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Two-dimensional U(N)-invariant chromodynamics is canonically quantized in both the light-cone and the
axial gauges. A principal-value infrared cutoff is adopted. A direct Hamiltonian method leads to two different
meson bound-state equations in the limit of N~00, g'E kept fixed. In the light-cone gauge, 't Hooft's
equation is obtained; in the axial gauge, the corresponding equation suffers from covariance problems rooted
in the severe infrared divergences of the theory. The Bose form of the model is also presented.

I. INTRODUCTION

It is widely believed that a color gauge theory
of quarks and gluons, quantum chromodynamics
(QCD), ' provides a not manifestly wrong and eco-
nomical foundation for the dynamics of strong
interactions. While much effort, both conceptual
and computational, ' has been spent to uncover the
true infrared structure of QCD, little has yet em-
erged to warrant confrontation with our experi-
mental knowledge of hadrons. However, if one is
willing to contemplate an unphysical world in 1+1
dimensions, the theoretical outlook is brighter.
QED and QCD" manifestly confine since the at-
tractive Coulomb potential between a fermion-anti-
fermion pair rises linearly with distance. Of
particular interest are the works of 't Hooft,"
who studied the large-N limit keeping g'N fixed
[N refers to the local SU(N) group of color and g
the associated group charge]. For two-dimensional
QCD, referred to hereafter as TDQCD, he showed
it to be solvable in this limit, and by summing the
set of all planar Feynman graphs for a given chan-
nel he obtained in the light-cone gauge a covariant
bound-state equation for the mesons. This equation
reveals an infinite number of finite-mass color-
singlet bound states, equally spaced for large
masses. This spectrum concurs with one's poten-
tial-theoretic intuition in this instance of a shallow
well in the weak-coupling regime.

More recently, there has been a resurgence of
activities concerning the 't Hooft solution. ' Re-
strict;ing themselves to the light-cone gauge, where
the model looks particularly simple, Callan et al.
and Einhorn aim to test the consistency of this
solution. Bjorken scaling, the Drell- Yan-West
relation, and the Bloom-Gilman relation are seen
to be satisfied. All heralds well for the four-di-
mensional counterpart of the 't Hooft solution to
QCD. ' We note that the identity in the topological
structure between the I/N expansion of QCD and the
perturbative graphs of dual-resonance models
suggests that a transverse-momentum cutoff must

be operative in the former as it is in dual models.
If this is indeed so, one may end up with having the
Galilean subdynamics of the four-dimensional
theory reduced to an effective TDQCD in the infin-
ite-momentum frame, or more precisely on the
null plane. From the viewpoint of string theories
TDQCD also represents the common limiting case
of the quark-confining string' and a theory with
quarks constrained at the end points of Nambu
strings. " In short, 't Hooft TDQCD is a rich test-
ing laboratory for bound-state problems in color
gauge theories.

In this work, we wish to carry into a different
direction this consistency study of the t Hooft sol-
ution. We report on a Hamiltonian approach to
TDQCD a,s an alternative I/N expansion scheme
to the usual diagrammatic method.

Our intentions are twofold. We formulate TDQCD
in two different gauges, the light-cone and the
axial gauges. These choices follow, respectively,
from the front and the instant forms of dynamics.
Postulating in both instances the standard canonical
free-field commutation relations for the independ-
ent fields and a principal-value infrared cutoff, we
attempt to derive the corresponding bound-state
equation for quark-antiquark pairs in the N- ~
limit, g'N fixed. While the two forms of dynamics
share the same Lorentz-invariant action, there
is no a priori reason for them to be the same since
they are not simply connected by a unitary trans-
formation. " Moreover, the infrared divergences
inherent to the model have varying effects depend-
ing on the gauges chosen. Our interest in the
axial-gauge version of TDQCD was triggered by
the work of Frishman et al,"who fail to obtain a
covariant 't Hooft equation in ghost-free gauges
other than the light-cone gauge.

