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We have examined the spontaneous breakdown of fermion-number-conserving supersymmetry. In the tree
approximation the vacuum expectation values of the difermion fields play a passive role, the values of the
potential at the minima being entirely determined by the vacuum expectation values of the usual boson fields.
One-loop calculations for three different models show that the vacuum expectation values of the difermion
fields should be zero at the potential minima. Our general conjecture is that spontaneous breakdown of
fermion number cannot accompany the spontaneous breakdown of supersymmetry.

I. INTRODUCTION

For physical applications of supersymmetric
theories' it is necessary that supersymmetry be
broken to accommodate different masses for the
bosons and the fermions belonging to the same
supermultiplet. To preserve the renormalizability
properties of the unbroken theory it is required
that the breaking be spontaneous. It has been es-
tablished thai spontaneous breakdown is possible
with' or without" gauge invariance. In the latter
case some stringent conditions must be satisfied
for the breaking. '

Salam and Strathdee' and Fayet' have introduced
fermion number in supersymmetry through y,
transformations. A consequence of this is that the
usual spin-zero bosons are accompanied by di-
fermion spin-zero particles. If fermion number is
to be conserved, then the Lagrangian is restricted
to have certain specific forms which can make it
favorable for spontaneous breakdown. "

In this paper, we examine the most general
fermion-number- conserving Lagrangian for an
arbitrary number of bosons and difermion fields.
We find that when the number of difermion fields
exceeds the number of boson fields spontaneous
breakdown of supersymmetry can occur quite easi-
ly. A very interesting feature is that the values of
the potential at the minima (both supersymmetric
and supersymmetry breaking), in the tree approxi-
mation, are entirely determined by the vacuum
expectation values of the boson fields. The vacuum
expectation values of the difermion fields are re-
quired to satisfy certain constraints, but they play
no role in fixing the values of the potential at the
minima. These constraints may leave one or more
of the vacuum expectation values of the difermion
fields undetermined. Hence, in tree approxima-
tions spontaneous breakdown of fermion-number
conservation can take place arbitrarily.

To find out whether the above situation persists
in higher orders we have to calculate the one-loop

II. FERMION-NUMBER-CONSERVING LAGRANGIANS

We shall follow the conventions of Ref. 5 and in-
troduce N positive chiral fields 4,'(x, 8),
i=1,2, . . . , N and M negative chiral fields 4 (x, 8),
n =1,2, . . . , M with the following y, transforma-
tions:

C '„(x, 8) —4', (x, e "'58),

C (x 8) —e""C'(x,e ""8).
The fields C, have the usual expansions

C,(x, 8) = exp(v-,"@y,8)

(2.1)

(2.2)

&& [A,(x) + 'V
~],(x)+ —,"V(1 + iy, ) 8E„(x)].

(2.3)

For the fermion fields

Pi= '2(1+f~,)v',
0"=-'(1 —fr, )y .

(2.4)

(2.5)

Since we are not going to introduce parity trans-
formations, P's and y

's are not related.
The negative chirality fields A~ are difermion

fields with fermion number E=2. The positive
chirality fields A', are the usual bosons with I' =0.

corrections to the classical potential. The general
features can be brought out by dealing with a few
specific models. We discuss three different mod-
els, O'RBifeariaigh's discrete model, ' Fayet's
SU(2) x U(1) model, ' and an SU(3) model cooked up
by using the general conditions of this paper. In
all three cases we find that spontaneous breakdown
of supersymmetry may not be accompanied L, a
spontaneous breakdown of fermion-number con-
servation; this is imposed by one-loop corrections
to the effective potential. However, for super-
symmetric minima the one-loop corrections are
absent and the features of the tree approximation
allowing an unspecified amount of fermion-number
breaking are retained.
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The fermions P, carry E =1. The dummy fields
F and F'. carry F =0 and F = 2, respectively.

The most general fermion-number-conserving
and renormalizable Lagrangian for the above fields
1S

& (DD)2(@tgC, i + C, t»@»)

—,'DD[(y C«+m, Ct»C'

In particular, for the fermion component

for a=i
~a

for a=n+N.

