breaking
terms by iterating the conformal-invariant wave
function by means of a massive kernel. Such a
kernel, in the simplest instance, is given by the
skeleton graph of Fig. 1 in which the massless
(conformal) fermion propagators have been re-
placed by massive ones. Such a procedure intro-
duces breaking terms both y, -even and y, -odd.
The dimensionally leading breaking terms are the
y3-odd terms and have the form g,v, (q,2, q, ') or
q2v2(q, 2, q, '). We shall consider fermions of almost
canonical dimension, and thus we set d' = &. Then
the change in the propagator will be given by the
replacement (g) '- (q —m) '.

The conformal on-shell and off-shell vertex
functions in Fig. 1 are each composed of two
parts: a part s which multiplies the identity Dirac
matrix and a second part t which multiplies g,g„
where q, and q, are in the incoming and outgoing
fermion momenta. Let us consider at first, for
the sake of illustration, the simplest case where
three s-type terms are convoluted together, and
only the internal fermion leg on the left has been
replaced by a massive propagator. In the unper-
turbed graph the lower wave function (fermion
propagators included) is given by"

1
P-3/2-d/2[g(1 ~)]d/2-1/2d~
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included is given by'

gd/2 3/26(] Q}(np)3/2 d/2dn dp yd/2 1/2dy+ gd/2-3/26(1 g)( p)3/2 d/2dn dpi'/2 3/2dd/2+ 1/2
d/2-3/2 J,

=g,g, f+ s,

where
(2.3)

(2.4)

g = (-q, '+m') py+ (-q,'+m2)ny+ (-p2+ p')np,

with P =q, —q, .
The right upper vertex, with boson and fermion propagators removed, is given by

1
g- 1/ 2 d2/6 (1-Zt) ( lp I )d/2-1/2dnl dp lyt3/2 d/2d-yl

dp

d,i2/ ' gl/2 d2/(6] gt) (n lp t)d/ 12/2dn ldp lyl 1/2 d/2d"yt
1/2 —d/2 1

(2.5)

(2.6)

As discussed in Ref. 9, nonzero threshold
masses have been introduced in the functions F and
9. Such a procedure is necessary because in ex-
amining nonleading terms one must consider the
mass of the composite particle to be strictly posi-
tive; the masses introduced in F and 8 are then
necessary to satisfy the stability condition. "

When we replace a massless fermion propagator
with (4I +I)/(-q2+ m'), the first part g(-q2+m2) is
going to reproduce asymptotically, after the con1-

volution, a part of the conformal on-shell vertex
function, while the second part m/(-q2+m2) is
going to produce y, -odd conformal-breaking
terms.

The convolution is performed along the lines ex-
plained in Ref. 9 to get

e 1 -A — 8 C"i' 3/"8-'/"-"i'

d$d/2+1/2dp q3d2/d/21igd/2 1 $/2( I $ p q f)

(2.7)

& is a quantity which, owing to the stability con-
dition of the external particle, is strictly positive.

Equation (2.7) has to be integrated further over
the parameters z, nP y, n'P 'y' with the weights ap-
pearing in Eqs. (2.1), (2.3), and (2.6).

It is easily seen from (2.7) that such an integral
cannot decrease for -q, '- ~ faster than (-q, ') '.
The reason is that we can get a lower bound by re-
placing the coefficient of -q, ' with g+ P as
AD+Copy- co(nst && (@+i;) The s.um of the two
exponents in the differentials dq, dg in (2.7) is 1,
and thus we conclude that the asymptotic behavior
cannot be lower than q, (-q,2) '. From a more
qualitative point of view the situation is as follows.
The kernel of Fig. 2, for -0'-~, cannot decrease
faster than (-k2) ', as can be seen by summing the
nominal powers of the two s terms in (2.3) and

(2.6). As, for -q, '- ~, the momentum can also
flow along the line k, we cannot expect a decrease
of the loop integral faster than (-q, ') '.

At first sight such an argument appears contra-
dictory with the behavior of the y, -even conformal
vertex function which (external fermion propaga-

where

S = q, '(AD+ CD p y) q, '(BD+ Cgn'y—') +MCUS,

A= $z+qny+p, B= f(1 z)+fP'y',

D = q p+ng n'p ',
C=A+B+D, M=C+qPy+fy'n'.

