
PHYSICAL REVIEW D VOLUME 14, NUMBER 12 15 DECEMBER 1976

Multiple direct exchange in a Yang-Mills theory at high energy*

Barry M. McCoy~
Institute for Theoretical Physics, State University of New York, Stony Brook, ¹wYork 11794

Tai Tsun Wu
Gordon McKay L.aboratory, Harvard University, Cambridge, Massachusetts 02138

{Received 10 February 1976)

For eighth and higher orders, we obtain the leading high-energy behavior of the sum of all one-layer Feynman
diagrams in Yang-Mills theory. These are the contributions from Feynman diagrams where the two incident
fast particles exchange directly Yang-Mills bosons that are much less energetic. The incident particles may be
either bosons or fermions of arbitrary isospin, and the result is also generalized to include the case of the
Higgs scalar. The scattering amplitudes in all these cases are closely related, and all behave as sin" 's in the
2n+2 order. Furthermore, in this leading order for n & 2, the exchanged isospins are always 0 and 2, no
matter how high the isospins of the incident particles are.

I. INTRODUCTION

We continue' in this paper the study of the high-
energy behavior of two-body scattering amplitudes
in the Yang-Mills theory with a Higgs mechanism
by calculating the behavior in (2n+2)-order per-
turbation theory (for n ~ 2) of the sum of all dia-
grams which involve the multiple direct exchange
of m+1 Yang-Mills bosons between the two ener-
getic particles. We will consider the cases (see
Fig. 1) where the incident particles are either
fermions of arbitrary isospin, spin-one bosons
of isospin 1, spin-zero bosons of arbitrary iso-
spin, or a Higgs scalar.

This study is a part of our continuing investiga-
tion" of the behavior of quantum field theories
at high energy by perturbation-theory methods.
Most of this program has involved the extracting,
in each order of perturbation theory, of the lead-
ing behavior (in terms of powers of lns) of the
scattering amplitude as s-~. This is, of course,
only a first step in the understanding of high-

FIG. 1. The kinematics for the scattering of a particle
of isospin g& from a particle of isospin l2. The particles
may be either bosons or fermions.

energy behavior, since, as seen explicitl. y in the
case of elastic scattering in massive quantum
el.ectrodynamics, ' the sum of these leading log-
arithrns can be expected to violate unitarity (and
in particular the Froissart bound). To obtain
the physical behavior of the scattering amplitude
suitable nonleading logarithms must be included.
Some indication of the role of these nonleading
logarithms may be seen in a recent study of the
2-point function of the 2-dimensional Ising model
where all the logarithms were computed and sum-
med. ' However, before these effects can be
studied, the leading terms must be understood
and therefore in this paper we will study the mul-
tipl. e direct-exchange diagrams (for Yang-Mills
theory) which, in massive quantum electrody-
namics, ' proved to be so useful in obtaining the
physical predictions of the rising cross section. '

Several of these multiple direct-exchange dia-
grams are shown in Fig. 2. When at least one of
the fast incident particles is a fermion or a spin-
zero boson, the leading s- ~ behavior comes
from the region of momentum space where the
two fast momenta go through the diagram as shown
in Fig. 3. When both of the incident particles are
spin-one bosons, this region of momentum space
will still contribute to the leading s- ~ behavior
but there may be other paths for the fast momenta
which also contribute (Fig. 4). In this paper we
will not investigate these other possible momentum
regions and by the term "multiple direct-exchange
diagram" we wil. l. always mean that the fast mo-
menta are restricted to flow, as shown in Fig. 4(a).

Our results are summarized as follows. In
(2n+2)-order perturbation theory where n+1
bosons are exchanged, the sum of all multiple
direct-exchange graphs in leading order as s-
where the incident particles are spin-zero bosons
of isospin l, and l, is
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and

and

g' = —l (l +1),

" d'k d'k
(i) 1 . . . 8 (k 2 )(2) l. . . (k 2 )„2)-1

(2w)' (2m)'

(a)
x [(k, + k,, + ~ ~ ~ ~j„-z)' ~ A,') -'.

We note explicitl. y that

T' =0 ifl, = —' or l 2 2

(1.4)

(1.5a)

(b)
FIG. 2. Two tenth- order multiple-direct- exchange

Feynman diagrams for the scattering of two fermions.
It will be shown that diagram (a) contributes to leading
order as s ~ whereas diagram (b) does not.

where

T(0) (( ) )(2)

)& I —9" 3 0 & & ~2 g &2 ~2 T &o ~

l 3

+ ( 1)1(+12y (2)]

(1.2a)

T(2) L({g(&) g(i)j 2 g(l)2() 1(&))

x({g(') g(')].- -'g(')'() 1( )) (]. 2b)

({A,J3'f=AB+BA). The isospin matrices satisfy

[g, , g, ]=—e„,g, , ahab (1.3a)

FIG. 3. An eighth- order multiple-direct-exchange
Feynman diagram for fermion-boson scattering indi-
cating the path which the large momentum r2 and r3
must take.

