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Classical Coulomb-type configurations of Yang-Mills fields coupled to external sources (charges) are described
and discussed. They are shown to be stable against small classical fluctuations in the fields if the Yang-Mills
coupling is sufficiently small. In developing the stability analysis, massless charged scalar fields in the presence
of a weak Coulomb potential are also shown to be stable to small field fluctuations.

I. INTRODUCTION

The possible role of colored gluons in confining
quarks is receiving increasing attention. The
famous “infrared slavery” conjecture,! that the
infrared singularities of Yang-Mills field theory
would result in long-range confining forces, has
not led to direct calculations of such effects, but
models have been proposed which show a connec-
tion between color gauge symmetry and confine-
ment,2~®

Two examples of such models of quark confine-
ment that work in four-dimensional space-time
are the lattice gauge theory and the MIT bag. In
the lattice gauge theory confinement is a result of
integrations over a full gauge symmetry group.?
In the MIT bag model confinement is a result of
the fact that any color-nonsinglet object must be
surrounded by a gauge field, but all such fields
are excluded from the exterior of a bag.® In both
models, other crucial ingredients beyond gauge
symmetry are needed for confinement. However,
without gauge symmetry, these mechanisms
would not exclude states carrying quark quantum
numbers.

Because of the central role being played by gauge
symmetry in current ideas about quark confine-
ment, it is important to discover whatever one can
about the forces mediated by gauge bosons. As a
step toward understanding these forces, we study
here classical Yang-Mills fields coupled to finite-
strength, spatially fixed sources. This is the
Yang-Mills analog of electromagnetic fields in the
presence of fixed charges. While this is a trivial
electromagnetic problem, the non-Abelian case is
more interesting. Although we fix the sources in
space, giving a preferred Lorentz frame, we
couple the sources gauge invariantly, so that the
full system of fields and sources retains com-
plete gauge symmetry. The sources may be
thought of as the quanta of an infinite-mass field
coupled to the gauge field. (Note that they have
nothing to do with the infinitesimal gauge-break-
ing “sources” used to define and calculate Green’s
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functions.)

There are several advantages to using finite-
charge, physical, spatially fixed sources to ana-
lyze Yang-Mills fields:

(1) The interactions between sources represent
physical (“on-shell”) effects.

(2) Because the sources have finite charge, even
classically they can bring the nonlinear structure
of the Yang-Mills field into play.

(3) The sources are only weakly dynamical; al-
though geometrically fixed, their orientation in
color space can change.

(4) Fixing the sources in space separates the
problem of finding the forces or effective poten-
tials resulting from a Yang-Mills interaction (as
a function of source separation) from the compli-
cations due to the motion of charged constituents
of a composite system.

(5) The presence of several sources introduces
spatial structure which regulates the infrared
singularities of Yang-Mills field theory.

In Sec. II we discuss classical solutions to the
equations for Yang-Mills fields in the presence
of external sources. Classical sources are de-
scribed by a charge vector in the group space.
The charge vector is dynamical; as a consequence
of its coupling to the non-Abelian gauge field it
can change with time. However, we hold the
source’s location fixed. There are especially
simple solutions to the field equations if all of the
sources are oriented in commuting directions in
the Yang-Mills space [for example, along the I,
and hypercharge directions of SU(3), correspond-
ing to sources carrying a definite value of charge
and hypercharge]. When the vectors are so ori-
ented, it is consistent to make the ansatz that the
only nonvanishing components of the Yang-Mills
field are along these same directions. This an-
satz immediately linearizes the field equations,
and reduces them to a set of decoupled copies of
Maxwell’s equations in the presence of external
fixed charges. There is an independent Max-
wellian field associated with each of the commut-
ing directions in the Yang-Mills charge space. If
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the gauge group is SU(n), each source has a defi-
nite constant value of # — 1 independent charges,
which give rise to» -1 independent static, Cou-
lomb-type fields. The force between sources de-
pends on their separation as 1/72, and is the sum
of independent Coulomb forces associated with
each of the » — 1 charges.

These solutions are intrinsically much simpler
than the sourceless configurations of Yang-Mills
fields, which relate orientations in internal-sym-
metry space to orientations in geometrical
space.”™® However, the Coulomb-type solutions
require the presence of external sources.

The remainder of this paper is a discussion of
the stability of the Coulomb-type field configura-
tions. Our discussion is restricted to the case of
small, though finite, charge. The question of
stability is important because it addresses the
issue of whether or not the classical solutions are
relevant to the quantum-mechanical situation. If
the Coulomb-type solutions are classically stable,
then it is possible for the quantum-mechanical
configuration to closely resemble the classical
one. On the other hand, if these solutions are
classically unstable, the fluctuations, which are
inherent in all quantum-mechanical systems, will
excite an instability and so result in a completely
new and unrelated configuration of fields.

