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The new bound-state formalism developed previously is here extended in two important respects. First is the
inclusion of self-energy effects and the demonstration of the implementability of the usual renormalization
procedure by means of a calculation of the lowest-order self-energy effects comprising the Lamb shift in a
hydrogenlike atom. Second is the derivation of the two-body equation for the particle-antiparticle case where
annihilation effects enter. This is exemplified by the derivation of the positronium equation and a calculation
of a (known) annihilation contribution to its singlet-triplet splitting. The. entire development is facilitated by a
modified functional formulation which chooses the fully interacting physical system as the unperturbed one.

INTRODUCTION

In a previous paper' (hereafter referred to as
paper I), a new formalism for the description of
bound states in quantum field theory was derived
within the context of quantum electrodynamics.
The basic motivation for this development was to
provide an alternative to the Bethe-Salpeter for-
malism which is free from the undesirable fea-
tures suffered by the latter. The importance of
such an alternative derives not only from the role
it plays in dealing with high-precision atomic phys-
ics, but also from the very likely applications it
will find in the constituent theories of particle
structure and interactions once these achieve the
required degree of definitiveness and precision.

In this paper, we extend the formalism of paper
I in two important respects. First, we include the
consideration of self-energy effects and the as-
sociated renormalization. The exclusion of these
in paper I was deemed an important shortcoming,
particularly since the "Hamiltonian" appearance of
our two-body equation in the center-of-mass frame
might make its renormalizability doubtful. How-
ever, as surmised in paper I, the underlying co-
variance and gauge invariance of our equations
allow a convenient contact with the usual renor-
malization procedure. %e shall demonstrate this
by stating the principle of renormalization in the
present context and reducing the lowest-order self-
energy effects in hydrogenlike atoms to the known
contributions to the Lamb shift. To stress the
structural aspects of our formulation, particularly
gauge invariance, we shall calculate the electron
self-energy pa, rt (the more significant one from
the standpoint of testing renormalizability) in the
Coulomb gauge and that of the photon in the Feyn-
man gauge.

The second extension mentioned above is the
.consideration of a particle-antiparticle system
such as positronium, and the derivation of the cor-

responding two-body equation. This equation dif-
fers from Eq. (5) of paper I in a term which ac-
counts for annihilation effects. Furthermore, this
modification does not harm the desirable features
of the equation discussed in paper I. Application
of this equation is illustrated by the calculation of
the single-photon annihilation contribution to the
hyperfine structure of positronium. In addition,
an interesting condition, satisfied by the positroni-
um amplitude as a consequence of current con-
servation, is noted and discussed.

The above developments are here facilitated by a
functional formulation which chooses the fully in-
teracting physical system as the unperturbed sys-
tem, in contradistinction to the conventional for-
mulation which was employed in paper I.' This
new derivation then allows a direct consideration
of two-body amplitudes and avoids the intermedi-
ary of two-body Green's functions and the Gell-
Mann- Low limiting process. '

This paper is organized as follows: Section II
contains the derivation of the two-body formalism
for the case of a particle-antiparticle system with-
in the context of quantum electrodynamics. In Sec.
III we consider self-energy effects and renormal-
ization, and derive the Lamb-shift contributions.
In Sec. IV we illustrate the application of the par-
ticle-antiparticle equations to positronium. Sec-
tion V contains our concluding remarks.

II. DERIVATION OF THE PARTICLE-ANTIPARTICLE
EQUATIONS

Our first task here is the modification of the
usual perturbation scheme for the calculation of
functional derivatives. This modification consists
in considering the interacting electron-photon sys-
tem as the unperturbed system, to be perturbed by
the external (c-number) current J. The latter
function is required to vanish at distant times, so
that the system in fact reduces to the physical one
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at such times and allows a rigorous definition of an
interaction Picture. It is then a matter of standard
procedure to obtain the following relation for time-
ordered products:

& P, out
I T[P (x,)(()) (x,) ~ ~ ] I

o(, in) / &0, out
I
0, in)

, out IT [S g (x,)p (x,) ~ ~ ] I
n, in &/&0

I
S'10&,

Note that the above expression for X would be
meaningless within the customary functional for-
mulation where the unperturbed system is nonin-
teracting and therefore without bound states.