(c)
FIG. 4. (a) A tenth-order boson-boson Feynman dia-

gram with the path of fast momenta which are consid-
ered for multiple direct exchange indicated. (b) A
second path for the large-r2 and large-r3, momenta
which is not considered for multiple direct exchange.
The r2 momenta are to flow in the path 12' 3' 5 and the

rs momenta are to flow in the path 1'345'. (c) A re-
drawing of the previous diagram where the path 12' 3'5
is at the top and the path 1'345' is at the bottom. This
momenta path is not included in multiple-direct ex-
change.
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and that if /, = E, = 1

~ah, cd ~ah ~cd + ~ad ~bc 3 ~ac bd
(2)

From this basic amplitude we find
D(.)

"BB + "S(l)S (1) 1 yl 2,2
D(n) i D(n)
BF(l) (2 ) S(1)8 (l) 61,1' 2,2'r

(1.6a)

(1.6b)

g&P ' 2 ~a/c b

&(n) 2 D(n)
~&(&,)&(&,) (2~) ~s(~, )s(r, )61,1 2,2' (1 6c)

D(n) D(n)
BS (l ) ~S (1)S (l ) l, l,

&(n ) l~ h i D(n)(,) (,) ~2 ~ (,) (,) ~ . ' ~ (1.6e)

Furthermore, we find that amplitudes involving
Higgs scalars are obtained from the amplitude
in which the Higgs scalar is replaced by an iso-
spin-& spin-zero boson. Thus we explicitly have

FIG. 5. The fermion-boson vertex.

given by the vertex of Fig. 5, where T, are the
Pauli matrices. Note that the rom indices cor-
respond to the final fermion and the column index
corresponds to the initial. fermion. For the in-
teraction of a fermion of isospin l with the Yang-
Mills boson we merely replace

~ 1
Z2 Ta Va

4g2n+ its — -- inn-is1
as {&) (n —1)!

x K„„(t)2" 'I (I + 1)5„ (1.6f)

where the (2l +1)-dimensional matrices o, sa-
tisfy (1.3).

When the fast particle is a boson of isospin 1

(where a and c are the isospin indices of the scalar
boson),

D(n) D (n)
VK PB 5R Hs (i )

'5 I

u (n) i a{n)
OR„~(,)- (2m) 6R„~(,) 5, ,

(1.6g)

(1.6h)

(1.6i)

gs b (P(-P2)~ gv~

+(P2-Pg)v g~P,

+(P~-P))~g „

In (1.6) 5. ..i is 1 if the spin of particle j is not
flipped and zero if the spin is flipped {and the
spin of the vector bosons may be either transverse
or longitudinal).

We obtain these results by an application of the
momentum-space techniques previously intro-
duced. 2' However, in an attempt to keep this
paper reasonably self-contained we will sum-
marize these techniques in Sec. II.

In Sec. III we will analyze the high-energy be-
havior of the relevant Feynman diagrams. In
Sec. IV we will. combine the results of these ex-
pansions with the isospin factors to obtain the
result (1.1).

P P-k

gs b
{2P k)pa gvcr

= g (2P k)p g vcr ( snob)
= g (2P k)p g vo. ( cro )cb

II. FORMULATION OF THE PROBLEM

In this section we mill. derive in detail the re-
lation of the amplitudes BR», DEB~(, ), BR~(,, )z(,, )
to the amplitude REs(„»(» and we will summarize
the techniques of momentum-flow diagrams in a
form suitable for the present problem.

A. Isospin matrices

When the fast particle is a fermion of isospin
—, the interaction with the Yang-Mills field is

g {2P-k)~ (cr, ),b

FIG. 6. (a) The three-boson vertex when all 3 bosons
have isospin l. (b) The only term in the three-boson
vertex that need be considered for the calculation of
the leading s ~ behavior when a fast momentum P
flows through two of the boson lines.
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the interaction with the Yang-Miils boson is given
in Fig. 6(a). However, from this, if we special-
ize to the path where P, and P, carry the fast mo-
mentum P, then of the 3 terms in Fig. 6(a) only
the one term of Fig. 6(b) contributes to leading
order. Then, to write the isospin factor &„, in
a matrix form with the convention used for fer-
mions that the outgoing fast particle is repre-
sented by the row index of o, and the incoming

g&.~.(2P k-) p g" --g(2P - k) ~g..(- &.,~)

=g(2P- k)„g..(-o.).&, (2.&)

where with E =1

O'a cc' = ~ace . (2.2)

fast particle is represented by the column index
of v, , see that

B. Reduction of numerators

Using the results of the previous subsection we find that at high energy the amplitude in (2n+ 2)-order
perturbation theory for one of the (n+1)! multiple-direct-exchange diagrams is

XxN„„, , (r„—r„—k~, . . . , k~ )

x (k,' g')-'(k, ' —X') ' ~ (k„' ~
A,') '[(k, + ~ ~ ~ k„—2r, )' z'] '

x [(r, —r, k, )' ——m'] '[(r, —r, —k, —k, )' —m']

x [(r, —r, —k, — —k„)' —m']

x[(r, +r, +k~ )' —m'] '[(r, +r, +k~ +k~ )' —rn']

x [(r, +r, + k~ + " .+ k~ )' —m']
j. n

where P is a permutation of 1, 2, , +n1 and j, and j, are either B, F, or S with [Fig. 7(a)]

(2.3)

and [Fig. 7(b)]

xy„o, u(r —r, )