In our work, the I/N expansion is formulated
as an old-fashioned Rayleigh-Schrodinger pertur-
bative series in fixed g'N, where the perturbing
potential is the particle-number-changing piece of
our Hamiltonian. In the leading order in N, we
recover in the light-cone gauge 't Hooft's covariant
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equation. However, a similar calculation in the
axial gauge leads to spinorial complications and a
noncovariant equation. We attribute this negative
result to the inadequacy of the naive prineipal-
value cutoff in the handling of the particularly
severe infrared divergences in the Coulomb gauge.
Possible cures for this problem are discussed.

Finally, we present the Bose-form equivalent of
TDQCD, a form which generalizes the Bose form
of the massive Schwinger model. This dual form
of TDQCD will be useful in the strong-coupling
regime.

Our paper is organized as follows: In Sec. II we
define our notation, the null-plane quantization of.

TDQCD is performed, and a, Hamiltonian method to
get the 't Hooft equation is given. In Sec. III a
similar analysis is done in the axial gauge. In
See. IV we close with writing down the Bose form
of TDQCD and discuss our results.

2 = P(iy" D —I) t/r —-,'Tr(F „„F"'),
where

D,g= (9, —iRA, )(i,

F,„=8 A„—B„A,+g[A„,A„] .

(2.1)

(2.2)

(2.3)

II. TDQCD IN THE LIGHT-CONE GAUGE

For definiteness, we consider the standard local-
ly U(N)-invariant Lagrangian density

entum tensor

T„„=-g,„Z+i$y, s„g (2.6)

given by Poincare invarianee through Noether's
theorem.

We recall that TDQCD is superrenormalizable,
as the group charge g has the dimension of a mass.
Both mass and coupling-constant renormalizations
are finite. Owing to the two-dimensionality of the
system, there is the added bonus in any ghost-free
gauge n A = 0 that there are no nonlinear interac-
tions among the gluons since [A, ,A„]=0. For this
reason, we shall consider two such gauges, the
light-cone and axial gauges, respectively.

It is well known that dynamics at infinite momen-
tum, or the front form of dynamics, present defin-
ite computational advantages in bound-state prob-
lems in relativistic theories. " The key reason lies
in the vanishing of the usually troublesome vacuum
fluctuation and topologically complex graphs which
are stumbling blocks in the derivation of useful
integral equations for bound states in an ordinary
I.orentz frame. Therefore we begin by analyzing
in some detail the null-plane dynamics of system
(2.1) in the light-cone gauge.

Our metric tensor components are g„=g =0,
g, =g, = 1, with the coordinates and the y matrices
defined as

~ =~, =(~ ~x')/M2,

The matrix notation, e.g. , A„=A„T, is used
throughout. The T are the matrix representations
of the generators of U(N)

w' = (8+ r')4&, w" = r ' = o,
b', r 'i=2, ~'=lb, ~'].

We use the Weyl representation

/0 1) t/0
y'=I =v„, y =i i=-iv, ,

0 -&0

(2.'I)

(2.4)(iy "D, I)$ = 0, —

s"F„.=-g(q„- i[F„„,A"J),

where the color current is 7„=gy„Tg T.
We shall also need the conserved energy-mom-

(2.5)

denotes a Dirae 2-spinor which is an N-component
vector in the color space. A„and E„„are the
color gauge potentials and the covariant Yang-Mills
fields, respectively. Flavor indices have been
deleted since only the dynamics of color is of in-
terest here.

Following t Hooft, 7 we choose to work with the
group U(N) instead of SU(/V); the difference is the
singlet A; which decouples and is a free field. To
leading order in 1/N, either group leads to identical
results. As is apparent in (2.1) we limit our treat-
ment to the equal-quark-mass ease; the general
situation is a trivial extension.