We introduce the mass matrix M by

NxN Nx~

(3.2)

+g„,~Ct. '@f4~)+H.c.j, (2.6) (3.3)
where the m,. form an M x N array without any
restrictions, and the g, &

have the symmetry

g(R, l f =IX, gg (2 'f)

The dummy fields F', and F satisfy the equations
of motion

~abc ga, bc gb, ac ~c, ab ~
+ + (3.4)

which is symmetric. We can define a totally sym-
metric coupling constant by

-F'=~*.A +2g*. A A*~
+ Qf Qt f1 + (2.8) with

(2.9)

These may be used to eliminate F', and F from
the Lagrangian. We can write

g „ for a=&+N, b=i, c=j
a~ bc

~

~ ~

0 otherwise .

Lastly, we define

(3.5)

Z=Z„, +Z„- V,

where we have

= 8 A *'s"A,'+ g',if'', + 8 „A" 9 "A "+~q'if'»

(2.10)

(2.11)

0 for a=i
A., =—

for a=&+N.
(3.6)

With these generalized notations the Lagrangian
looks more symmetric:

for the kinetic part,

Zz = m, g "$—f g. ,,A-*»(;& g~ —2g „gg,'A~.

qj q»» A» gi yc& 2g»

pter»A»f

for the fermion part, and

V FgjFi+FgeFn
+ +

= (m*) A'+ 2g„*))A A,*~)(mq, A*~ + 2gq;~A*~A~)
t

and the potential takes the form

V= F,*F,

(3.8)

2 =
8 (DD) (C,C,)

-2 DD(&,C, + 2M„C,C', + 3g„,C,C,C, + H. c.) .
(3.7)

Equations (2.8) and (2.9) are combined into one:

(2.13)
for the potential.

The potential is positive-definite and V=0 corre-
sponds to F,' and F equal to zero and gives ab-
solute minima which are supersymmetric. So to
break supersymmetry it is essential that VIO
always.

III. POTENTIAL MINIMA IN THE TREE APPROXIMATION

~
X,+M„A, +g,~,A, A, ~'.

We shift the fields by

A, -A, +z, ,

for a=iz- ~

~y* for a=ot+N.

(3.9)

(3.10)

(3.11)

For the sake of compactness we shall introduce
the following generalized notations:

We shall take indices like (a, b) to run from 1 to
N+M, indices like (i,j) to run from 1 to N, and in-
dices like (o.', P) to run from 1 to M. Then we define M, ~ M, ~(g) =M,~+2g,~„g, . (3.13)

This does not alter the form of Eq. (3.8). However,
we have to make the following replacements:

(3.12)

4,' for a=i
a

C~ for a=&+N.
(3.1)

0 Raifeartaigh' has discussed in detail the con-
ditions for minima for potentials of the form of
Eq. (3.9). We simply quote that for minima it is
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necessary that

(3.14)

This may be decomposed into the two conditions

2g, ~ y ~m g~(x) y ~+ m, (v)X,*(v) = 0,
m, .(~)m f,.(~)y, =0,

where

m,.(~) = m „.+ 2g, „~, ,

(K) = X +m ~IC ~ +gm (gK(Kg,

leading to

m,.(~)X*(~)=0,

m,.(~)y,*=0.

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

For minima we also require the positivity of the
boson (mass)' matrix

(3.21)

where

S.,( ) =2g.„l,*(.) .

Using Eqs. (3.12) and (3.20) we find

0 for a=i
a

~

~A.,(v) for a=n+N.

(3.22)

(3.23)

Our claim that the potential at the minima, t/", „,
does not depend on y is obvious from Eq. (3.23),

(3.24)

Note that this is true for both supersymmetric and
supersymmetry-breaking minima. Of course, y~
are constrained to satisfy Eq. (3.20). Depending
on the relative values of M and N and the structure
of m„., some of the y may be left totally arbi-
trary.