, , (r, r„k„.. . , k„) =(i)"u(r+r, )y„, o, , (g y', —$,-— —k„+m)

xy &4 (W —H —Ii —' ' ' —fi +m)' ' "y ~ (H —H —P +m)

(2.4a)

N
~ ~ ~ An+ g, ag, . . . , any&( r lr 1& t n ( ~ p' gJJ' v2& 1 n pz+g ~ a z+&)gu2„ I/2z

xg„„(2r—2r, —2k, —.~ .—2k„, —k„)„(-o, )g,

x ~ g„, (2r —2r„—k, )~ (-g, )g„„e„, (2.4b)

where &„and d& are the polarization vectors of the incoming and outgoing bosons, and [Fig. 7(c)]

N„
i" „. . ., (r, r„, k„.. . , k„)=(i)" (2r —k, — .—k„)q (c, )

x (2r —2r, —2k, — —2k„, —k„,—k„)& (g, ) ''f»n an

x (2r —2r, —k, ) & (o, ). (2.4c)

Since we are considering the momentum region where all. k„are small compared to r, or r, we may
simplify (2.4) by dropping r„k„.. . , k„ in comparison to r'. Then in (2.4a) we anticommute g to the right
and may drop all terms where!r acts on u(r+r, ) by means of the Dirac equation. Therefore we find

-(i)"(2m) '(2r)„~ (2r)„, o, „o, o, 6. ., . (2.5a)

= —(i)"(2r)„. (2r)„, o, ' o,,&,', g„„&„,

Ns (s) -
t,
'z&" &2r& - ~ ~ &2r & o o&n+y' ag ' ' n+1 ' ' ' '&j ' 'pn+y n+1 a& (2.5c)
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to find approximately for ~ -~

(, ) ( ~„r„r, r,3 4 2

M A. 2td iP co 2 ' ji

- (0, 0, 1, 0),

e "' = (0, O, O, 1),

(2.1 la)

(2.11b)

r-r~-kl r-rl-kl-k&
r r

I~ ~ ~ o~k r+ rl

I
"-kp

2 2
(I ) A. +J fJ] + ~ 02 (dX AA,

A.

2+2 3 (2.11c)

For the polarization vector of the outgoing boson
we have

e'"'- (0, 0, 1, 0),

e'"'-(0 0 0 1)

FIG. 7. (a) A fermion line carrying the large momen-
tum x and the n+1 exchanged bosons attached to it. (b)
A boson line carrying the large momentum y and the
x+1 exchanged bosons attached to it.

A. -r +, , —r„,0

(2.12)

e")= (0, 0, 1, 0), el" =(0, 0, 0, 1)

and the l.ongitudinal. polarization vector is

(2.6a)

elhi =—(~ (A.'+~-')'~' 0 0) (2.6b)

To reduce (2.5b) further consider first the case
of boson-fermion scattering with r =x, . In the
frame where the incoming momentum P, =r, —r,
is ((A.'+~')'~', ~, 0, 0) the two transverse polar-
ization vectors are

2'

Therefore in (2.4b)

~i (1), ~(&)
1P I1

~i (2) @(2)
+P'eV

i(L ) —(,&)
gp ~Cp

——
2 2 'v2 'r3 - —1

(2.13a)

(2.13b)

(2.14)

All 3 of these polarization vectors satisfy pl. & =0
and &'= —1. We may use the consequence of gauge
invariance that

(2 7)

and so for boson-fermion scattering we may use

(~), . . . , pn+1, ali ' ' ~ ~ ftn+l1

—(i)"(2r)„~(2r)„„o,, ' ' ' o',,6... .
(2.15)

where 9R„. „ is the complete gauge-invariant
amplitude to replace ~(" by

&(z, ) &i.

= —[(d —((d +I, )i ](1 1 0 0).

el '- —(1 -1 O O).1

(2.8)

(2.9)

where 6. .. is 1 if the polarizations of the incoming
and outgoing bosons are the same and zero other-
wise.

For the case of boson-boson scattering we may
use (2.7) on one of the incoming boson indices.
Moreover, while the analog of (2.7) with both in-
coming polarization vectors replaced by the cor-
responding momenta is not ture, it still hoMs
approximately as a-~ and hence (2.15) may be
used for all cases. Therefore we have the re-
duction

We may now take the I orentz transform of the
polarization vector (2.6) and (2.9) back to the
frame where

1 el

N ' -(2m) 'N ' 6

(2.16a)

(2.16b)
Pl 127]

= ((a ~ + A.
' +r) 'i 2, u&, r~, 0) (2.10)

Thus it suffices to consider the scattering of two
scalar bosons of isospin /, and /2 where
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~~ (&2) ])n 4y .y )n+1g(1) g(1). . . g(1)g(2) g(2). . .g(2)
"1' )1n+1'a '. . . , a„+1 )1p, . . . . )1p +, ap, . . . , ap + 2 3 a„+1 an 1 p +1 p ap11 1 tl l. ]. n 1 tt fl

(2.17)

k, =koak3,

with

(2.18a)

dkodk3 = 2dk+4k,

to use the approximation that as & -
-2', r, -0,

r + -0, r3 -2(d,

(2.18b)

(2.19a)

(2.19b)

r, , -0, (2.19c)

and then to do all integrations over plus com-
ponents of momenta by contour integration. The
result of this integration depends in what region
of minus momentum space the variables
k ] y ~ ~ ~

y k~f1 lien

As shown in Ref. 2 me may determine the various
allowed regions of k, space by drawing sets of
arrows on the l.ines of the Feynman diagram. The
arrows represent the direction of flow of the
minus component of momentum in the l.ines and
are drawn according to the following rules:

(1) At least one arrow must point towards and
one arrow away from each vertex that does not
connect to an external line.