Variation of the fields P and A„yields the coupled
set of Dirac and Yang-Mills equations of motion

/1 0)

(0

(2 8)

fulfilling the properties

P+P —E P -P) P P
(2.10)

P y'P, =y', P,y-P =y-,

where the free spinor fields are such that u(0) = (,')
and r(0) = (', ). Usually used for massless fermions,
this representation is the most natural choice in
the null-plane quantization which does not know
about masses. " We also make use of the Hermit-
ian projection operators

0 0.'~ r'= ,'r, r =]-
(2.9)

1 O'I
F =; ~"~ = l r r.=

o 0)
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gm'
f dz dz'P(z'), e(z —z')g, (z)'. (2.20)

(2.11) Similarly, solving for A, by use of (2.16) we get
the Coulomb term

By way of these y-matrix identities in the light-
cone gauge A. =0, the Dirac equation for g splits
1Qto

zdz'J (z),'lz-z'IZ (;);, (2.21)

2iD, g; = my, g',

2i9 tt'=my g;.

(2.12)

(2.13)
J (~, z)', = Mgt(7, z).g,( r, z)'. (2.22)

With 8, playing the role of a "time" derivative in
the null-plane dynamics, g: is seen as the indepen-
dent variable of our problem. Equation (2.13) plays
the role of a constraint for g' and can be written as A, =-gs j —Zz —6, (2.23)

The main steps leading up to (2.21) are as fol-
lows. The general solution of the boundary-v3lue
problem (2.16) is given as

y'(r, z) =—. dz'~ (z —z')y g;(r, z'),

with

(2.14)

9 'j (z) =-,' dz'iz —z'ij (z'). (2.24)

x&0
e(x) =

9

Consequently (2.12) becomes

(9,+-', m'9 ')g;=-igA, P;. (2.15)

The constant matrix G can be gauged to zero. The
E correspond to the N constant-color background
fields. ' They cannot affect the color-singlet sector
of the theory since the quark-antiquark bound
states carry no dipole moments. ' Hence the E can
be set equal to zero in this singlet sector. By di-
rect insertion of (2.23) and (2.24) in (2.19) and by
use of the identity

Since there is no physical transverse degree of
freedom associated with the field in two dimen-
sions, the Yang-Mills equations (2.5)

9 'A, (v. , z) = gj (r, z)- (2.16)

T'dz =Hq+H~, (2.17)

where a separation is made of the free part H,

H, = dz g(m —iy 9 )g (2.18)

and the interaction part II,

Hz = dz Tr[gJ A, ——,'(9 A,)'] . (2.19)

Eliminating P by means of the constraint, (2.14),
we get the expected form

yield another constraint leading to a nonlocal Cou-
lomb interaction between the quarks.

Here we recover the remarkable feature of null-
plane dynamics; the number of independent canon-
ical variables is reduced to half the number pres-
ent in equal-time dynamics. g; is the only variable
from which all the other operators of the theory
can be built.

From (2.6), the null-plane Hamiltonian is de-
rived:

Iz, —z, l
= —,

' dr& z, —z c z —z, ,

(2.21) results.
Now the nuH. -plane classical initial-value prob-

lem for () obeying (2.15) requires the additional
assumption g,(a ~, 7) =0 with 7 held fixed." This
condition means that the physical system is local
and is anyhow required for the existence of such
generators as the Hamiltonian H (2.17), the mo-
mentum operator P = f dzT„and the total matrix
charge Q =- f'"„j (z, 0)dz. Regarding the total
charge, carrying out in the light-cone gauge an
easy calculation analogous to that of Zumino, "we
can obtain

(2.25)

as a consequence of the anomaly in the current
9„j'= (g/4w)a""E „. Sin—ce Q ca'nnot change in
"time, " (2.25) implies the constancy of the charge
Q, which is true only if @=0. Similarly, Q is in-
dependent of the Lorentz frame only if it vanishes.
However, as a quantized operator such that [Q, (j

elf, Q can on-ly vanish goeakly, i.e. , the null-
plane quantization of TDQCD is only covaxiant in
the singlet sector of the Hilbert space of states.
In this work we shall confine ourselves to this
bound-state sector of the theory.
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Having eliminated all dependent fields we can
proceed to quantize the theory canonically. It is
natural to work in the Schrddinger picture by pos-
tulating, as is usually done in null-plane quan. iZa--
tion, a free field expansion for g, at fixed time 7' =0:

pb(m)~ = p",(-m) . (2.33)

Substituting these in the interaction Hamiltonian
we obtain

[[),(z, T =0) = — dye '"'a([7),1
/2m

where

ka(n), a'(n')j= 6(n —n'),

(a([7), a([7')j=0

(2.26)