IV. ONE-LOOP CORRECTIONS

In the last section we have seen that the difermion
field vacuum expectation values y play a passive
role in determining the potential minima. In this
section, we calculate the effects of one-loop
corrections to the tree-approximation results of
the last section.

The masses of the bosons and the fermions would
depend on the values of ~,. and y satisfying Eqs.
(3.19) and (3.20). We shall treat the y left arbi-
trary by the latter equation as the independent var-
iables on which the masses depend. The tree-

approximation potential at the minima has no de-
pendence on these variables. We diagonalize the
mass matrices and confine our attentions to the
masses that are nonzero.

For our purpose the effective potential in the
following form' is all that is needed:

Eg M2
V, (y)=V „+ QM,. (y)ln

7T 0j =1

N( y ln
1 0

(4.1)

m, (a) =2ge, A.,(a) =X+g~',

m, (~) =m, k(a) =ma.

It is clear that both X,(a) and X,(v) cannot vanish,
so supersymmetry is broken. Without loss of gen-
erality we take m, g, and A. to be real. With
-2gA. &m' we have the deepest minima for

-2gA, —m

2g

The mass matrix M(g) is 3 x 3,

(4.3)

where y stands for the independent y . See the
Appendix for a brief derivation of the above equa-
tion. N~ is the number of boson masses counting
fields A, as well as the conjugate fields [these
(mass)"s are denoted by M,.'], while Nr is the
number of fermion masses counting the right-hand-
ed fields, g„and their left-hanged conjugates
[the fermion (mass)" s a.re denoted by N,.'].

For supersymmetric minima N~ =N~ and M,.'
=N, ', so w.e find from Eq (4.1) .that there are no
one-loop corrections to the tree-approximation
results in this case. While for supersymmetry
breaking N~ may not be equal to N~ and the masses
M,.' are different from ¹',the effective potential
would depend on y . We then'search for minima of
1/, « in these variables.

Now we discuss three different models, two with
N=M and one with M &¹

(i) O'Raifeartai gIE's discrete model 'This . is an
example with M=2 and N=1, so that m,. -m
g, ,-g . Supersymmetry is broken in this case
unless X, m, and g are related in some special
ways, such as m, /g, =m, /g, ; X,/g, =X2/g, . Instead
of discussing the general case, we take the model
discussed by O'Raifeartaigh. We set rn, =0, I,=I,
g, =g, g, = 0, A., = ~, and X, = 0 by imposing the dis-
crete symmetry, O'-C', O'--4 ', 4,——4,.
Fields are shifted by A, -A, +v, A -A +y
We have
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2gK m

M(g) 2gz( 0 0

m 0 0
(4 4)

where

2 —4g2 2 2

= -4g&- rn'&m'. (4.8)

where u = 2gy,*. Equation (3.20) takes the form

m/2+ 2gKPg -0
(4 6)

We shall treat u as the independent variable. Using
Eq. (4.3) we have 2g(X+gz(') = —m'. Hence the ma-
trix S(z) is

The two left-handed and the two right-handed fer-
mions have the masses

x,'=m, '+-,' lu I'

+-'[Iul'(4m, '+ Iul')]' ',
-m'00

S(z)= 0 0 0

0 0 0

(4.6) &, =m, +-,. Iul

(4.9)

The fermion fields g, have the (mass)' matrix
M (z)M(z). While the boson (mass)' matrix is given
by Eq. (3.21). Diagonalizing these we find four
massive bosons with masses

each mass occurring once for left-handed and once
for right-handed fields.

The effective potential in one-loop approximation
ls

+-.'[m'+
I

I'(4m '- 2m'+ Iul')]'&'

M, '=m, '--,'m'+-', lul'

——'[m + Iu I
(4m —2m + lul )] )

+2[m'+ lul'(4m '+2m'+ lul')]' '

--'[m'+ lu I'«m, '+2m'+ lul')]"

(4.7)

V,zz(u)= V z, +
64 2 Q M, ()()ln.