(2) If an external line carries no minus mo-
mentum as (d -~ (such as r2 sr, ), then on the two
internal l.ines that connect to it one arrow must
point towards the vertex and the other arrow must
point away from the vertex.

(8) The incoming line that carries the momentum
r3 acts as a source of minus momentum (the ar-
rows on the two internal lines connecting to it
point away from the vertex).

(4) The outgoing line that carries the momentum
r3 acts as a sink of minus momentum (the arrows
on the two internal lines connecting to it point

C. Momentum-flow diagrams

The reduced numerator (2.17)no longer depends
on the integration variables and therefore the
momentum-space techniques discussed in detail.
in the previous study of sixth- and tenth-order
perturbation theory of massive quantum electro-
dynamics" may be directly applied. We will here
summarize and specialize the discussion of those
pa, pers in a form adapted to the present problem.
For a more complete discussion we refer the
reader to Refs. 2 and 3.

The essence of the technique is to use, instead
of the momentum components k, and k„ the com-
ponents

towards the vertex).
(5) There are no closed loops in which all ar-

rows point in the same direction around the loop.
Each configuration of arrows will be considered

individually as a separate momentum-flow dia-
gram and for each separate momentum-flow dia-
gram we mill. in general choose a different set
of integration variables q,„(which are linear
combinations of I2«). In general, the poles closed
upon in the process of evaluating the integrals
over plus components of momenta will. be different
depending on which momentum-flow diagram is
considered. For a given momentum-flow diagram
the poles are determined by the following:

(1) First one must choose some momentum loop.
(2) In this loop there will be arrows pointing

in both directions. All. propagators with an arrow
in one of the two directions (clockwise or counter-
clockwise) must be closed upon. We indicate the
pole used by a cross on the line.

(8) For each pole chosen in this manner a second
momentum loop not containing this pole is chosen
and the process of closing on poles is repeated.
This process is carried out until al. l n plus mo-
D:enta have been integrated.

This process of determining poles to close on

is very nonunique. However, for the multiple-
direct-exchange diagrams there is a particular
choice of poles that is very useful. This choice
of poles is determined because we have the ad-
ditional restriction that we are considering only
regions of momentum space where al. l k„- are
smal. l compared with 2&. This leads to two im-
portant restrictions on the allowed momentum-
flow diagrams:

(1) The arrows on the bottom line must all point
from left to right.

(2) No crosses may be put on the upper line.
With these two restrictions we consider the

bottom line of a typical multiple-direct-exchange
diagram along with n+1 vertical lines attached
to it (Fig. 8). The arrows on the vertical lines
are separated into tmo classes:

(1) a set on the left which points up, and

(2) a set on the right which points down.
There can be no more classes because the tran-
sition from down on the left to up on the right
would [by restriction (I)] lead to a configuration
such as Fig. 8(b) which, since all 8 arrows shown
point in the same direction and since the loop
is completed by arrows in the upper horizontal
line which by restriction (2) cannot be closed
upon, will give zero when the integration of the
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~ILjR

(0)

in step (1).
We now carry out the integration over the plus

components of momenta. This leads to an inte-
grand (of the minus and & integrals) which con-
tains the following factors:

(1) for each propagator of momentum P, closed
upon the factor

-»il p~ I

'

and the rest of the factors evaluated with

P)+ =P)- '(pi)'+~');

(2) for the lower lines without the cross

(2(up„-p, ' —m'+i&) '-(2~) 'p„',

(2.20a)

(2.20b)

(2.21)
FIG. 8. (a) The bottom half of an allowed one-layer

momentum-flow diagram illustrating the choice of poles
closed on. (b) The bottom half of a one-layer momen-

tum-flow diagram which illustrates why the configura-
tion of a down arrow on the left and an up arrow on the

right will not contribute.

plus momentum around this loop is carried out.
Accordingly, once the arrows are drawn there
is only one set of contributing poles which is
specified as fol. lows:

(1) the one propagator on the bottom line which
separates the up arrows from the down arrows;
and

(2) the n —1 propagators for the vertical. lines
which do not intersect with the propagator chosen

(3) for the upper lines

1 1 1
+2~P, —p~,

' —m'+sr 2~ s p, —O(1(&u)+ie '

(2.22)

(2.23)(Pg+Pg- —pi&' —~'+i~) '.
We thus find that OR sI", » ~» of (2.3) is given as

where the P, are always chosen positive and the
sign + is chosen to be plus if the arrows point
from left to right (positive P„) and to be minus
if the arrow points from right to left (negative

pl+)s
(4) for the two vertical lines with no crosses

2 2

D)1', I", ')s(, )(P)--2sg'""o," v.'"g." o, p ', ", dq, "dq„8(q„.. . , q„),

(2.24)

where
(1) the sum is over all momentum-flow dia-

grams satisfying restrictions (1) and (2),
(2) the minus momentum coordinates q, are

chosen to satisfy

0- q,. - 2(d, (2.25)

and
(3) the integrand 8(q„.. . , q„) is constructed

with the factors
(a) p, ' for each cross on a vertical line with

momentum P„
(b) P, +

' for each bottom horizontal line of mo-
mentum P, with no cross,

(c) (p„p,-- p,
' —)).'+is} for each of the two ver-

tical lines with no cross,
(d) [aP, —O(l(e)+iej ' for each horizontal

line on top where the + (-) sign is used if the
arrow is from left to right (right to left).