(2.27)

2 d„.[P.'([7)'P.'([))+H c ].
0+

Similarly, the free Hamiltonian is given as

Hi= d[7 2 [c (ri),c([7)'+d ([7),d()I)'] .
0

(2.34)

(2.35)

are the covariant anticommutation relations.
Equivalently in the space-coordinate representa-
tion we have

Q.(7,z), g'(7, z')j= (P, /v 2) 6(z —z'),

, v', z, , 7, z' =O. (2.28)

Letting g —g'=m and defining the density operators

p.'(m) fda': a'(0'i. a-(a'+ m)': (2.29b)

familiar in dual theories" and in solvable models
of a one-dimensional electron gas,"we have

Z'.(z) = 1

1
&2m

m p",(m)e ' '

dm[pb(m)e-™d~ pb(m )te imp]

(2.30)
Making the identification through (2.26) of

a(rl) = c(q),

a(-q) = d([7)',
g=1, 2, . . . , (2.3I)

where c~ and d~ are the quark and antiquark crea-
tion operators, respectively, we obtain with a lit-
tle algebra

p', (m) f dc[ ~(0)(0 c)' —d c,(0)cd(0 m)'ca,
0

+ d(m —q),b(i))b] (2.32)

The current 8 (z, 0) (2.22) then takes the form

J' = di)d7)'e "" ~":a~([7') a(i))
1

0 q2 a

(2.29a)

[p(m), p~ (n) ] = 6(m —n) . (2.36)

(2.36) is then to be understood in the weak sense of
Dirac."

Having thus set up the above machinery, we now
define our eigenvalue problem for the quark-anti-
quark bound states. Let

P
[()q), fdk P(P=, k) (k), d (Pc—k)'[0) (2.27)

0

denote the quark-antiquark bound-state ket vector
in the infinite-momentum frame; Q(P, k) is the
amplitude for finding a quark with momentum 0
and an antiquark with momentum (P —k) (there is
no spin in two dimensions). P is the total mom-
entum of the hadron.

The Schrbdinger equation for a bound state of
invariant mass p.

2 is then

fflee&, = 2"P lW&. . (2.38)

Before proceeding further we first normal-order
the Hamiltonian, making use of the trace identity
Tr(6") =N and (2.27) .. In this manner, the mass
renormalization contributions are separated from
the rest of the interaction; they are quadratic in
c~c and dtd. We obtain

Upon introduction of the fermion vacuum, one con-
structs the Hilbert space by cyclic action of the
creation operators on this vacuum. When sand-
wiched between any vector in this Hilbert space the
density operators p', (m) satisfy Bose-type commu-
tation relations

H, =
2 —,fc~(k),c(k)'+ d~(k),d(k)']dk

A&0

Ng' " dk 2
+ —, dk'[ci(k'+ k) c'(k'+ k)+ dk(k'+ k)d'(k'+ k)] +

a&o & 2n
dk—,:[p',(k)p', (k) + H.c.]:.

&0
(2.39)

The (k) 0) lowest limit of integration means the exclusion of the zero mode to be specified by a principal-
value cutoff. The first term yields a constant and can be dropped. The second term gives rise to mass
renormalizations. The last term constitutes the actual interactions.

Regrouping again the various terms, the Hamiltonian is written as
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H =Hq +HMR+H',

where H is split into a particle-number-conserving piece Hpc and the rest R. We have

H
dk~c- 22.

dk'dk"[ct(k')Pt(k" +k) c(k'+k) d(k')'+dt(k" +k) c~(k')'d(k") c(k'+k)']
b a

(2.40)

+ —— dk
2w k2

dk'dk" [d~(k') ct(k" + k) d(k'+ k) c(k")'+ct(k" + k) dt(k')'c(k") d(k'+k)']a b b a+, dk"dk'[ct(k")'dt(k —k'),d(k —k")'c( k') 2+ c~(k"),dt(k —k")'d(k —k'), c(k)'] .
dk

(2.41)