Using the standard procedures of the functional
formulation, ' we obtain Eqs. (1) and (2) of paper I,
and proceed to evaluate the quantity (see paper I
for notation)

where R =~'(y"'&"'+ y"'&,"')X'(x,X).

S~=T exp —i d'x J x ~ 8 x

Here the superscript J denotes the presence of the
external source, 8 denotes the electromagnetic
field operator, and all states and operators refer
to the Heisenberg picture.

The object of interest here is the amplitude cor-
responding to the electron-positron system:

Recall that R originates in virtual annihilation ef-
fects and was absent in the cases considered in
paper I. It is given by

R =e[n"y,"'y„"'F'(x) ny-,'~'y+' F(y)] S (x, y)C,

where

y, (x, y)=Z &0, outlT[g"' (x)P'~' (y))Q IP, in),

where

(Z~) '= ~&0, out I0, in)~,

Q'=1 —Z I0, in) &0, outl.

Here P")~(g(~)~) denotes the electron (positron)
field operator, and IP, in) stands for the posi-
tronium state of total momentum P~, all in the
presence of J. The corresponding objects in the
absence of J' are, of course, the physical ones.
Note that

F' (x)=, , [Z '&0, out
I
P, in) ],

and C is the charge conjugation matrix iy'y'. The
differentiation involved in the expression for E may
be performed to give

F'(x) = —iZ'~&0, out I8'(x) -2"(x) IP, in)'

= —iZ' ~&0, out
I

8" (x)Q I
P, in) '.

On the other hand, using the definition of the cur-
rent vector, we obtain

O, in& =0, &o, outlQ =0 QI0)=0

&0IQ=0 QIP, in)=IP»n)

—etr[y'x (x, x)C] =Z &0, out
l
j"(x)Q IP, in) .

implying that in the limit J'-0, (2) reduces to

x,(x, y) =&0 IT [g„")(x)g~)(y)]P,in), (2)

which is the customary definition of the positroni-
um amplitude.

The reason for the insertion of Q~ in the defini-
tion of X~ is to allow for a suitable description of
(virtua, l) annihilation processes [see Eq. (3) be-
low], a.nd it may be traced to the antisymmetry
property of the two-electron Green's function. '

We may now proceed to evaluate the necessary
functional derivatives using the alternative expres-
sion for X provided by Eq, (1):

x'.,( , x) = &o
I [ '4."'( )0, '(y)]

I , )/& I

' Io)

T [S q( )(x)y8")(y)] l0&&0

[&0ls'I0&] '. (3)

As is well known, the above quantity is a potential-
ly singular one, and a more careful definition in-
volving a line-integral factor and a special limiting
procedure must be applied in cases of singular be-
havior. '

Using the field equation

8„(x)= d'x'D', „(x-x')[j"(x')+ &"(x')]+8„""(x),

and the properties of Q~, we can convert (5) into

F, (F) =(ef d'F'D'„(F —F') ir[F "y (F', F')C].

Equation (6) completes the evaluation of R. We
now change the functional variable to A, and col-
lect the set of relations complementing the posi-
tronium equation:
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~ )e(y( 8&g( 8)+y(()g()y))ye((X y) e~)e[y(e&y(e)&Pv(X} yo)y&(')Pv(y)]gy[(X y)C

['"''~'=y"''~' p'+eh" (x)+ie d'zD "( x) — —mX fL X v y 5g ( )
'y

P. (x) =is d'zD'. ,(x z) tr[y ")t"(-,z)C],

D,'„(x,y) =D'„„(x—y) —ie d'zd'z'D'„(x —z) tr y' ~, '„D."„(z',y),5A, jz' j

2„'-&8"(x, y) = 54(x —y).

In the above equations, D' is the free photon prop-
agator in any gauge. Equation (7) is the two-body
equation for positronium. As mentioned before,
it maintains the property of reducing to a single-
time, Schrodinger-type equation in the center-of-
mass frame.

Before applying (7), we wish to note an interest-
ing constraint obeyed by X. Equation (5) in the
physical limit reads

—e tr [y "X(x,x)C] =(0
~

j"(x) ~P, in),

which upon the imposition of current conservation,
gives

8 tr [y, X(x, x)c]=0.