The maximum power of lns which can come
from any integral. of the form
fdq, dq„8(q„. . . , q„) is ln"s. This leading

behavior comes from a region of the q,- space

Q&q «q « ~ ~ ~ «q
1 2

such that

(2.26)

1 1 18(q„. . . , q. )
- ——" —. (2.27)

(m„m, )K„„(t),
where K„+,(t) is given by (1.4) and

(2.28)

(m„m ) = —, [m, ln"s+m2(ln"s —nvi in" 's}],

(2.29)

with m, =0 and m2=+1 or m, =0 and m, =+1.
The calculation of (2.24) thus reduces to
(1) determination of the allowed momentum-

flow diagrams,
(2) determination of the allowed momentum

For each ordering (2.26) for which (2.27) holds,
the integral under the summation sign of (2.24)
reduces to
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-Pig~ -P~-,P~-,P~

I i ~
PP3

~ P~ i i J
)(Pi )(~p p p )(~5 p )(~g p )( 7

p P2 ~p &qg 5)p 6 )/ 7)/
i&&

~ I
~ + ~~ Cjj,QP6P7 P6 P7i -P7

2(u-
Pi 2au-Pi-P~ 2(u-Pi-P~-Q 2cu-P5-P6-P7 2'-P6-P7 Ptas-P7

=2o)-PgP5-P6-P7

FIG. 9. The lower line and the vertical lines attached to it. The particular case illustrated is for g = 6. The poles
closed on are indicated by crosses and the factors associated with each line are given in the box next to the line.
Where two or more factors appear in the box the smallest factor is to be chosen.

orderings, and

(3) determination of the pair (m„m, ).

III. CALCULATION OF THE MOMENTIJM-FLORAE DIAG'. AMS

We present the calculation of the momentum-
flow diagrams in the following 7 subsections.

A. Ordering of momenta on the lower line

Consider the lower line and the vertical lines
attached to it as shown in Fig. 9. The factors
associated with each line are shown in a box next
to the 1.ine and when two or more factors are in
the same box the smallest factor must be chosen.
The a+1 momenta p,- satisfy

B. The necessity of a bridge

Consider the leftmost and rightmost vertical
lines which connect to the lower line. Because
this leftmost vertical line carries the largest
upward momenta and this rightmost vertical line
carries the largest downward momenta and be-
cause of (3.1), the largest elementary momentum

q„must flow in these outermost vertical lines
(and in no others). Moreover, since we must
have only one factor of 1/q„ from the upper line,
this q„may flow in only uzi upper line segment.
Therefore these two outermost vertical lines can
be connected to the top line in only the two ways
shown in Fig. 10. Either of these two structures

+upward P's =g downward P's. (3.1)

There are n factors of the form 1/Qa, q, (with

q,. =0, 1, or —1) which come from the n propaga-
tors on the upper line. It is then seen from Fig.
9 that the only way for there to be an ordering of
momenta such that the integrand of the q inte-
gration is

(3.2)

GONTRIBUTES + I

is for the momenta on the left of the cross on the
lower line to be ordered

p ))p ))p )) ~ ~ ~

1 2 3

and for the momenta on the right of the cross on
the lower line to be ordered

p ))p ))p )) ~ ~ ~ (3.3b)

( 1)n+ 1 (3.4)

When this ordering occurs, the factors of P, from
the bottom lines cancel the factors of 1/P, from
the n —1 crosses on the vertical lines and the
—1 must be used on each of the two uncrossed
vertical lines. Therefore, with restriction (3.3)
the factor which the 1.ower part of the momentum-
flow diagram contributes to the integrand is

CONTRI BUTES —
I

FIG. 10. The two possible paths which q„, the largest
elementary momentum, may follow. Both of these
structures will be called a bridge.
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will be called a bridge. If the only difference be-
tween two Feynman diagrams is the difference
between the two possible bridges of Fig. 10, then
to leading order in lns these two Feynman dia-
grams will cancel because the bridge of Fig. 10(a)
contributes the factor of +1 while the bridge of
Fig. 10(b) contributes the factor of —1 (and all
the other factors in the two diagrams will be the
same). qn

qn-a

(a)

qn-a

qn-S

C. Ordered momentum-flow diagrams

There are now n —1 elementary momenta left
to be chosen and & —1 propagators left in the upper
line. %'e will expand our notion of a momentum-
fl.ow diagram to that of an ordered momentum-
flow diagram by making the definition that

q « q && ~ ~ « q && q (3.5)

Each distinct way that coordinates q, satisfying
(3.5) can be put on a momentum-flow diagram will
be called an ordered momentum-flow diagram.
In order to obtain (3.2) the momenta q, can be
the maximum momenta in one and only one of the
upper propa, gators. We can thus discuss all pos-
sible contributions to a given momentum-flow
diagram by assigning momenta q„. . . , q„, and
the associated arrows to the upper n —1 l.ine seg-
ments consistent with (3.5) and with the arrows
on the vertical lines of the diagram. This will
give for each ordered momentum-fl. ow diagram
the contribution of

( 1)number of left-pointing upper arrows

(0, 1) if q, points right,
(1, 0) if q, points left.