We observe that the first two terms are Coulomb-
exchange interactions; the last term corresponds
to annihilation processes which are suppressed
on the light cone.""Thus our bound-state-equa-
tion approach consists then in taking into account,
in the leading order in 1/N, the contribution in H
due only to the mass renormalization and Coulomb
exchanges. It follows that

III. TDQCD IN THE AXIAL GAUGE

We now proceed to the quantization of TDQCD in
the axial gauge in. a manner entirely analogous to
that for the light-cone gauge. From (2.1) the Ham-
iltonian density is

H =
(/) (m+iy'8, )(/)+ gj,A, ——'(S2,A, ) ,

2 (3.1)

with Ay 0 the Euler-Lagrangian equations for the
gauge fields are

1 0 +j0 ' (3.2)

4P, e)
Ik —qI' (2.42) They have the nature of a constraint. The general

solution of (3.2) is

The symbol P denotes a principal-value integral.
Alternatively, making use of the Feynman variable
k =xI' and the identity

&) = —((~) —+ )f y(x) - 1

Ix-y I' x 1+x

and defining P(P, x) = (t)(x), we have the 't Hooft
equation

(~+1) (~+1) ' 0(y) —e(x)

(2.43)

where /l, ,
2 = y2(g2N/m) ' is dimensionless and

& = (m' —g N/m)(g N/)T) '. In the above SchrMinger-
equation approach, higher-order 1/N corrections
are in principle calculable by way of old-fashioned
perturbation theory in the particle-number- chang-
ing potential R. It can be verified without calcula-
tion that a second-order perturbation theory in R
to the energy eigenvalues in (2.43) is proportional
to (g N)'/N on dimensional grounds.

We shall not go into any of the details regarding
the solutions to Eq. (2.43). They have been treated
by 't Hooft and will be the topics of a forthcoming
work of Hanson et al. ,"who apply a powerful meth-
od of numerical analysis to several one-dimension-
al bound-state equations of QCD and string theory
in different coupling regimes.

Ap gay jo —Ex —G (3.3)

For the same reasons given in Sec. II, G =O. The
background color fields E can be set equal to zero
in the color-singlet sector.

By direct substitution of (3.3) in H, we get

H = dx(/)(m+iy'&, )(/)

2

dx dx'j, (x) l x —x'
Ij,(x) . (3.4)

((2p+mp)u=E2u, (-&p+mp)v = —E2v,

where

E —(p2+ m2)1/2

and

1A(p), A'(p')]. =(&(p),&'(p')]. = l~(p- p') (3 6)

are the postulated equal-time canonical commuta-
tion relations. For the y-matrix representation,
we choose

Just as in Sec. II we assume a free-field expansion
for the 2-spinor

(/)= dp[A(p)u(p)e'2" +Bt(p)v(p)e '2"J . (3.5)
1

vYn

The spinors satisfy
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(I Ol (0 11
y, =

(-I 0)
'

(3.7)

creation and annihilation operators we can rewrite

H Ho+Hz ~

Ho dPE [At(P)'A (P)'+Bt(p)'B(P)'] . (3.8)

In terms of the (Iuark (A,At) and antiquark (B,Bt)

In order to reexpress H~ in terms of these oscilla-
tors we must replace J', in (3.4) by its normal-
ordered current2' [omitting the U(n) matrix label]

:J':= —dpdp'[At(p')A(p)ut(p')u(p)e "(""('"+Bt(p)B(p')vt(p')v(p)e" )' ~)"
2v

+At(pt)Bt(p)ut(pl)v(p)e j(p'+P)x+B(pl)A(p)vt(pt)u{p)ei((' +p)xJ

Just as in the light- cone case, we set up the eigenvalue equation for the meson bound states

H lee ).= (i)'+»2)"'
I @a&.