On the other hand, in this limit y has the structure

y(x, x) = exp( —ix„P'))t (0, 0).

The last two relations combine to give the sought-
after constraint

tr [n, y "y(0, 0)C] = 0,

which, in the center-of-mass frame, reduces to

y 6')t~ (0, 0) =0 (center-of-mass frame).

We prove in the Appendix that X, as given by our
Eq. (7), satisfies this constraint.

III. RENORMALIZATION

As mentioned in the Introduction, our task here
is to show that the usual renormalization pro-

cedure is implementable within the present for-
mulation. To this end, we shall consider the sec-
ond-order electron and photon self-energy con-
tributions in a two-body atom, paying particular
attention to the structural properties of. covariance
and gauge invariance.

We shall carry out the calculations for an atom
composed of two arbitrary particles (a) and (f)),
and use the notation of paper I when appropriate.
The relevant equations are then (l'), (5), and (6) of
paper I. Within the context of these equations, the
usual renormalization program may be stated as
the requirement that the tvn-body equation shall,
in the limit of large interparticle separation, re-
duce (exactly) to the (simplified) Breit equation,
Eq. (14) of paper I, with masses and charges equai
to the corresponding observed quantities. Note
that the above requirement of reduction «o the
Breit equation is nothing but a simultaneous state-
ment of the principles of mass renormalization
(which specifies the interaction-free part of the
Breit Hamiltonian for two spin- —, particles) and

charge renormalization (which specifies the Cou-
lomb potential for two widely separated charges).

As mentioned before, we shall employ the (ob-
viously unsuitable) Coulomb gauge for the electron
self-energy part to dispel any fear thai its lack
of manifest covariance might disturb the renor-
malization procedure. Thus starting with the
above-mentioned set of equations, we specialize
to the center-of-mass frame, Eq. (7) of paper I,
replace D" by DcR (the regularized, free photon
propagator in the Coulomb gauge),

D (x)= —(2 ) ' d'ke '"'" '" —— ' — ' [(k' ie) ' (O' —A' ie) ']
k n' —k2

and effect the transformation

X (e y)=expI-v
t
v)v[e"vv( (v, x)+eever'(v, yljI)j"(x, y).

The resulting equation for X is
2

(— ( x, y)= x)vvvy +—vvv"' vv"')vx"(), v, y),
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I (a) I (b& I (a) n(a) .~
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t
U"'(t, x) =e "& i d'zDg~„(z-x) —, —n,"' A'(x)+ dr V'Ao(r, x)+i d'zD'c'„(z —x) A~K4O z oA~ z

where h( and U'"' are correspondingly defined. Note the appearance of the cutoff-dependent term in (9).
The effect we are seeking is obtained by calculating the lowest-order self-energy contribution of U"'

+ U'b' according to the perturbation scheme of paper I, and adding the cutoff term appearing in (9) thereto:
2

a2 = ie2 d(x y)dx'dy'dt'Xz'(x y)[S—"'(x,y ~x', y') +S"'(x,y ~x', y')]Xz(x' —y') +—J&.,

S"'(x,y ~x', y') =—
t'

d'z Doc'„(z -x), G(x, y ix', y')n "& ~ dr TAO(r, x')

d'z n&"Dc'„(z —x) A. . .G(x, y ix', y')n&b& A(x'),6A'(zj

and similarly for S"'. Recall that yz is a, solution of the Breit equation, Eq. (14) of paper I.
First we consider those terms that involve A', which we denote by S~( '+S~ '. These are

S~ +8~(a) (5) dz'e(t' —z')G(x, y ~x', y') [n"' ~ &.D" (z' —t, x' —x)+n&b& ~ & D" (z' —t y' —y)]

The quantity ln the brRckets cRn be recognized as R commutator lnvolvlng k+ V~. Using this fRct, one cRn
transform the last equation to

S"'+S"'= G(x, y
~

x', y ')[D"„(t'—t, x' —x) +D"„(t'—t, y' —y)]

+2i dz'8 t' —z' 6 i- x' 5 y —y' D~'~ z'- t', 0 .