(2.8)

FIG. 2. Conformal kernel with external fermion pro-
pagators removed.
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tors removed) is'
~l

r(q„q, ) =(f', 4. [-q,'B —q, '(1 —B)] "'""
A Bk=k' ——q ——qC' C2' (2.11)

"o

[ (I )]d/2-1/2dB
which symmetrizes the denominator, and by
straightforward computation one finds that

41(41+ Id') (q, + &)'(q. + /2)'g, (2.12)

q 1()t2 t B + S B ~

X[B(1 B)]d/2-»2dB

(2.9)

goes over to a linear combination of the following
terms:

(&")'(4,q.'- q, '4', ),
Equation (2.9) has a t part, multiplying q',g„

which for large q, ' behaves like (—q, ') '/' d/'

& ln(-q, '), i.e. , is more rapidly decreasing than
(-q, ') '. The reason is that for such a term a
special cancellation occurs in the convolution of
Fig. 1, which eliminates all such (-q') ' contribu-
tions (see Sec. III). Thus we have to make sure
tha.t similar cancellations do not occur also for
the y, -odd term.

To complete the analysis now we have to per-
form two checks. First we must make sure that
the y,-odd contributions arising from the various
terms do not exceed such (-q') ' behavior. Such
a program will be accomplished in this section.
The second point is to prove that the various y, —

odd contributions do not cancel out such a leading
(-q') ' behavior. This will be done in Sec. 1II,
where also the stability of the perturbation, in
the special case of canonical dimensions (d' = 2

and d = 1), will be proved.
In calculating the asymptotic behavior of the

described mass insertions, one cannot rely on
simple power- counting arguments. The reason
is that, as pointed out in Hefs. 8 and 9, when in-
ternal spinor lines are present as a rule one finds
that the final result is the outcome of rather subtle
cancellations in the polynomials in the Feynman
numerator. Thus the technique is that of com-
puting the convolution exactly by using the Feyn-
man parameters and then of looking at the asymp-
totic behavior. Instead of going through the ex-
amination of all eight combinations of s and t ver-
tex parts in Fig. 1, we shall examine in detail
only the case of the convolution of the three t parts
where the role of such cancellations is particular-
ly apparent. The y,—odd-breaking term for the
convolution of type tTt is given by

I ///, t, ' „2(q, +/3)2T(q2+/3)2tgad'/2.
+kj +BZ

(2.10)

'*(6 * - 6**)c (d 6 '
c - 6 '~

)

6', —,——6',q. —q, —6.),

C
q'-q'C q'C-q' q'C-q'

(2.13)

In deriving (2.13) one exploits several times the
relation" A+B+D=C [cf. Eq. (2.8)]. In per-
forming the integration over d4k one has to keep
in mind that

(q, ')'(q ')'fq'6'(6") ( cq" +ac-')-'-'-"-"*-'"

g-a-b-d/2-&/2C d/2+a+b-N-3/2

const )& g-a-&+ Ca-Ã-~-~PPb-d/2+i/2-c

& const && ( q 2gll)-6-1+qca-3)-1-6M-&-d/2+1/2-6

(2.15)

Thus if we consider the contribution proportional
to g, in the first term of (2.13) we have to prove
the convergence of the integral

(2.16)

COnet && (q 2)a(q 2)bqD-a-&-d/2-1/2gd/2+6+3 //-3/2
1

(2.14)

Let us consider the behavior of such y, -odd
terms as e.g. -q, '-~. As we already know from
the argument shown above that we cannot expect
a decrease of the separate contributions, for
—q, '-~, faster than (-q, ') ', we perform straight-
away in (2.14) the majorization

In performing such a loop integration with the
Feynman parametrization of Fig. 1, one has to
make the shift

(gD)-1+6/-3 6M-1/2-d/2-6

and the differential dP is given by [cf. Eqs.
(2 1)-(2 6)]

(2.17)
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d~Z/2+3/2[z(1 z))d/2-1/2dz d~5 /2-d /2d+5 /2-d /2dp 5/2-d/2dyd/2+1/2f (1 g)dgd/2+1/2d+ I /2+1 /2dp td/2+1/2dy15/2 d-/2

xg(1 g')dp 5(1 t q g p). (2.18)

The convergence of such an integral for arbitrary
small e is straightforward (see Appendix) if one
takes into account that, owing to (2.8),

where in (3.1)

Q = —q, '(gz+ p)y —q, '$(1 —z)y+ m'

C~ $ +p +q oP+f o'P' (2.19)
m, '(1 z) ~(~z+ p), (3.2)

M~ —,'[$+p+ yy'min(o. +P; o. '+P')]. (2.20)