(3.9)

(3.10)

Similarly we shall only take into account in H terms which do not change the number of particles. After
normal ordering and dropping the particle-number- changing terms we are left with

(3.11)

where the mass-renormalization piece is (P stands for principal value)

HM„= dpdqP, [ut(p)u(q)ut(q)u(p)At'(p)A'(p)+ v)(p)v(q)vt{q)v{p)B~'(q)B'(q) J
N 1

dp dp'dqdq' P, , ()(p —p'+q —q') [ut(p)u(p')ut(q)u(q')A)'(p)At'(q)A'(p')A'(q')
1

the Coulomb interaction pie ce is

+ vt(p)v(p')vt(q)v(q')B)'(p)B)'(q)B'(p')B('(q') J, (3.12)

H, = dp dp' dq dq'P, , 5(p —p'+q' —q) [ut(p)u(p')vt(q)v(q')At'(p)Bt'(q')A((p')B'(q)
1

+ v({p)v(p')ut(q)u(q')Bt'(p')At (q)B'(p)A'(q')],

and the annihilation piece is

(3.13)

H, = dP dP' dq dq' &(P+P' —q —q') P +p' '
x [ut(p)v(p')vt(q)u(q')At'(p)B('(p)B'(q)A'(q')+ vt'(p)u(p')ut(q)v(q')At'(q)B')'(q')B'(p)A "(p')]

Ng 1
dP dqP vt{P)u{q)ut(q)v(P)[Bt'(P)B'(P)+At'(q)A'(q)] . (3.14)

Byfurther inspection we observe that the second group of terms in (3.12) is down by a factor of N compared
to the first group, and therefore can be neglected. Regrouping our interaction Hamiltonian again, we get

Ng
HMR 4&

dp dqP, ([ut(p)u(q)ut(q)u(p) JA"'(p)A'(p) + [vt{p)v(q)vt(q)v(p)]Bt'(q)B'(q) j1

N 1
47(

dP dq» '{P)u(q)u'(q)v{P)IA'(q)A'(q) +B'{P)B'{P)]
{p+q)' (3.15)

1
H = ——dpdp'dqdq'()(p+p' —q —q')P

4m (p+ p')2

x [ut(p)v(p')vt(q)u(qi)At~(p)B~((p')B (q)A~(q') + vt(p)u(p')ut(q)v(q')At'(q)Bt~(q)Bo(p)A'(p') J {3.16)
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So the truncated Hamiltonian is H, =H, +Hu„+H, +H, . We then compute H IQq)~=E~ IQQ)~ taking as our
bound- state representation

IQQ)~= dkg(P, k)At'(k)Bi'(P- k)10),
0

which is consistent with our ansatz of a free-spinor expansion; here Q is chosen to be an even function of
k. Calculating each term separately, the results are

HD I QQ )„= dk(E„+E~ ~) Q(P, k)At'(k)Bt'(P —k) 10),
0

(3.17)

IQQ) = dkg(P, k)P 'q + ' — ' — ' At'(k)Bt'(P k)10—),4~ ', (k —q)' (k+q —P)2 (k+q)' (q —k+P)

where

U(P, q) = u'(P)u(q)u'(q)u(P),

V(P, q) = v'(P)v(q)v'(q)v(P),

W(P, q) = v'(P)u(q)u'(q) v(P) .

(3.18)

(3.19)

Notice that in the representation in which we are working the quark propagator, which appears as the mid-
dle term above, is

-1
u(q)u'(q) = —(E,Z, —qZ, + m) Z'

1= —(E, q+y, m+y, ) . (3.20)

Thus the first term in (3.18) is

dk PkP dq~'k '
E uk

k

Using the explicit representation for the free spinors

1 (E+m)
(2E(E+m)]&i' I

this becomes

(3.21)

(3.22)

dk P k dq ' I' (3.21')

The sign of the first term in the integrand may be changed freely because its contribution to the integral
is zero. So the numerator vanishes quadratically when P =q; therefore the principal-value symbol can be
dropped. Thus (3.21') becomes

dk '
dq (m +kq —E„E ),

0
(3.21")

Introducing the new variables, q =m sinhx and k=m sinhc, the q integral is evaluated easily, and the re-
sult is

Ng " P(P k)
2m 0 Ek (3.23)

Using the same integrations for the other three terms in (3.18) we get zero for W terms, and a similar
result for the second term. So finally,