The last integral is just the negative of the cutoff
term that appeared before. Thus this spurious
term, which originates in "longitudinal photons"
attending the use of the Coulomb gauge, is can-
celed by a corresponding contribution, leaving

dt 'd(x —y)dx'dy'X" (x —y)

x [S&"(x,y ix', y')+S"'(x, y ~x', y')]X~(x' —y'),

(10)
where

S(a& Dav (tI t xI x)+&a&~(a)G(x y ~xi y I)y(a&+(4&

and similarly for S'"'.
At this juncture we note that we essentially have

the usual result in (10), except that our photon
propagator is in the Coulomb gauge, and our wave
functions are the two-body amplitudes of the Breit
equation. Actually, it is an easy matter to show
that the contribution of the gauge terms in (10)
vanishes identically, effectively replacing D~z by

the corresponding Feynman propagator D». The
expression (10) ma, y now be renormalized accord-
ing to the program stated before, namely, reduc-
tion to the Breit equation at large distances. We
shall not pursue this program further, but refer
to standard calculations that reduce (10) to the
Lamb-shift contributions within suitable approxi-
mations. '

We shall now proceed with the outline of the com-
putation of the vacuum polarization contribution.
This calculation is almost trivial, since the re-
levant renormalization concerns only the photon
propagator and not the two-body equation. Never-
theless, it will serve to demonstrate the use of a
manifestly covariant gauge in our calculations.

Referring to the two equations preceding Eq. (9)
above, we now use D~ (the Feynman propagator
including the lowest-order radiative correction) in
place of D~~ and effect the appropriate transfor-
mation to arrive at the Breit equation with the po-
tential

yz (x y~) e2 d 4 z y(a&+(a)Dlao(z x)C 0 IJ, F

&&go�(

)

t
drDo(r y) 82 d4zy(b&+&b)DIao(z

OO
i.A' z

dr A'(r, x)
0 0

e2 +&a)+(a) dg D (g Iayox) e2 y(b)+(b) dg Drao(~ x y)
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where D~ is given by

Dz'"(x —y) =g'"Dz(x-y) —i,e lim d'zd'z'Dz(x —z) tr y' ', +y" ', D~(z' —y)..aS"(z, z) „ fS'(z, z)

Obviously D~ is nothing but the usual Feynman propagator augmented by the single-loop corrections con-
tributed by particles (a) and (b), respectively. The renormalization required here is therefore quite the
same as in the usual theory, and we take the standard result

$k'X
t& gyl/

D""(x)= —(2») ' d'k, . g""+ g "—„, f(k')

where

5(1 —()k' 5(1 —5)k'

Inserting this result in (11), and performing some simple steps, we obtain

e-ik (x-y)

Vc(x-y) =e'(27&) ' d'k, . [I+I(k')]5(k')+(n"' —n"') ~ V/„f(~x —y~),

where we have left f unspecified, since, in the resulting equation

the second piece of V~ can be gauged away via the transformation

X = exP (- if )X

The modified Coulomb potential is thus given by the first term of V~, which is easily recognized as con-
taining the usual vacuum polarization correction.

IV. APPLICATION OF THE POSITRONIUM EQUATION

In this section we shall derive the single-photon annihilation contribution to the singlet-triplet splitting
of positronium using the equations derived in Sec. II.

The application procedure, as before, consists in extracting the Coulomb potential in the center-of-mass
frame, discarding all functional derivatives remaining on the left-hand side of (7), and setting the func-
tional variables equal to zero. The result is

(12)

The desired energy shift, b,„, is obtained by computing the contribution of the right-hand side of (12) to
the lowest order. Thus

d x —y X„x—y exp i&„x e y,"'y„"'F"x —y' 'y„'~'E" y S x-y C x'=y'=t,

where now

E'(x) =ie d'zDc"(x —z) tr[y. exp(-i&„z')X„(0)C]

Here &„ is the energy eigenvalue corresponding to
We further approximate &„"by inserting S

(the free electron propagator) for 8 and z/ ~/t&„(the
Pauli-Schrodinger hydrogenic wave function with
reduced mass m/2) for Xz~. Here u» is a non-
relativistic bispinor whose nonzero elements (the
upper-left block) form the corresponding Pauli
bispinor. Effecting these substitutions, we obtain

[-ie&j&„(0)/4m']y"„u—,"&u„'~&C„,

where we have also approximated e„by 2m. Note
that as a consequence of current conservation, Eq.
(8), F' is identically zero.