Classical stability is, of course, not a guarantee
of quantum stability. A classically stable configu-
ration which corresponds to a local minimum of
the energy which is not a global minimum will be
unstable to tunneling. In addition, the divergent re-
normalization needed in quantum field theory can
completely change the stability character of a
given classical configuration. Classical stability
is thus necessary if the classical solution is to
resemble the quantum situation, but it by no means
ensures such a resemblance. On the other hand,
classical instability is a sure sign that the quan-
tum situation will be quite unlike the classical one.

Section IIT is a preliminary discussion of the
stability of Coulomb-type configurations. The
masslessness of the charged Yang-Mills fields is
a possible source of an instability. Because there
is no rest energy associated with field configura-
tions, it might seem that configurations of charged
fields which screen the charges carried by the
sources would have lower total energy than the
sources plus Coulomb fields alone. We first ex-
amine this physical situation in a related but some-
what simpler model, the electrodynamics of a
massless charged scalar field in the presence of
a single external charge. The analogous question
is the following: Is the Coulomb field of the ex-
ternal charge stable to fluctuations of the charged
scalar field? One might think that the answer is

no, because, since the scalar field is massless,
each hydrogenic bound-state level of the charged
scalar in the external Coulomb field has a lower
energy than the Coulomb field alone, and so rep-
resents an instability.

These arguments notwithstanding, we show that
for sufficiently small charge, o 'Z | <3, the Cou-
lomb field is classically stable. The result is ob-
tained in two ways, both of which relay on linear-
izing the field equations about the classical solu-
tion, and finding the eigenfrequencies of small
fluctuations. The resulting stability equation is
the Klein-Gordon equation with a 1/7 potential.

In this method of testing stability, if all the eigen-
frequencies are real, the system is classically
stable, while a complex eigenfrequency signals an
instability. Such an instability is a mode which
grows exponentially with time, and which is as-
sociated with a negative-energy quantum-me-
chanical bound state. The first argument for sta-
bility uses the fact that any given solution of the
linearized field equation is an analytic function of
the charge parameter. We use this analyticity as
a means of extrapolating away from zero charge,
where all the eigenfrequencies are real, and show
that at least a finite extrapolation is needed for a
complex eigenfrequency to develop. The second
proof of stability is more direct. We simply rec-
ognize that the stability equation can be trans-
formed into a standard, well-studied equation
(Whittaker’s), and show from the known properties
of solutions to this equation that there are no com-
plex eigenfrequencies for « |Z[ <3%. This proof is
obviously much simpler, and we would not bother
with the first were it not for the fact that we have
only been able to generalize the less direct argu-
ment to the Yang-Mills case.

The mystery of the missing hydrogenic wave
functions is easily resolved. When the mass of
the Klein-Gordon field is taken to be zero, the
binding energy of each hydrogenic bound state also
goes to zero, in fact proportional to the scalar
field mass. Furthermore, the wave functions
themselves vanish in the zero-mass limit, and
the bound states completely disappear from the
spectrum.

It is known that beyond a certain critical charge,
even a massive Klein-Gordon field becomes un-
stable.'®!! Beyond this charge, the massless field
will likewise be unstable.

In Sec. IV we show that for a finite, though unde-
termined, range of charge, the Coulomb-type con-
figuration of Yang-Mills fields due to a single
source is classically stable. As in the Klein-Gor-
don example, the argument proceeds by lineariz-
ing the Yang-Mills field equations about the static
classical solution, and examining the eigenfre-
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quencies of small fluctuations. Again, a complex
eigenfrequency would signal a classical instability.
Here we use the fact that a given solution to the
linearized field equations is an analytic function

of the Yang-Mills coupling constant to extrapolate
solutions away from zero coupling and show that
at least a finite extrapolation is necessary before
a complex eigenfrequency could develop.

The analysis of the Yang-Mills case is a great
deal more complicated than the Klein-Gordon ex-
ample. The obvious source of complication is the
fact that the Yang-Mills field has spin 1, which
means that each mode of fluctuation will be de-
scribed by two radial functions (rather than one,
as in the scalar case) which satisfy a set of two
coupled second-order equations. The second, and
more serious, complication arises from the fact
that the coupling between the two radial wave equa-
tions is singular. This results in the system of
differential equations having a singular point which
moves to the origin in the limit of zero- coupling
constant. The effect of this singularity is to make
the analysis of even the zero-coupling-constant
system nontrivial (where by zero coupling con-
stant one understands the g— 0 limit of the finite-
coupling-constant system). In order to show, even
in the zero-coupling limit, that there are no com-
plex eigenfrequencies, it is necessary to analyti-
cally solve a reduced but still nontrivial fourth-
order differential equation, which we do. Having
explicitly found the zero-coupling fluctuations, we
are able to extrapolate away from zero and show
that there is a finite range of coupling with which
there are no complex eigenfrequencies. Because
we lack closed-form solutions to the finite-cou-
pling fluctuation equations, we have no quantitative
estimates of the extent of this range.

The stability considerations presented in this
paper do not apply to the case of large charge and
coupling constant. Additional analysis is needed
to find the characteristics of the instabilites ex-
pected there.