(3.6)

D. Combination of ordered momentum-flow diagrams

Our next step is to demonstrate that not all mays
in which the momentum-flow diagrams may be
closed on the top by arrows with momenta
q„.. . , q„, need be considered when al. l ordered
momentum-flow diagrams contributing to a given
Feynman diagram are summed.

When arrows are drawn on the top line they
may either connect a vertical line in a connected
fashion to the original bridge formed by q„or at
some stage a second bridge may be formed. An
example of these tmo choices is shown in Fig. 11.

Consider first the situation shown in Fig. 11(b)
where after some state there is a second bridge
which is separated from the segments connected
to the q, bridge by one line. On this free link
we may draw the arrow with momentum q in
either direction and still satisfy all necessary
requirements without changing anything el s e in

(b)

FlG. 11. {a) An example of part of an ordered momen-
tum-flow diagram where all the momenta in the upper
line are connected inwards to the q„bridge. (b) An ex-
ample of an ordered momentum-flow diagram where the
momentum q„3 forms a second bridge.

the diagram. But if q is not q„(the smallest
momentum) the only difference between the con-
tributions from these two ordered momentum-
flow diagrams is the sign which comes from the
reversal of the q„arrow. Therefore these two
related ordered momentum-flow diagrams cancel.
The only exception to this cancellation is if q
is the smallest momenta since (0, 1) and (—1, 0)
clearly do not canc el. .

Similarly ordered momentum-flow diagrams
with 3 or more bridges, each separated from
each other by one free link, must always cancel in

the sum because only one of the two (or more)
free momenta can be smallest. Furthermore, the
contribution from ordered momentum-flow dia-
grams which at some stage have a second bridge
separated from the main bridge by more than
one free link will. also cancel out in the sum, as
the example of Fig. 12 illustrates. Therefore
we are left with only those ordered momentum-
flow diagrams such that

(1) at no stage is there more than one bridge,
or

(2) if there are two bridges at some stage, then
the second bridge must be separated from the rest
of diagram by precisely one link which must carry
the smallest momentum q, .

Thus far we have only combined ordered mo-
mentum-flow diagrams with the cross on the
lower horizontal line in the same place. To effect
further cancellations me must combine diagrams
with cross es in different places. Cons ider the
situation shown in Fig. 13 where there is a second
bridge which is separated from the main bridge
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by the smallest momenta and there is an extra
line which carries the next-to-smallest momenta.
Because the smallest momenta is on the free link
between the two bridges this next-to-smallest
momenta must be next to the loler cross.
this cross may be on either side of this next-
smallest momentum line and for a given direction
of q, on the free link the contribution from these
two related ordered momentum-flow diagrams
differ only by the sign coming from the direction
of the q, arrow. Therefore they cancel in the
sum and hence if there is a second bridge it must
carry the second-smallest momenta q, .

E. Construction of the contributing diagrams

From the preceding discussion we see that
with the exception of the two smallest momenta

q, and q, is suffices to specify which vertical
line the momenta q, flows in because on the top
of the diagram the momenta is forced to flow in

that l. ink which joins the vertical. l.ine carrying

q, with that part of the diagram which involves

q„„.. . , q„. Therefore at any stage in the con-
struction of an ordered momentum-flow diagram
we have at most 4 choices for the vertical l.ine
which q, may flow in. The momenta q„must
flow in a bridge. Then relative to the momenta
which are connected to this bridge the new ver-
tical. line carrying momenta q, may have its lower
end either at the right or at the left inside of the
bridge and its upper end at the right or left out-
side of the bridge. We symbolically represent
these four possibilities by, , where i=A or I.
specifies where the top of the vertical. l.ine is
added and j =8 or L specifies where the bottom
of the vertical line is added. Then from Fig. 14
we see that these four possibil. ities give the fol-
lowing factors to the product (3.6):

R L R IR~1, L m1, Lm —1, R~ —1. (3.7)

F. The two smallest momenta

To complete our study of ordered momenta-flow
diagrams we must determine the possible ways
in which the last two vertical lines may be added
to the diagram. By definition these last two l.ines
wil. l be next to each other on the bottom. How-
ever, or the top there are two possibilities: (1)
Either the two lines are on different sides of the

Qn Qg

Qp

(b)

Q)

FIG. 12. (a) An example of an ordered momentum-
flow diagram where at some stage (denoted here by q )
a second bridge is separated from the mein bridge (shown
here simply as the main q„bridge) by two (or more)
links. (b) and (c) illustrate the two different ways in
which a momentum q& (which is not smallest) may be
drawn in the diagram (a). The arrows on the remaining
upper link may point in either direction. All the dia-
grams from (b) cancel the corresponding diagrams com-
ing from (c),

(c)