Next we calculate S'(x -y) for x'=y' and find that

S(0,x —y) = (16i»') '(m +iy V„)

&& dkeik (x-y&(~2+k2)-&/2

It can be easily verified that the term involving y
in the above expression does not contribute.
Therefore, the spatial integral in (13) will involve
the factor
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(16iv') ' d(x —y)P„*(x-y)dke'"''""

x (1+ y2/m2)-1/2

which is easily approximated to be (2i) '&f&„*(0).

Equation (13) may then be written

—(2i) '$—„*(0)F tr(u'nC —u'Cn')

= (e'/4m')
~
P„(0)

~

' tr(u'nC) ~ tr(yuC).

Since u is effectively a two-dimensional matrix,
the above trace factors reduce to

tr(u'oo') ~ tr(o'o u),

where u is now to be considered a Pauli bispinor.
This bispinor is found to be proportional to a'
(o''') for singlet (triplet) states. Thus the above
factor is equal to S(S+1), with S the total spin,
whence follows the usual result.

V. CONCLUSION

In this paper we have completed the development
of the basic elements of a new treatment; of the
bound-state problem which was begun in paper I.
We have demonstrated that the standard renor-
malization procedure is implementable within this

treatment. Our two-body equations, Eq. (5) of
paper 1 for a, general situation and Eq. (7) here for
a particle-antiparticle system, have been applied
to a wide spectrum of standard bound-state cal-
culations, and a number of known results have
thereby been obtained. The aim of these calcula-
tions has been the demonstration that the present
formalism is well capable of dealing with the cus-
tomary bound-state problems.

Throughout we have stressed the fact that a
single formalism, without further assumptions,
modifications, or "special treatments, " is being
applied in all situations. Thus the unity and com-
pleteness of the formalism, which is characteris-
tically lacking in other treatments, has been un-
derlined. Other features of the formalism, par-
ticularly in comparison with the Bethe-Salpeter
treatment, have been remarked upon throughout,
especially in paper I. Paramount among these
have been the properties of covariance and gauge
invariance.

As remarked above, we have thus far been in-
troducing a new formulation by means of applica-
tions to old problems; the future development
should obviously concern new applications. Of
course, it will be these that will determine how
useful and effective the new formalism is.

APPENDIX

Here we shall verify the constraint derived in the text, Eq. (8). Consider Eq. (7) in the center-of-mass
frame, where it assumes the single-time form

z ——eP'(x)+ey'(y) y"(x,y) ={n"' [p„—eP( )x]+P"' mn+'~' [p, +e&f&(y)]+P'~'m]X"(x, y)

where

+e{[F'(x)—F'(y)] —[n"' F(x) —n'~' F(y)]].S"(x,y)C (x'=y'=f),

P'(x) = 2'(x)+i d'z D„"'(z,x)
6A„(z)

'

Recall that the Dirac matrices labeled (e) [(P)] act on the first [second] index of )t. Using this fact and the
identities

we can write the above equation in the usual matrix notation as follows:

8
i eP'(x) —+ e—Q'(y) y" y' —e[E'(x) —E'(y)]S"Cy'

= m [p, y"y']+[p„—eQ(x)] n X"y' —[p, + eQ(y)] y"y'n —eF(x) n SCy'+ eF(y) SCy'n.

At this juncture we take the trace of this equation and get

e&f&'(x)—+ e—Q'(y) tr [y"y'] = [p„+p, —e&f&(x) + eQ(y)]. tr [nX"y']+ie[F (x) —E,(y)] ~ tr[y S"]

The occurrence of the combination p„+p, allows the elimination of the relative space coordinate, leaving
the center-of-mass coordinate R=(x+y)/2. Equivalently, we may simply let y =x (since already y'=x'),
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and replace p„+p, by p„. Then

i —tr [)i"(x,x)y'] =p„~ tr jn)f" (x, x)y'].

Finally, me pass to the physical limit A =0. In this limit

g (x, x) = e xp(- ix, P') X(0, 0),

a,nd in the center-of-mass frame, where P" has only a time component, the result given by Eq. (8) is ob-
tained.
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