We conclude this Introduction with the remark
that the question of whether or not these classical
solutions are quantum mechanically stable is likely
to be more subtle than we have indicated. Quan-
tum mechanically, the effective coupling constant
depends on the distance scale. Since the known
instability of massless Klein-Gordon particles in
very strong Coulomb fields results from the long-
distance part of the potential (the effect is present
even with a cutoff Coulomb potential), presumably
it is the infrared limit of the effective Yang-Mills
coupling which will determine the relevance of the
consideration presented here. If this limit is
finite, the kind of stability analysis presented here
might determine the quantum stability of Yang-

Mills charges. If the infrared limit is divergent,
a more refined analysis is needed, though the
analogy with scalar electrodynamics suggests that
an instability should be expected.

II. CLASSICAL FIELDS AND SOURCES

In this section we will describe Coulomb-type
configurations of classical Yang-Mills fields due
to the presence of static classical sources. A
classical Yang-Mills field is specified by the value
of each component of the field multiplet. A classi-
cal stationary source is specified by its fixed lo-
cation §i in space and by a vector ¢ that has a
given magnitude (the total Yang-Mills charge
carried by the source) and which points in some
direction in the internal Yang-Mills charge space.
For SU(n), e} has#® -1 components. Classically
each component of ¢, is well defined, and the group
structure is carried by Poisson bracket relations
among these components.

The total (4-vector) current density due to an
assembly of classical sources is given by

je®) =8,, > e30%(x -X,). (2.1)

1
It is often convenient to arrange the n® -1 com-
ponents of an SU(z) Yang-Mills multiplet in an
n Xn matrix. For example, we define the matrix
e; by

e;=3 p Aed, (2.2)
a

where the matrices 3\? are the generators of the
fundamental representation of SU(). In the follow-
ing, A,, F,,, j,, and e; stand for such traceless
n Xn matrices formed from the #n% - 1 Yang-Mills
potentials, fields, currents, and charges.

The equations satisfied by the Yang-Mills fields
are, in this notation,

FuvzauAv_auAu —ig[Au,A,,J, (23)
8,F,,-iglA, F,]+g,=0. (2.4)

The commutators, of course, refer only to the
matrix structure. The “external” current j, must
satisfy the relation

auju_ig[Au7ju]=0' (25)

This relation is a consequence of the field equa-
tions, and may be thought of as a consistency con-
dition on any source which is coupled to a gauge
field. Just as Maxwell’s equations alone require
that the charge coupled to the electromagnetic
field be conserved, so the Yang-Mills field equa-
tion alone requires that the source current satisfy
the extended conservation law, Eq. (2.5). Anim-
portant implication of this condition is that it may
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be inconsistent with gauge invariance to demand
that the orientations of the charge vectors do not
change. Even classically these orientations must
be regarded and treated as dynamical quantities.

These equations are invariant under the classi-
cal gauge transformation

i
-1 -1
Au—’w Auw+—-w auw,

F,,—w'F, w, (2.6)

m

Jumwl,w,
where w is an arbitrary, unitary, space-time de-
pendent, n Xz matrix.

These coupled equations provide a complete
classical description of a Yang-Mills field inter-
acting with sources. Our discussion of both the
classical solutions and their stability will use
nothing more. However, this description of the
sources is not canonical, and so is not directly
suitable for quantization. In order to quantize,
we would introduce canonical variables for the
sources. The choice of variables amounts to a
choice of the irreducible representation of the
gauge group according to which a quantum source
transforms. Classically there is no need to re-
solve this issue, since the charges e; are not
quantized.

Coulomb-type potentials exist when the charge
vectors of each of the sources ¢; are parallel or
point in commuting directions in the Yang-Mills
space, that is, if for each pair of sources

le;,e;]=0. (2.7

If we then look for solutions to the field equations
with potentials A, that have components in Yang-
Mills space only in the directions specified by the
charges e;, we observe that since these directions
commute, the field equations [(2.3) and (2.4)] re-
duce to Maxwell’s equations with fixed charges.
The resulting static potential is

-> e.
Agx) =g Z4wlxz—xi| ’
1

A& =0.

(2.8)

Note that this elementary solution is compatible
with the extended charge conservation law [Eq.
(2.5)], because, by assumption, the charge vec-
tors e; all commute. However, had we started
with noncommuting charge vectors, no static solu-
tion with only a scalar potential would have been
possible. If the scalar potential at the location of
a Yang-Mills charge has any finite component in
a direction which does not commute with its charge
vector, the vector will rotate in charge space ac-
cording to Eq. (2.5).

The static, commuting charge, solution [Eq.

(2.8)] satisfies the Lorentz and radiation gauge
conditions,

9,A,=V"A=0. (2.9)

It also has the property that the (gauge-dependent)
charge and current densities of the gauge field
are zero:

g,=-ilA,,F,]=0. (2.10)

Thus the total charge of the system is just the sum
of the charges carried by the sources:

Q= [au(g,rig= Ye:.