FIG. 13. (a) An example of part of an ordered mo-
mentum-How diagiam with a second bridge (denoted
here by q& ) separated from the main connected bridge
(denoted here simply by q„) by a free link with momen-
tum q&. (b) and (c) are the demonstration of the can-
cellation of the pair of ordered momentum-flow dia-
grams derived from (a) which differ only in the loca-
tion of the cross (or equivalently by the direction of q2).
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bridge or (2) they are on the same side of the
bridge. The second possibility is examined in
Fig. 15 and then we see that there are 4 contrib-
uting ordered momentum-flow diagrams, two of
which have the smallest momentum q, between
two bridges, where q, flows in one bridge, and
two of which never have a two-bridge structure
at any stage. It is explicitly seen from Fig. 15
that these four ordered momentum-flow diagrams
cancel out. Therefore the last-two-smal. jest mo-
menta must flow in vertical lines which cannot
be added to the same side on top.

It thus remains to compute the contribution
coming from the four remaining possibilities of
s», ~z, ~zz~„sz~ (where the smallest momentum is
on the left). This calculation is displayed in Fig.
16, where we find

G. Examples of calculations

We use the results of Egs. (3.4), (3.7), and

(3.8) to evaluate several examples.
(a) In eighth order (n=3) consider the Feynman

diagram of Fig. 17. The only possible momentum
orderings for this diagram are

RI LB
RL RR

so from (3.4) and (3.8) the diagram has the con-
tribution 2(- I, I).

(b) In tenth order (n =4) consider the two dia-
grams of Fig. 18. The first diagram has the two
possible momentum orderings

(3.9)

(3.8)

R

R

L

R

(b)
q)

L

R

L

FIG. 14. The four possible ways a vertical line may
be added to the lines connected to the q„bridge and the
factor which each configuration gives to the contribution
of the ordered momentum-flow diagram.

FIG. 15. The demonstration of the cancellation of
the four {classes of) ordered momentum-Qow diagrams
which occurs when the last two vertical lines considered
lie on the same side of the bridge on top. The diagram
explicitly shown is an eighth-order diagram but the

q3 bridge may be replaced by a connected bridge with

any number of momenta and the same argument goes
through.
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q& qp

q2

L R

L R

qp

L R

R L

q& ql

FIG. 18. Two contributing tenth-order Feynman dia-
grams.

R L

L R

FIG. 16. The calculation of the contribution to the
ordered momentum-flow diagram from the four pos-
sible ways of adding the two smallest momenta q& and q2.

and the second has the orderings

( )( + ) 4( 11) (3.11)

IV. SUMMATION OF FEYNMAN DIAGRAMS

If we were interested in the separate contri-
butions of each Feynman diagram which contrib-
utes to multiple-direct exchange in (2n+2)-order
perturbation theory we would be faced with the
problem of determining the possible orderings
of the factors ~~, ~, ~~, ~~for each diagram and we
would have to work out the corresponding isospin
factors. However, we are not interested in the

(3.10)

(c) In the twelfth order (n =5) we consider as
an example the diagram of Fig. 19. Here there
are 4 possible momentum orderings,

(A)

(c)
(4 1)

We denote by M(I) the operation of adding the
line, to the existing diagram specified by (4.1).

separate contribution of individual Feynman dia-
grams but are only interested in their sum.
Therefore further simplification is possible be-
cause at each stage of building up a contributing
Feynman diagram we may use either „", ~, ~, or
„and we do not need to specify which set of fac-
tors goes with which Feynman diagram.

We construct the sum of all contributing Feynman
diagrams by adding vertical lines one at a time
to the existing bridge structure. Each line has
an isospin matrix that goes with it and at any stage
before the end there will be three separate sets
of isospin matrices (Fig. 20),

(A) those in the upper line,
(8) those at the left of the lower line, and

(C) those at the right of the lower line.
We denote these 3 sets of isospin matrices by
the vector

FIG. 17. A contributing eighth-order Feynman dia-
gram.

FIG. 19. A contributing twelfth-order Feynman dia-
gram.
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8 L

A R
crossed bridge of Fig. 21 and is given by

(j) (1) (I ) (l)
m +n —am ~n mnl~l

u, ) ~(i)
m O'm

(z) (z)0'n &n

(4-5)

FIG. 20. The 3 sets of isospin matrices discussed in
the text.

From (3.7) we find

A O, A

M(s) B = B

[where we recall that the commutation relations
of the o„are given by (1,3a)].

To obtain the sum of all contributing multiple-
direct-exchange Feynman diagrams in (2n+2)-
order perturbation theory we first let the matrix
M act on the vector v, n —3 times. Ef we call the
resulting vector

(n-3)

v„,= ~
B(" ')

( (n-3)

(4.6)

(rr, »)
gza

c)
A. Aa,

M(s) B = — B

(c) (c.,)

(4 2)

we obtain the sum of all contributing diagrams
[up to the factor of (- 1)""from (3.4)] by using
(3.8) to terminate the diagram in either ssz„~ss,
~~, or ~~~~ and then to mul. tiply the factors B and
C together (Fig. 22). Therefore this first oper-
ation sends

A.

.o„"Xo") f o„(1)A.g"') —2, 2

Therefore, since we are interested in the sum
of all contributing Feynman diagrams we define

( &» +o'm

C e„„,gI' ~B)
(4.7)

g

MBI=8
(.) (...