N)) )))q) = — f dk —+ p(P, ))A"(k)))"()'—k)lo).
k P-k

(3.24)
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Moving on to the Coulomb term in (3.13), we have

B,lgq) = — dpdp'dqdq'P
{

P

x d»(p p'-+ q' - q) ~(p'- k) ~(q+k -P)u'(p)u(p')v'(q)v(q') y(k)A"(p)B "(q') lO&
0

dk ~(p- p'+q'- q) ~(q' k) ~-(p+k P)v—'(p)v(p')u'(q)u(q')@(k)B"(p')A"(q)
l
0)I,

0

which simplifies to

2 ~O

B.Iqq&~= dP d» — .0'(»k)[u (P)u(k)v'(P —k)v(P-P)]A '(P)B '(P-P)10&.
0 0

{3.25)

(3.26)

We get after a change of variable the form

&, lQQ)„= 2
dkP' d, -' —';- P(P, k)At'(k)B~'{P —k) l0),

0 0

with

K(P, k, P) =u'(P)u(k)v'(P k)v(J —P) . —

(3.27)

While the annihilation term is down by a factor of 1/N compared to the other terms, we give for the sake of
completeness the corresponding equation

OO OO

H, l QQ) =4 dP dkP, u'(P)v(P —P)v'(P —k)u(k)(f)(P, k)A"(P)Bt'(P- P) l
0)

0 0

2 OO

dq dkp--, v'(P —k)u(k)u'(q)v(P —q)A"(q)B"{P q)p(P, k) l
0—) .4w, , (q+k)' (3.28)

fn the event that the group is U(l), so that (1) become the massive Schwinger model, H, can be neglected
on the grounds that it is of order 5 . In this case, the weak-coupling limit has been studied by Coleman, '
who made use of semiclassical approximations while preserving relativistic kinematics.

Gathering all contributions (~.1'7), (3.24), and (3.27), we obtain the eigenvalue equation

k P-k 0

E,=(k'+m')'",

K(P; k, P) =ut(P)u(k)v~(P —k)v(P P) . -
By using the equality

N
— —+ o((N ')')k ~ k 2g

which is good in the weak-coupling limit, (3.29) can be cast into the following form:

(3.30)

Ng' '~ t, Ng' '~' Ng' " K P;k, p)&zf(P, k)= k'+ m'- — +I(P-k) + m'- — — (j)(P, k)+ P dp
' ', -(f)(P,p)

(3.31)

which exposes the "mass renormalization" explicitly.
It is obvious that this equation is not manifestly covariant, ' owing to the explicit dependence on P, the momen-

tum of the bound state. Qf all the frames, the most convenient one is clearly the center-of-mass frame,
where P=O:
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Ng' "
SC(0 p k)

p, (f)(0, k) =2 k + m —— p(O, k)+—P dp
' '

2 Q(O, p),2m, (p —k)'

where nom

K(P; P, k) = u'(P)u(k)v'( —k)v(-P)

(3.32)

2Eq(8~+m)2E„(E~+m) [(E,+m)(Z, +m)+ pk]'.

The spectrum of this particular equation is being
numerically studied by Hanson et al.

IV. BOSE FORM AND CONCI. UDING REMARKS

What have we learned from the foregoing exer-
cise? First we have seen a key feature of null-
plane quantization of. TDQCD, namely its lack of
sensitivity to the specific form of the infrared
cutoff. It has been known that the massive
Schwinger model and hence also TDQCD suffer
from very severe infrared divergences induced by
the bare quark masses. " There appears to be a
softening of these divergences in the A =0 gauge
reflected in the indifference to cutoff, possibly due
to the pecuI. iarities of. the null-plane quantization. "
It does not know about masses and its vacuum is the
bare vacuum. These features account for the simp-
lest spinor kinematics, the intuitive picture of con-
stituents in a relativistic bound state.