The total charges @ are invariant under local
gauge transformations which vanish at spatial in-
finity (i.e., w—1), but the division between the
charge carried by the sources and the charge
carried by the Yang-Mills field is gauge depen-
dent. If one has a solution to the Yang-Mills equa-
tions with noncommuting charges and no space
charge carried by the fields, one can always make
a local gauge transformation which rotates the
charges into commuting ones. However, such a
gauge transformation will introduce a space charge
density § ,, rather than produce a solution in the
form of Eq. (2.8).

As an explicit example consider a single source
with charge e at the origin, and a resulting poten-
tial as in Eq. (2.8). Under a gauge transformation
localized in a finite region of radius @ about the
origin, and constant therein,

(2.11)

w(x) =explivé(a - [X|)], (2.12)

where y is a constant Hermitian matrix, the
charge vector is transformed by

e —exp(—iv)e exp(iy) , (2.13)

and the transformed gauge potential produces a
shell of charge.

ogo:aiz_ jldf eXp(+Zy§)[zy, e]exp(—i'}/g)
xo([%] -a). (2.14)

Although Coulomb-type potentials result only
from the simplest configurations of charges, these
configurations are exactly the classical analogs of
the basic quark configurations inside mesons and
baryons. The hypothesis of the colored quark-
gluon model is that mesons are made from a
quark and an antiquark in a color-singlet state,
while baryons are made from three quarks in a
color-singlet state, and that color interactions
are mediated through a color octet of Yang-Mills
fields. The classical equivalent of a color-singlet
state is a configuration in which the total Yang-
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Mills charge is zero. Thus corresponding to the
quark and antiquark in a meson are two sources
with charge vectors e, and e,=—e,, which are not
only commuting, but are parallel vectors as well.
Corresponding to the quarks in a baryon are three
sources with vectors e,, e,, and e,, satisfying

e, +e,+e;=0. (2.15)

If the quarks are the standard eigenstates of color
isospin and hypercharge, the vectors are

1
€,= %7\3 + 3 Ag,

4v6

1
e2=—i7x3+m7\8, (2.16)

€3=— ZlTG Ag,
which also commute.

The classical force produced between two
sources with e, = —e, is an attractive 1/* force,
just the Coulomb force. The forces on the three
sources mimicking the quarks in a baryon are the
sum of two Coulomb forces, one in which the role
of charge is played by the third component of color
isospin and another in which it is played by the
color hypercharge.

III. CLASSICAL STABILITY

In this section we will discuss the (classical)
stability of the Coulomb-type configurations of
Yang-Mills fields with sources with respect to
small alterations in the fields such as will be in-
duced by quantum fluctuations. To maintain gauge
invariance, it is necessary to simultaneously con-
sider small fluctuations of the source vectors e;
in internal-symmetry space, since these are linked
to field fluctuation through the extended conserva-
tion law

auju—ig[Auyju]=O- (3.1)

For at least some fluctuations in A, since the
source locations are fixed, their orientations will
change with time.

To discuss the classical stability of this system,
it is not necessary to express the source vectors
e, in terms of canonical variables. Classically,
the coupled equations [ Egs. (2.1)—(2.4)] for the
Yang-Mills fields and currents j, are complete
and deterministic. Since for the Coulomb-type
configuration the potentials and sources are static,
the stability question for the fields is a purely
static stability problem. Furthermore, the par-
ticular choice of canonical variables to represent
the sources has no effect on the stability of the
fields or their modes of fluctuation.

The price of avoiding introducing canonical
source variables is that the method of testing

stability by computing the second variation of the
Hamiltonian with respect to field and source fluc-
tuation is not available to us. Instead, we must
examine the time dependence of fluctuations di-
rectly from the field equations. If all modes of
fluctuation have oscillatory time dependence, the
solution is stable; but if some modes grow expo-
nentially with time (complex frequency) the sys-
tem is unstable.

Classically, the canonical variables that produce
a static charge oscillate with time. However, their
equations of motion are linear (in the source vari-
ables), so that the modes of fluctuation of the ca-
nonical source variables are found by solving a
small-vibration problem with constant coefficients
but with an oscillatory forcing term, rather than
with oscillatory coefficients.

The result of the analysis will be that for suffi-
ciently small values of the Yang-Mills coupling
constant and the source charge, the field due to a
single charge is (classically) stable. The restric-
tion to a single charge is merely technical: The
spherical symmetry of the classical fields reduces
the stability problem to ordinary differential equa-
tions. Presumably other charge configurations
are also stable, if the coupling constant is small
enough.

The phase “sufficiently small” coupling and
charge has the following precise meaning. We
will show that there is a finite (though undeter-
mined) range about zero of the parameter g2|e|
(le| is the total charge of the source) within which
the field and charge configurations are stable with
respect to infinitesimal classical fluctuations.

The restriction to small charge certainly limits
the physical applicability of the result. However,
the result is quite sufficient to proceed to a semi-
classical approximation, which, as is well known,
is valid only for small coupling constant.'?