7 —.1 0

—2 g ¹'(u)ln
N(2(u)'

$ =$q2 0

(4.10)

Differentiating we obtain

)") [m4y [u]'(4m ' 2m'+ (u]2)])~2

1

[m + [u[2(4m 2/2m + fu[ )] &

2 N~ 4

[ ]u [2 (4m 2 y [u ~2)]z)2

which vanishes at Iu I
=0, and

(4.11)

(4.12)

Thus the point u = 0 is a minimum. ' As V,«(u) is a
monotonic function of Iu I

increasing logarithmical-
ly, this is the only minimum.

(ii) Fayet's SU(Z) x V(1) model 'This is an. ex-
ample with 1VI =N = 4. Isospin I and hypercharge P
for the chiral fields are chosen as

(' @(o) ~c,(+))

C, (-) C, (0)

(4.14)

C,"'- (0, 0), C, -(1,0),
C,.-(2, 1), C..-(-', -1),

(4.13)

where the use of the parentheses indicates (f, 1')

contents. We have

The superscripts indicate charges. In our notations
the fields are put into 4-dimensional columns with
the following index assignments:
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C, (+)1- @(+) sy. +Iy. =o. (4.20)

C, (-) @(")@I- 2+
+

@,(o) @(0)1- 1+

C, (0) @(o)
0» 2+

Thus n, i =1,2 correspond to the charged sector
and n, i = 3, 4 to the neutral sector.

The Lagrangian is

2I)D-(-~C ot "&+ige,', r, C, e„

(4.15)

+ ice '"&c,', T,c„+H.c.)
+ kinetic energy part . (4.16)

m(~) =

while

vYg K@

0 —Wg~, 0

—gK4 —gK3

-hK4 -hK3

(4.17)

We are looking for charge-conserving minima and
hence we put K„K„y„andy, equal to zero. Then
the mass matrix m„.(v) is

We shall take as the independent variable

Q —gy3 +Ay4

= 2hy4*. (4.21)

M3

Iu I'+ a',
—.'[Iu I'+ 3a'

+ ([u I' + 6a'
I
u I' + a')' '],

(4.22)
—,'[[u ['+3a'

—(Iu I'+ 6a' Iu I'+ a')"],

Because of charge conservation we can treat the
charged and the neutral sectors separately. There
is no supersymmetry breaking in the neutral sec-
tor, so we shall ignore it. To simplify the diagon-
alization of the mass matrices (the boson mass
matrix is 8 x 8) we shall put v, = v, . By doing this
we shall not lose any general features of the prob-
lem.

Out of eight bosons in the charged sector two are
massless (this is true even for ~, 4 ~,), and six
have the following masses:

0

gK3K4

(4.18)

each mass occurring twice.
There are two left-handed and two right-handed

fermions for each of the masses

X- h. K3K4

The deepest minima is given by

~, '=-'(Iu I'+ 2"+ [I.I'(«'+ I.I')]'")

X,' =-.'&[u I'+ 2a'- [[u I'(4a'+ [u I')]'"] .
(4.23)

K3K4 =
g +

y, and y4 are constrained by

(4.19)
The effective potential in the one-loop approxima-

tion is

V„,(u) = V „+,2 g M~4(u) ln, —4 P N,.'(u) lnef f Inin 64/ 2 4
0 =1~ 2 0

(4.24)

„,(u)=16 ., u 2

¹ 4 X2

[ ~u [2(4a2+ ~u ~2)]~&2 & M 2 2 old 2 (4.25)

We have

eff

eff
—(8a ln2 —4a )&0.

16m'

(4.26)

fields in an SU(3) octet and a singlet, 4", n
=1, . . . , 8, C . The eight positive chirality fields
are put in an octet, C+, i =1, . . . , 8. The Lagran-
gian ls

z =-.'(DD)'(c ™c"+c "e'+c,"'c*,)
Thus the point m=0 is the minimum.