In the axial (or Coulomb) gauge none of the above
properties are available. Thus the interaction ker-
nel (3.29) is plagued with mass-dependent kinematic
factors. Nonrelativistic approximations need to be
made to obtain a more tractable bound-state equa-
tion. No clear picture of a relativistic bound state
is available and our assumption of a fusee-field
expansion at fixed time is thereby suspect. Indeed
the Coulomb-gauge computation performed here
should be taken only heuristically. It, is known'~

that no bona fide quark field operators ean be con-
structed in this gauge, owing to the linearly rising
potential. Since a simple principal-value cutoff
fails, a more involved technique such as a mass-
and coupling-dependent cutoff procedure could be
tried. A more illuminating approach, we believe„
mould be that of I owenstein and Smieca, "mho get
to the Coulomb gauge via a limiting procedure
starting from covariant gauges. This is a difficult
problem we are presently studying.

However, irrespective of possible covarianee
problems, our method of attack of the bound-state
problem in the 1/N expansion is a straightforward
one. The usual apparatus of Schrodinger perturba-
tion theory can be in principle applied to compute
higher 1/N corrections and to handle the problem
of bound-state scattering and the analysis of form
factors, etc.' In the instance of the massive

Z= g P(i' m)g, '- (4.1)

is equivalent to a theory of N Bose fields g, :

H, N g [-, w, '+ ,' (8,.$,)' —cm' co-s2v~mp, ]. .

(4.2)

N denotes normal ordering mith respect to the
mass m, c is a constant of no relevance to our
consideration.

The boson forms of the N two-component spinors
are"

g~ „(x,t) =—:exp[+2iWm4~ s(x, t)]:y~ „,j.
(4.3)

0 is the quantization box length, and the g~ ~ are
nondynamical anticommuting operators mhich

Schwinger model recently studied by Coleman in
the axial gauge, our results in Sec. IIIcarryover
provided the coupling is weak, g«m. The null-
plane quantization of the massive Schwinger model
gives in our opinion a more tractable as mell as
atrraetive resolution of the weak-coupling structure
of the model, when contrasted with the spinor com-
plexities of the axial-gauge formalism.

Finally, another limit of interest to TDQCD is
the strong-coupling limit, which is believed to be
of genuine relevance to the infrared problem. In
two dimensions, a handle on this strong-coupling
regime is possible without going to a lattice thanks
to a correspondence between, say, the massive
Schminger model and the sine-Gordon theory. The
strong-coupling limit in the first model corre-
sponds remarkably to the weak-coupling limit in

the second and hence makes it computable. Recent
works on the Bose form of the massive SU(N)
Thirring models" "allow us to write down the
bosonic equivalent of (2.1). We shall be very brief.
For more details, the reader is referred to the
quoted liter ature.

We work in the interaction representation and in
the axial gauge Af = 0 of TDQCD.

It is known'5 that the SU(N)-invariant free mas-
sive Thirring theory
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N

gm' 2g=1 (4.4)

Since in the charge-zero sector the axial-gauge
Hamiltonian is

Banks et al."need to introduce. Their properties
are g, =yt„(g„yg=2 ~, and Pg,Pt=)i„where P
is the parity operator. Then the color current
Jp JpT is given

N p„(i)
(g,'gf: exp[2i Wm(C ~ —C g]:

a

+ g,'y,': exp[—2i~w(C~ —Cg]}:

looks rather intricate. Its study connected with
the strong-coupling limit@'»m' of TDQCD will be
the object of another work.

Note. After we completed this work M. K.
Prasad kindly informed us of a paper by M. S.
Marinov, A. M. Perelomov, and M. V. Terent'ev
(Zh. Eksp. Teor. Fiz. Pis'ma Red. 20, 494 (1974)
[JETP Lett. 20, 225 (1974)]). These authors pro-
posed the same method as our s to obtain the spec-
trum of the 't Hooft model in the A =0 gauge (our
Sec. II). However, we believe their resulting
bound-state equation is incorrect since it lacks
the mass-renormalization contributions present
in the 't Hooft equation and in ours.

K= ' iyiex+m f+Q Epy (4.5)
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with
+ox ~~i' Jo ~ (4.6)

which is the Bose form, TDQCD is readily ac-
complished using (4.2) and (4.4). For G =U(1) it
reduces to the Bose form of the massive Schwinger
model. " For the non-Abelian case, the Bose form
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