The stability argument for the Yang-Mills field
will be based on the analyticity properties of the
field fluctuations as a function of the source
strength, as a means of extrapolating from the
case of free-field fluctuations. Naturally, the spin
of the fluctuating field complicates the argument
in several ways, and it will be instructive to first
examine a physically similar spinless example.
The example we will analyze is a charged Klein-
Gordon field in an external Coulomb potential. Its
equation of motion is

[(0,—iq/7)? = V?]@=0. (3.2)

The ¢ fluctuations are analogs of the charged
Yang-Mills field fluctuations; the ¢/7 potential is
an analog of the static Yang-Mills field.

This Klein-Gordon equation is itself the equa-
tion satisfied by small fluctuations of the field ¢
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about the Coulomb classical solution of a system
consisting of the electromagnetic field, a mass-

less charged scalar field, and an external charge
of magnitude 4mq /e at the origin. In the Lorentz

gauge the coupled equations are

P4, =47Tq6u053(?)—ie(/’*5u¢’ - 292Au¢*¢,
(3.3)
(8, —ieA, ) e=0,

and the static solution about which small fluctua-
tions are being examined is
AO =q/1’ ’
A= ¢=0.

(3.4)

Since we are interested in whether the fluctua-
tions of ¢ remain small with time or increase in
magnitude, we represent the time dependence of
each mode of vibration by an exponential,

p=e“'d(T). (3.5)

If all the frequencies of vibration w are real, the
fluctuations reinain bounded and the classical so-
lution [Eq. (3.4)] is stable. If any of the frequen-.
cies are complex, then at least one mode will grow
exponentially in time and that classical solution is
unstable.

To solve the fluctuation equation (3.2) we sepa-
rate the angular dependence of & by writing

8@ = WYLE). (3.6)
The resulting equation for W is
a2 2 2_1(l+1

[W o )]W=°- 3.1

Let us examine the reality of the eigenfrequen-
cies in two ways: first by using the analyticity
of the solutions as a function of ¢, and second by
using the exact solutions of the equation. We will
then generalize the first procedure to the Yang-
Mills case.

For small 7, the two solutions behave like irra-
tional powers of 7:

W, ~ 7,

V=3l -l
At least for |¢q| <7+ 3 we must take the solution
with v, the less singular (or nonsingular) solu-
tion.

For large 7 the leading asymptotic behaviors
of the solutions are

W~ erier, (3.9)

(3.8)

For real w both forms are allowed, but if w is
complex, only the falling exponential may be pres-

ent. Thus the existence of complex frequencies

is reduced to the following question: Is there a
complex frequency w which, when the solution of
Eq. (3.7), which is well behaved at the origin (W,),
is extrapolated to » — «, has only an exponentially
falling part? Such an eigenfrequency would rep-
resent an instability of the classical solution.

We can answer this question by observing that
if we regard the g-dependent terms in Eq. (3.7)
as a perturbation on the ¢ =0 equation, the per-
turbation is nonsingular (regular). That is, as
q —~ 0, the perturbation vanishes uniformly with
respect to the remaining terms in the equation.
Because the perturbation is regular, the solution
W, is an analytic function of ¢, and if we examine
W, for large 7,

W, )~ Vi(ge' +V,(g)e i, (3.10)

the functions V, and V, are analytic in ¢ and are
independent of w. The question is: Are there
values of w and ¢ which, for Imw less than or
greater than zero, have V, or V, (respectively)
vanishing? We argue that for a finite range of ¢,
at least, this does not happen.

When ¢ =0, Eq. (3.7) is related to the spherical
Bessel equation, and its nonsingular solution is

W, =7j,(wr). (3.11)

For large argument the spherical Bessel functions
have equal amounts of each exponential solution,
so V, and V, have a known relation at ¢ =0:

| Viig=0)]=V,g=0)].

This relation holds for all w. Since both functions
are analytic in ¢, there must be some finite range
of ¢ within which neither function vanishes relative
to the other. Within this range no complex eigen-
frequencies are possible.

Thus we have argued that there is a finite
(though unknown) range of charge about ¢ =0 for
which there are no complex eigenfrequencies and
so within which the field [Eq. (3.4)] is stable. In
no event can this argument be extended past Iq ]
=3, since beyond this value both solutions of the
s-wave equation become equally singular and there
is no longer any necessity to pick solution W,.

Before proceeding to the Yang-Mills case, let
us confirm the previous argument by using the
exact solution to Eq. (3.7). The solution is a
Whittaker function®® of complex argument:

(3.12)

W) =M., , (-2iwr), (3.13)
where
p=+[+3)7 -2, (3.14)

For large 7 its asymptotic behavior is (Rew>0)
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I'1+2u -t L+ . -
i ~ 1-\(%(_’_“ —ll)q)e iT(L/2+u W’(—ZZUJ?’) tqeiwr
s %%7 (=2iwr)*%e i (3.15)
Since p?+¢2>0, neither term can vanish. Thus
we have not merely confirmed the analyticity argu-
ment, but have shown that it holds out to ¢ =3.