(iii) Global SU(3) mode/. This is an example
with 34 = 9 and N =8. We put the negative chirality

——.'DD(~e "'+mC '"e', 5., +g,C "C '„C ',

+gd„;~ 4 4~ C~+ +H.c.), (4.2 t)
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m, (K)I, 0

m(K) =
0 m, (K)I, 0

0 m, (K)

m, (K)

(4.28)

where the sums over a and i run from 1 to 8 and

d~;,. are the symmetric structure constants of
SU(3).

We shall look for isospin- and hypercharge-con-
serving minima. So only K, =—K and y~ for v=8, 9
are nonzero. Then the mass matrix rn„;(K), n
=1, . . . , 9, i=1, . . . , 8, is M, ' = —,'(lu, P + 2m, ' + v, +X„),

M2 = 2([u, p +2m, +v, -X,~),

I(ri, ' = a(lu, l + 2m, ' —v, +x, ),

1Vc4 = p(lu ~P + 2m~ —v~ —X( ) ~

where m, —= m, (K) and

(4.34)

Owing to conservation of isospin and hypercharge
the three sectors (o, , i = 1, 2, 3), (o, , i = 4, 5, 6, '7),

and (o. =8, 9; i =8) may be treated separately
(n, i =2, 2, 3) sector. In this sector there are

three bosons for each of the following masses:

where I, and I4 are 3&& 3 and 4&4 unit matrices
respectively, and

m((K) =m+ K,
2g

X~~ = [lu~) + 2lu~P(2m( k v~) + v~ ]

u~ — — + (4.35)

m, (K) =rn ——K,

m, (K) =m ——2g

m4(K) = 2goK.

(4.29) The condition for no tachyon for any values of
lu, l, 2m, ' &

l v, l, is satisfied.
There are three left-handed and three right-

handed fermions for each of the following masses:

We have

Z(K) =

0

(4.30)

Ã, ' = —,'(lu, P +2m, '+ 1',),
I(i,' = ~(lu, l'+ 2m, ~ —Y,),

with

Yy = [lu]l (4m/ +luyP)] I

(a, i=4, 5, 6, 7) sector Here we h.ave four
bosons for each of the following masses:

(4.36)

(4.37)

A. +goK

where the first zero stands for a 3-dimensional
null column and the second zero for a 4-dimen-
sional null column.

There is only one condition arising from Eq.
(3.19),

2g,zK*+m'K — (K'+2lK p)

m, ' =lu, P+m, ',
M, ' = —,'(lu, l'+ 3m, '+X,),
m, ' = —,'(lu, P +3m, ' -X,),

where

+ &s~

X, = (lu, l4+6m, 'lu, l'+m, ')'I', m, -=m, (K) .

(4.38)

(4.39)

with real solutions

+(2g,'+ -', g')lKPK=0, (4.31)

v3 mg+ [3m'g' —4(2g, '+ —32g')(2g, A, +m')]'I'
2(2g '+ —', g')

(4.32)

Ii,' = -', (lu, l'+2m, '+ 1',),

cV,
' = —,'(lu, P + 2m, ' —Y,),

(4.40)

In this sector there are four massless bosons.
We have four left-handed and four right-handed

fermions for each of the following masses:

where —2g, A. & m'. If we take mg&0, the upper
solution would be deeper; we shall use this.

ys and y, are constrained by

where

f; = [lu, P(4m, '+ lu, P)]'~' . (4.41)

2g() /9K + Vl K Ps 02g (4.33) (o. =8, 9, i =8) sector. The four boson masses
are
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M, ' = —', (~u, P+2m, '+2m, '+v, +X„),

M„' = -2() u, p + 2m, ' + 2m, ' —v, +X, ),

M9' = —,'((u, P + 2m, '+ 2m, '+ v, —X„),

M„' = —,'([u, p + 2m, '+ 2m, ' —v, -X, ),
(4.42)

where

m
u = ——y* v =2g (i g K ) —~ (tll —~ K) K, (4.43)

X„=[(u,p + 2(u, p(2m, ' + 2m, ' + v, ) + v, ']'~', m, ==m, (z), m, -=m, (w) .