([rr, ,»])

M =M(,")+M(',)+M(', )+M(,')
and find

(4 3)

(4 4)

where in the two-component vectors the matrices
in C and B are both labeled by (2) instead of by
A and 1. and the two components of the column
are considered to be multiplied together as a
direct product.

We may now use (4.4) to compute the effect of
the operator M on the two component vector of
(4.7) [where we suppress for the moment the

The initial vector which the matrix M operates
on is obtained from the sum of the bridge and the

L'~A R

L R

FIG. 21. The two isospin diagrams that give the ini-
tial vector.

FIG. 22. The two possible ways of terminating the
isospin diagrams.
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common factor (-2, 2)]. Thus we find

( g(&)gg(&) ) ( g(&)[g(z) ~]g(a) )
C e„„bgq

' BJ k —enmb Cgb' g, ' B j
f g(i)[g(x) ~]g(x) )

Cg»' g, ' Bf

We now use (4.14) to rewrite the first term on
the right-hand side of (4.11) and find

g(&)g(&)g(&) g(l)g(1)g(l)

( —Ce„bgbh B) ( —Ce„~gb' Bf

g (&)g(&)g (l. )

g(&)[g(&) g]g(l)
n l ~ m

~- &.~c(- e,bg
g('))B1 Moreover, if in (4.14) we set a = b and sum on b

we find

(4.8)
~mnb gngbgm = —g (4.16)

Because of the initial vector (4.5) we are only
interested in cases where A. is 0, . Therefore
we compute from (4.8)

j g(&)g(&)g(&) ) ( g(&)e g(&)g(&)

(-C „„,,"'B~ (- „„,C (')B)

(4.17)

Define

and hence the second term in (4.15) reduces to

( g(»g«&g«& ) ( ga

—~,Cg(2)B) (Cg.(2)B
~

Now

&.b &Sa~ =&.n &b~ —~.~ &b~

and hence

g(&)g(1)g(i) $ (t' g(x)g(z)g(x)

Ce„~g„' Bj ( —e~, Cg, 'B)

(4.9)

(4.10)

( g(&)g(j. )g(i) )
(—Ce„g(')Bf

(2)B
P

Then (4.15) is rewritten as

(4.18a)

(4.18b)

g (i)g(i )g (j.)

( —e.„,Cg(')Bf

(4.11)

To proceed further we must show that
& „,onobo is symmetric in a and b. To do this
we first write

1
~mna gn gb gm. ~ ~mna gn gb gm gmgb gn

1= a& (g„gbg —g„g gb+g„g gb

gmgn gb+ gmgn gb gmgb gn )

(4.12)

and then use the commutation relation (1.5a) to
obtain

( (r)[g(i) [g(l) g(i)]]g(~)

gn E) 'ag C)gf gg gmr ()() ~

l —~n~ ~iI~gi d, I «I(2)

and hence

( g(')g(»g«) & g(')g(~)g(» )
(—e„~Cg,"Bf ( —e„„,Cg,"B)

(4.20)

(4.19)

We next compute M Y by first using (4.8) to find

mnagngb gm 2 mna ( gn bm) g) earn) gi gb gm&nb) g& ).
MY = —2F. (4.21)

Then we use (4.10) and find

,g„gbg = n [g„g, ('b„b 5„—5„,b,b )

+g-g~(5 b().) -5 &5.b)]
2=0'a 0'b+ gb ga —~ab g,

which is clearly symmetric in a and b.

(4.13)

(4.14)

(4.22)

(4.23)

Thus in the space spanned by the vector (xr) we
may write M as the 2&&2 matrix

(0 -2~
Then it is a simple matter to find

(1 —:[-1+(- 2)"]lM" =i
(o (-2)"
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In terms of this formalism we find that in leading
order as s-~ the sum of al. l multiple-direct-
exchange Feynman diagrams in 2n+ 2 order (for
~~3) is

operator

~
(( ) (v (& ) v (( ) ]. 2 v (( )2 5 1 (& )

which obeys

(4.30)

Ms (l )s (l )
—28g En+1(f )(—1) eabc

xM" 'X(') (-2, 2),

where from (4.5) and (4.7) the initial vector

(j.)&(i) (i)
X(0) =

O'n +a Om
a;bc

&(2)&(2)&(2) j
~nml +b +l ~c /

Therefore with the additional definition of

2
(0)

(4.24)

(4.25)

(4.26)

Q ](t) 0
a= ].

Then we define the isospin-2 amplitude as

2T(2) = $(~) $(2)

and the isospin-0 amplitude as

T(0) =1(» 1(»

X o [ ~(i) i5 (i)~1(i)]

(4.31)

(4.32a)

(4.32b)

we may use (4.23) to find
—2T(2)+ —0(&)2 g(2)2T(o)+ 30' (4.33)

However, using (4.14)

(4.27)
and hence, using (2.2a), (4.27), (4.29), (4.32),
and (4.33) in (4.24), we obtain the final result
(1 1)

and

~(o) [fv(x) v(x)}. 6 v21(x)]

x [(v(2) v(2) ) 6 v21(2)]

y 0) 0 (l)2 g(2)21(1 1(2)
abc abc )

(4.28)

(4.29)

where (v, , v, ] =v, v~+v, v, . Finally, define the
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