The reader may justly wonder what has become
of the hydrogenic bound states, each of which
should give rise to an instability by the following
argument. An instability is present whenever
there is a configuration with lower total energy
than that of the state whose stability is at issue.
The total energy needed to fill a bound state is the
energy to create a pair of quanta, that is, twice
the rest mass of the quanta, less the binding en-
ergy of the level,

AE=2M -E,.

However, the Klein-Gordon quanta are massless
in our case, so A E appears to be negative. Hence
an instability is associated with each bound-state
energy level.

The reason we found no instabilities is that the
massless Klein-Gordon equation with a Coulomb
potential does not have hydrogenic bound states,

a fact which is connected to the scale invariance
of the equation. The scale invariance of the mass-~
less Klein-Gordon equation (3.2) implies that it has
a purely continuous spectrum. As one easily sees
from the equation, if q)(§) is an eigenfunction with
frequency w, then 90(7&) is an eigenfunction with
frequency Aw. To explicitly see how the discrete
levels have disappeared, imagine introducing a
mass term into the equation by replacing V2 by

V2 - MZ?. This new equation does have discrete
normalizable states, but because M is the only di-

—

mensional parameter in the equation, each of their
binding energies is directly proportional to M.
When M goes to zero, so do the binding energies.

However, these bound levels do not simply move
up to zero binding; they actually disappear from
the spectrum. The reason is that M not only sets
the scale of energy, but 1/M sets the scale of
distances over which their wave functions ¥ are
appreciable. Since the normalization remains
fixed, as M goes to zero, the wave function must
be proportional to M3/2

ZI'OCM3/2 .

So the wave functions themselves vanish in the
zero-mass limit.

IV. YANG-MILLS STABILITY

We will now show that the classical Coulomb-
type solution of the Yang-Mills equations with a
single weak source [Eq. (2.8) with only one term
in the sum] is stable with respect to infinitesimal
fluctuations. The method will be the most straight-
forward; we will linearize the full equations about
the given static solution and solve for the eigen-
frequencies of small vibrations. If they are all
real, the solution is stable.

We will denote the static solution |Eq. (2.8)] for
the Yang-Mills potential by A{”, the corresponding
static charge-current density jfj”, and the fluctua-
tion of A, and j, by Au andj,,

A, =AP 1A, .1)

Fu=i®
The space components of both A and j{% vanish.
Furthermore, since the sources cannot move in
space (although their Yang-Mills orientation may
fluctuate), the space components of fu also vanish.
Upon linearizing in the small fluctuation A, the
field equations become

2,0,A, -4, —igd,[A® A ]+ig[A®,0,A,) -ig[Al®, 8,4, ~0,4, —iglA® A ]+ig[A®, A,]]

+ig[8, AL — 8,4 A l+gj, =0. (4.2)

This very complicated equation can be simplified by choosing a convenient gauge and by identifying the
internal-symmetry structure of the eigenmodes of fluctuation. The gauge we will use is the background-

field gauge,™*

9,4, -ig[A”,A,]=0.

(4.3)

This gauge condition, which neither alters nor restricts the physical content of the solutions, reduces the

fluctuation equation to

-PA, +2ig[A, 5,4, ]+g7AL, [, A, ]+ 2ig[0, A, A,] - 2ig[s,A® A ] +gj,=0. (4.4)
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Only three of these four equations are independent.
In fact, the background-field covariant divergence
is identically zero,

a,[Eq. (4.9)] -ig[A©® [Eq. (4.4)]]=0, (4.5)

as a consequence of the gauge condition [Eq. (4.3)]
and the extended conservation law for the current
. [Eq. (2.5)].

The simplification of the internal-symmetry
structure results from the fact that since there is
only one source, the source and the potential field
A{? everywhere in space are proportional to a
single matrix e. This implies that the eigenmodes
of fluctuation of j, and Au are proportional to fixed
matrices e, which are eigenvectors of e under
commutation:

[e,e]l=2e. (4.6)

For any given source matrix e, there are only a
finite number of eigenvalues, and any traceless
matrix is expressible as a linear combination of
n? -1 eigenmatrices [for SU®)] of e.

This characterization of the eigenmodes of fluc-
tuation has a simple physical meaning. To see it,
choose a basis for the Yang-Mills internal space
in which the source matrix e is diagonal. In this
basis the source has definite values of the n — 1
commuting diagonal SU(z) charges, and zero val-
ues of the off-diagonal, charge-changing, genera-
tors. The potential setup by the source also has
zero values of the charge-changing generators,
that is, it is neutral. Each of the fluctuation
eigenmodes has a definite value of the charge-
changing generators, that is, it carries a definite
value of each of the n — 1 group charges. These
values are numerically fixed, since A, transforms
according to the adjoint representation of the
global gauge group. The eigenvalue X is the sum
[over the » — 1 diagonal charges of SU()] of the
products of the source charges times the field
eigenmode charges.