We have one left-handed and one right-handed fermion for each of the following masses:

&,' = —,'((u, P + 2m, '+2m, '+ V3), X,' = —,'(lu, l'+ 2m, '+ 2m, ' —1;),
-with

Y, = [lu, p (4m, ' + 4m, ' + [u,p) ]'~' .

The effective potential is

(4.44)

(4.45)

a 4 I;
V„,=V,„+, 2 g M ln

+4 ([u,P+m, ') ln

—2 PN in ',
)

I,p+
0 z =6, '7

~ 0 i =3,4 0

(4.46)

Then

, =
16+ ly, l & ——+

~& X M, 'ln M', ™,'lnM', +X M, ln ', —M, 'ln M',

N

1 0 1Vi
'

0

2

+ %8 ln 2 R9 ln 2 + Ml0 ln

N' A

3 0 0

M6' 4 M,
2

—M, ln
0 0

2 2
Ml0 4 Mll—Ml, ln

0 0

(4.47)

The terms in the first and the third sets of square
brackets of the above two equations are exactly
the same type as Eq. (4.10) and Eq. (4.11), while
the terms in the second set of square brackets
are the same as Eq. (4.24) and Eq. (4.25). Hence
we conclude that (d/d[y, ~)V ff 0 at y, =0 and
(d'/d )y,p)V.«l, ,&0. Thus the only minimum is
at y, =y9=0.

The above three models show that the arbitrari-
ness of tree approximations for the vacuum ex-
pectation values of the difermion fields is re-
moved by the one-loop corrections in the case of
supersymmetr y breaking. The one-loop correc-
tions require that the potential minima occur for
zero vacuum expectation values of the difermion

fields.
The above models have all the general features.

Hence we make the conjecture that when super-
symrnetry is broken spontaneously it cannot be
accompanied by spontaneous breakdown of fermi-
on-number conservation. For supersymmetric
minima there are no one-loop corrections to the
effective potential and so the results of tree ap-
proximations remain unchanged.
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Now let us shift the fields by

Aa Ao+ ra~ I'a Ea+ &a ~ (A2)

In tree approximation condition Eq. (3.14) is re
placed by

is

APPENDIX

If we do not eliminate I', 's, then the potential V

M,b(z)u)b =0,

u),*= —x,(z) .

(A3)

+IEa(Aa+ Ma»A»+gabcA»Ac)+H. C.] . (A1)

Using Eq. (A4) in Eq. (A3) we recover Eq. (3.14).
The quadratic part of the Lagrangian may be

written as

M.*,(z)

5„M„(z) 0

M,*b(z) — 5,» f,*b A»

M.,(z) 0 f,b
—l-) 5 b A,*

+ 2(lab lab)

—i (o, );~ M„(z) i (o,o „k");,5ab)xj ab 2 P V

i(o,o„k&),,5., i(o.);,M.*b(z)) ( 0'») ' (A5)

where k = (k, —k), and we have introduced two component notations for the right-handed and left-handed
fields g, and y, and g', . We have

fab 38abc +c ' (A6)

One-loop contributions to the effective potential are

1 0 0 M (z)

0 1 M(z)
1 2 . 2+4 '

O ~f + y2

M 0 f

0

c«

gY2

—io, M(z) io,v~ kb io, M«(z) —io,o „k"'

—io,o„k~ io, M«(z) io2o„k" —io, M(z) )

TrX ln, —TrF ln b + Tr(f f +ff «) —
+ a + — 'zIn( 0+») + jnM '

0 0

(M,' is the normalization point), where

(M«M 0

0 (A8)

and

Tr(X' —1")= Tr(f «f +ff «) . (A 9)

Observe that only the term proportional to Tr(f «f +ff «) is infinite and is taken care of by wave-function
renormalization of the unshifted theory (hence it is supersymmetric). ' Since we are interested in retain-
ing only terms up to order of 8' we may use the tree-approximation result, f = -S, to find that X' and y'
are the (mass) matrices in the tree approximation for the bosons and the fermions, respectively. Diagon-
alization leads to Eq. (4.1).
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