III. ASYMPTOTIC BEHAVIOR AND STABILITY OF THE
BREAKING TERM

In Sec. II we have proved that each of the y, -odd
terms arising as a result of a mass insertion in
the skeleton graph of Fig. 1 behaves, when one
squared momentum becomes large, as (—q') '.
As the various s and t parts appear in the vertex
functions with well-defined weights, one should
make sure first that such leading contributions do
not cancel out. This is most easily performed by
taking a particular case, e.g. , the case where
both d' and d assume their canonical value. In
such a case one can keep track of all the coeffi-
cients and such a cancellation does not occur. In
fact, for d= 1, (d' = —,) the upper vertices in Fig.
1 become pointlike vertices and one obtains for
the y,-odd-breaking terms proportional to g,

x ( / &/2 &/~d( dpdy1+d 1+d

Similarly one deals with the other terms appearing
in (2.13). The final result is that in these y,-odd
first-order-breaking terms which are of the form
g,v, (q, ', q, ') +4t,v, (q,', q, '), the two functions v,
and v, behave, except possibly for logarithms, "
like (-q') ' when one of the two arguments goes to
infinity and the other is kept fixed.

and y is the Feynman parameter associated with
the boson propagator. One easily checks that the
large —q,

' behavior of (3.1) is in fact (-q, ') ' and
also that the large —q,

' behavior of (3.1) is ( —q, ') '.
Similarly one deals with the coefficients of f, ob-
taining the same asymptotic behavior. "

A more subtle question is that of the stability of
the perturbation which generates such y, -odd
terms. In other words, one should make sure
that by iterating such y, -odd terms by means of
a massive kernel one does not generate y, -even
terms higher (in the limit of one large momentum
squared) than the original conformal wave func-
tion, and at the same time the y, -odd breaking
term stabilizes itself. Such a result is proved in
two steps. First we examine the result of the
double mass insertion in the fermion propagators
in Fig. 1 on the functions sz and tz in Eq. (2.S).
Clearly the two propagators (q, +$) [

—(q, +k)'+m'] '
and ($, +$) [—(q, +k)'+m']', owing to conformal
invariance, reproduce asymptotically after the
convolution the conformal y, -even vertex function.
On the other hand, one easily proves by using the
familiar Feynman parameter technique that the
contribution of m [—(q, + k)'+ m'] ',
m [-(q, + k)'+ m'] ' to the convolution is not higher
than the conformal one. Next we have to examine
the iteration of the y, -odd-breaking term found in
Sec. II. One has to compute the asymptotic be-
havior, for —q, '-~ or -q,'-~, of the integral

x~(1 5-p- ),y (3.1)

, (q, +0)[—(q, +k)'z —(q, +k)'(1 —z)+m'] "' '/'dz, ' „.. .d'k.—q, + k)'+ m' —~q, +k~ +m -k +m
(3.3)

The terms of asymptotic dimension —d, which are obviously y, -odd, are of the form

[$($z+ p)+ const x q, ] [q, '(1 —$z —p)y —q, '(((1 —z) +v)]yQ ~ ' ~ 'df" "' 'd/pd doydz 5(1 —Z) (3 4)
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I ($,+constxg, )S ' ' " 'dp "' 'dpdadydz5(1 —Z), (3.5)

where now

n= —q '($z+ p)y —q '[$(1 —z)+ a]y+m' —mz'(&z+ p) [gl —z)+ vt (3.8)

and

g = $+y+ p+ v. (3.7)

The asymptotic behavior of (3.4) and (3.5) for q,
'

( or q, ) going to infinity is performed with the
standard technique of introducing the new integra-
tion va. riable y' = —q, 'y($z + p) (or y' = —q, 'y
x[((1 z)+o]), and for —q, '-~ we have the be-

havior

e', (- q, ') '+@2(-q, ') 'hz(- q, '). (3.8)

This result shows that the y,-odd-breaking term
gets modified after the first iteration and assumes
the form

, a —ln1 —z +, a —lnz

x [- q, 'z —q, '(1 —z) + nz'] '~' ' 'dz

(3.9)

However, it is very important to remark that the
introduction of (3.9) into (3.3) gives again for
—q,'-~ the asymptotic behavior (3.8) and for
—q,'-~ the asymptotic behavior (3.8) with q, ex-
changed with q, . Thus the outcome is that. the
breaking term (3.9) is stable under the iteration
of Fig. 1 with d =1. Similarly one examines the
terms proportional to m (which are y,-even) and
those proportional to m' (y,-odd). One finds that
such contributions are not higher respectively than
the conformal y,-even terms and the y,-odd term
(3 .9).

Summing up we have proved that in the case of
d =1 the breaking term due to mass insertion of
Fig. 1, in the critical region when only one squared
momentum goes to infinity, is actually of the form
(3.9), and that such a breaking term is stable under
further iteration with massive propagators.