With a single source at the origin, the background
potential is

_& €

4o T4m lv]” (4.7)
and this potential only appears in commutators
multiplied by g. For any eigenmode of fluctuation,
corresponding to eigenvalue A, the charge-strength
parameters appear only in the combination \g?/4r,
which we denote by ¢:

gz
=A=—, 4,

9= 4 “.8)
It A(q,u is the coefficient of € for an eigenmode
with eigenvalue X,

~

A=A, @ (4.9)

w (@™ >

the linearized field equation for fi( ou 10 the back-
ground field gauge becomes [here using the fact
that the spatial components of A vanish]

AN i AT
[—<80—;> +V2}A(q)u+2z<au ;>A(a)0

) q\ = -
- 216u0(8u;>‘4(q)v 8Ty = 0.

(4.10)
The gauge condition becomes
8, A, ~iLlA, =0 (4.11)
w g v (q)0 ° .

We are concerned with the stability of the back-
ground field with respect to the infinitesimal
fluctuations A , and f .» which is equivalent to the
question of whether or not the eigenfrequencies
of fluctuation are real or complex. Thus we will
take as the time dependence

A(q)uj(q)u xeiot (4.12)

and then analyze the reality of w. Factoring this
time dependence from the equation has the effect
of replacing each time derivative 8, by jw.

There is no practical advantage in maintaining
formal Lorentz covariance, since the background
field defines a preferred Lorentz frame. If we
denote the time and space components of the fluc-
tuations by

A, =B, Reit,
(4.13)
j(q)u =(7’é63(§); O)int ’

the time-independent eigenvalue equations for the
fluctuation become

2 - -
[(w _‘_L) +V2} A+2<VQ>B=O,
v 7

[( _j_fwﬂs_z(%%)- K+qe6%®) =0 (4.14D)

(4.14a)

and the gauge condition becomes

< _1>B_$-K=0.

o (4.15)

Finally, we must maintain the extended conserva-
tion law for the sources, which to first order in
the fluctuations gives the extremely singular con-
straint.

[(w —%>é + %qB] 83%(X)=0.

As we remarked earlier, the four equations
(4.14)—(4.16) are not independent. In fact, Eq.
(4.14Db) is a linear combination of the divergence

(4.16)
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of Eq. (4.14a), the gauge condition (4.15), and the
current conservation condition (4.16). Therefore,
we need not consider it separately, and we will
henceforth ignore it. Also, the conservation condi-
tion simply fixes € in terms of B, but has no effect
on the eigenvalues, so we will ignore it as well.
This leaves us with the complete system Eqgs.
(4.14a) and Eq. (4.15), whose spectrum we will

now analyze.

In order to exploit the spherical symmetry of
the background potential, which ensures that the
fluctuation eigenmodes have definite angular mo-
mentum, we express A and B in terms of spheri-
cal harmonics:

1_3:= Z P*('V)?j, jﬂ,m(;‘) )
" (4.17)
B=QW)Y, ().

The i.,m are vector spherical harmonics, defined
by

§J',l,m= Z (jm]lm -p 1“‘>¥l,m—u£u .

©

(4.18)

The vectors Eu are fixed numerical vectors nor-
malized to 1.

Vector spherical harmonics are eigenfunctions
of both orbital and total angular momentum. Some
useful relations connecting them to the ordinary
spherical harmonics are

RIFEDILA FETEr
£

7Y 51, m =Y (4.19)

. 4.19
= = j+2
V.Yj,j*-l,m:—y—a*yfym’
- -1
VoY jam ==Y s

with
j+1\1/2
(4.20)

_ ] 1/2
“-'<2j+1> .

These relations reduce the fluctuation equation
and the gauge condition to

1d ,d a¢ (G£1)(j+1x1) 2
[ a7y (- ) -0 p, Mg
:0’
(4.21a)

AV G L) <i J:_1>
(w-y)Q—a+<dy+ p >P*+a_ = P_.

(4.21p)

These are a set of two coupled second-order
equations for P, and P_. The function @ is just
an auxiliary variable.

We shall now argue that for a finite range of
coupling g about ¢ =0 all the eigenvalues w of these
equations are real, by showing that if w is chosen
complex, any solution which is well behaved at the
origin diverges exponentially as 7 — .