IV. EFFECT OF BREAKING TERMS ON
THE FORM FACTORS

We work out now the consequences of the results
of Sec. III on the asymptotic behavior of the elastic
form factor. It was shown in Refs. 8 and 9 that the
conformal y, -even contribution to the wave func-
tions gives rise to the behavior (- q')' ~. Such a
result is due in part to the structure of the y,- even
leading conformal contribution, and in part, as ex-
plained in detail in Ref. 9, to the special ordering in
which the y matrices occur in computing the trace in-
side the loop integral of Fig. 3. With the same techni-
que as used in Ref. 9, one also proves that the intro-
duction of masses in the propagators connecting
the vertices building up the triangle graph of the
form factor does not alter the above-mentioned
result. More important instead, as we shall im-
mediately see, is the role played by the y, -odd
breaking term treated in Secs. II and III. We have
to discuss the convolution of this breaking term
with itself and with the old unbroken y, -even part.
In both cases the vertices are connected by massive
propagators (Fig. 3).

With regard to the convolution of the two y, -odd
terms, one gets the trace

Tr{y„(P,+k —zzz) '[(Pz+k)(a —ln(1 —z))+k(a —lnz)] (k —m) '[k(a —lnz')+ (P, +$)(a —ln(1 —z'))](P, +g —nz) '].
(4.1)

One has to combine (4.1) with the two powers
[- (p, +k)'z —k'(1 —z)+m'] ' ' '~' and [-k'(1 —z')
—(P, +k)'z'] ~~' '~' with Feynman parameters $
and P, respectively, then perform the shift

k =k' —P,A —P &

(4.2)

and integrate over d'k'. The result is a sum of
terms majorized by

FIG. 3. Feynman parametrization for the form-factor
graph.
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p„@~lnz lnz',

p (—q')Bn~ 'lnz'.

Qis given by

Z =- q'aB+ m. t. ,

(4.3a)

(4.3b)

(4.4)

q2 q2+B + m t 1 ~B lnz Id P/2+1 /2

and m. t. is a strictly positive mass term.
Consider (4.3b). The contribution to the form

factor is

nominal power as (4.3) because only those terms
containing an even number of y matrices contribute
to the trace. However, the f part [see Eq. (2.9)]
gives rise to terms such as (4.3), where lnz and
ln(1 —z) are replaced by [z(1—z)]" ' ' ', thus giv-
ing rise to a more convergent integration in dz as
d)1. The integration in g retains the sa,me weight
d(~~'"~'. Thus we end up with the same contribu-
tion (- q') ' to the form factor.

Finally with regard to the s term [see Eq. (2.9)]
we get contributions majorized by

x df~~'" ~'dz dz'dn dpdy 6(1 $ r„n p y).

(4.5)

p,X)"lnz',

p ( ')An''
(4.8a)

(4.8b)

Setting

z= —q z,2 —= 2 (4.6)

we get for (4.5) in the large-q' limit after integra-
tion over a from 0 to ~

[$z(fz~+ p)+m. t. ] dzd$ ~'+' 'd&" '+' 'dp
q'

x dy lnz'dz'6(1 —$ —g —p- y),
(4 7)

where also z is integrated from 0 to ~.
The integral in (4.7), as 1 &4, is convergent.

The term originating from (4.3a) goes to zero
faster than (- q') '. Essentially what happens is
that in (4.1) the propagator (P, +it —I) ' eliminates
the kinematical factor p, +P of the y,-odd wave
function. As such a wave function decreases at
infinity like [(P, +k)'] ' we have, when the momen-
tum flows through the p, +0 line, a form factor
behaving like (—q') '.

The terms originating from the interference
between the y,-odd-breaking term and the y,-even
conformal contribution, connected by massive
fermion propagators, result in terms with the same

Such terms, keeping in mind that the integration
in g has now the weight dg~~' '~' and that dz re-
tains the factor [z(1—z)]'~' '~' [see Eq. (2.9)], give
again the result (- q') '. Summing up, if we take
into account the conformal contribution worked
out in Refs. 8 and 9 we have for the asymptotic
behavior (- q') ' ' ~ ' ". The contribution (- q') '
is an effect of the conformal breaking.
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APPENDIX

We give here the method for proving the conver-
gence of the integrals appearing in Sec. II. Con-
sider e.g. the integral

(A1)

with S given by (2.17). Using the majorization
(2.19) and (2.20) we can replace 7', for n+ p& u'+ p',
by

[(&z+n~y+ p)(n&p+ &&'P')] "(k+p+n~p+ f~'P') ' '[$+ p+rr'(~+P)] '" '" '

& n-1+ 6(m{g P)d/2-3/2+ C-6/4(y+~ gi)-Q/2+1/2+ 6/4P-1+ 6/8 -6+6/8 f g ph-1-6/8(p+i ~r $-1-6/8p--1/2-g/2( pq-6 -6/2~-6/2

(A2)

Comparing (A2) with dP as given by (2.18) one sees that convergence is ensured. Similarly one deals
with the region n + P & n' + p'.
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