Near » =0, for finite ¢, all four solutions of the
system [Eq. (4.21)] have a power dependence on
7, and the powers are independent of w:

P.(r)~pr’. (4.22)
The power v can take the four values

v=—1£Vk £3, (4.23)
where

k=(j+2)?-q%. (4.24)

For each value of v, the ratio of the constants p,
and p_ is fixed by

[vw+1)+2(w+j+2)a2-(5+1)(5+2)+¢%lp,
==2(w-j+1)aa_p..
(4.25)

The ¢ 0 limits of these behaviors are

B (S G (5 (=
(4.26)

However, the limit ¢ =0 is not uniform, because
the expression for @ [Eq. (4.21b)] has a singularity
at r=q/w. If ¢=0, the equations (4.21a) decouple,
and the solutions are spherical Bessel functions.
The small-» behaviors of the four solutions are

Gy @ (B
(4.27)

The set of » — 0 behaviors in Eq. (4.26) is the
g — 0 limit of the »— 0 limit of the solutions of the
system, Eq. (4.21). The set of »—~ 0 behaviors in
Eq. (4.27) is the »— 0 limit of the ¢ — 0 limit of the
same system. The discrepancy between these
orders of limits,

lim lim vslim lim

s
q=0 r~-0 r+0 ¢g=0

reflects the nonuniformity in » of the ¢ — 0 limit.
This nonuniformity is in turn a direct result of the
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singularity at » =¢/w in Eq. (4.21b), which moves spherical Bessel equation. It is thus trivial to
to =0 when ¢ vanishes. extrapolate each of the four solutions described
As in the Klein-Gordon discussion, we want to by Eg. (4.27) to infinity. It is less trivial to ex-
know whether, for a small finite range of ¢, there trapolate:the ¢,7—~0, » <g behavior [Eq. (4.26)]
are any complex eigenfrequencies w for -which a to g, 7= 0, r>¢q [Eq. (4.27)], but it is exactly
solution to Eq. (4.21) which is well behaved at » this connection which we must make in order to
=0 does not diverge exponentially as »—~ «. Such complete the connection between the small- and
an eigenfrequency would represent a classical large-» behaviors, and so we find the large-» be-
instability. That is to say, we are interested in havior of the two well-behaved solutions of Eq.
the large-» behavior of the two well-behaved solu- (4.26).
tions in Eq. (4.26), In the limit ¢ - 0,»— 0, with their ratio arbi-
» 2N /0 trary, the system [Eq. (4.21)] simplifies slightly
<P+>~ <_¢;+>W R ( >1f"1 , but does not decouple. The only length parameter

which survives in this limit is ¢/w. If we scale
because the physically relevant limit prescription 7 by this parameter, defining
will first take the » —~ 0 limit and afterward ex-

amine small q. x=wr/q, (4.28)
Sadly, it is the other order of limits which is and pass to the limit, the system has no arbitrary
easily analyzable, since when ¢ vanishes the sys- parameters:
tem Eq. (4.21) just reduces to two copies of the
J
. . y 1
9——(]+1)§]+2) 0 az(—d—+J+2 aa. 4 ] ) P
x 2 *\dx  x ax x *
i(j-1) | “xG-D 4 j+2 d j-1 =0 (4.29)
0 p N2 [ *x- aa_—+ﬁ—> _2——]—> P
x t\dx  x dax x
with
1d ,d
=g (4.30)

While this looks nearly as formidable as the original system, it is in fact ‘exactly soluble in terms of the
most elementary functions.

To solve it, first note that (9)x/~! and ()x~72 are the behaviors of solutions both as x— 0 [Eq. (4.26)] and
as x —~« [Eq. (4.27)]. The x— « limit is governed by the first matrix in Eq. (4.29), while both matrices
contribute equally as x - 0. Thus we see that the above expressions are exact solutions. This in turn
prompts us to define new variables by

@f) - (xéz x01> <§f> . (4.31)

Since any constant vector R will give a solution, this substitution will give a first-order system for the
derivatives R,. The resulting system is slightly simpler when expressed in terms of variables S,,

(2’> - (x;” x(31><§> ’ (4.32)

d (-5 0 2 (a? aa. S+>_
[xdx+<0 j+1) _x-1<a+a_ a_zﬂ (S_ =0. (4.33)

Making a final redefinition of variables,
<T+ _fa, a_\/(S,
7.) e, —a \s) (4.34)

el e W3 2




14 CLASSICAL YANG-MILLS POTENTIALS 3507

and eliminating T',, gives

@ 2x-2d 1[ 2 ] ~
{mea;—?[m”(f“)}ﬂ-o-

(4.36)

This is related to a highly degenerate form of the
hypergeometric equation whose solutions are
rational functions. The substitution T_=x"'T
puts it into standard form, and gives for the well-
behaved solution

T=j+1-jx (4.37)

or

T_=(j+ )it —jx7. (4.38)

Using the second component of Eq. (4.35) to get
T, and undoing all the variable changes gives the
simple result

PN\ _(a.\ ; 2j+1 <1> i
(P_>_<—a+>x “35+3%\0/

This completes the analysis of the g~ 0, »—0
nonuniformity. We have shown that the ¢ = 0 limits
of the two solutions.of Eq. (4.29) which are well be-
haved at » =0 (x— 0),

(4.39)

By O
-/ 1,2 +
have the » -~ 0 limits (x = «)
(ﬁ*) ~ <(1)>1f""1 s <(1)>1fj'1 . (4.41)
/1,2

Both of these solutions are ordinary spherical
Bessel functions which, for large 7, contain equal
admixtures of ¢“” and e™*“" parts. Since exponen-
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tion and by the National Science Foundation under
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