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We clarify the gauge invariance, infrared structure, and completeness of ’t Hooft’s solution for the meson
sector of two-dimensional quantum chromodynamics. Electromagnetic form factors of mesons are then shown
to obey an asymptotic power law, whose power is dynamically determined and is not related to the short-
distance behavior of the theory. Following a review of the total annihilation cross section for producing
hadrons, we discuss deep-inelastic lepton scattering. As expected, Bjorken scaling is obtained, but we show
how the sum over hadronic final states reproduces the parton model precisely. The Drell-Yan-West relation
and Bloom-Gilman duality are fulfilled for the relation between the scaling function and form factors. We
conclude by speculating on the applicability of our picture of form factors to the real, four-dimensional world.
We argue that this is a viable alternative to dimensional scaling and, phenomenologically, the differences
between our predictions and the dimensional counting rules are slight for light quarks. Finally, we attempt to
abstract those features of the model which may guide us toward a solution to the four-dimensional problem.

INTRODUCTION

Quantum chromodynamics,' the theory of
colored quarks interacting via colored gluons in
a locally gauge-invariant manner, is a promising
candidate for the theory of strong interactions.

Its consistency (up to logarithms) with free-field
short-distance structure having been established,?
an army of theorists are attempting to discover
what are its spectrum and long-range forces. It

is hoped that the ill-defined infrared structure
will somehow lead to a confining potential between
quarks, antiquarks, and gluons in color-singlet,
gauge-invariant channels, so that the color-singlet
bound states (hadrons) may form a complete set

of asymptotic states, and neither quarks nor gluons
will ever appear as physical states. It seems cer-
tain that some approximation scheme must be
found which renders the infrared behavior tract-
able.

One promising idea® is to consider an expansion
in N, the number of colors, viz. N— for fixed
22N (g the coupling constant of QCD). The expan-
sion is suggestive, for it is in one-to-one corre-
spondence to the dual perturbation theory.

So far, little further progress has been made in
this approach in four-dimensional space-time, but
’t Hooft has pointed out* that in two dimensions,
the structure of the theory can be ascertained.
Although in four dimensions no one yet knows
whether a confining force arises, in two dimen-
sions it obviously does. Even in lowest order,
the exchange of a massless gluon corresponds
to a linearly rising attractive potential between
a quark-antiquark pair in a singlet channel. By
restricting our attention to two dimensions, we

remove any possibility of understanding the con-
finement mechanism in four. Nevertheless, the
two-dimensional model remains of interest as a
nontrivial, solvable quantum field theory of con-
finement. Since we are not so familiar with such
theories, we may employ the model as a theo-
rectical laboratory illustrating the phenomena con-
jectured to occur in the four-dimensional theory.
Recently the model has been further elabor-
ated™® and such questions as hadron scattering,
unitarity, short-distance behavior, higher-order
corrections in 1/N, and “charmonium™’ have been
discussed. The purposes of this paper are two-
fold: First, we clarify further some of the mathe-
matical features of the model, paying attention to
questions of the infrared cutoff, gauge invariance,
completeness, and the breakdown of the cluster
decomposition. Secondly, we calculate mesonic
form factors with particular interest in their
asymptotic behavior. Thirdly, we investigate deep-
inelastic lepton scattering in the Bjorken limit.
Since our theory is asymptotically free, we must
find scaling, but we are interested in how this
is reproduced by the hadronic final states. From
their inception, parton models® have been vague
about hadronic final states, maintaining an un-
easy coexistence between Bjorken scaling and
the absence of quark final states. Since the model
discussed here is precise and simultaneously
satisfies scaling and quark confinement, many
of these worries canbe laid to rest. We shall see
how previous attempts to marry Feynman’s
qualitative description with field theory fail and
we shall indicate the manner in which a new
parton model may be formulated to be consistent
with our experience here. Such a reformulation is
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potentially of great importance phenomenolog-
ically, since one could begin to discuss the subject
of hadronic final states in the deep-inelastic
region with some confidence.

The outline of this paper is as follows: In Sec.
I, we take up the mathematical structure of the
model. We will argue, in particular, that
’t Hooft’s cutoff parameter X can be thought of
as a gauge parameter (as A —0) and has nothing
really to do with confinement. We show that the
bound- state wave function ¢,(x) is gauge invariant.
We discuss completeness and crossing symmetry.
Finally, we derive a useful scaling relation
obeyed by the bound- state wave functions. In Sec.
II, we discuss the quark “form factor” for an
arbitrary local source. In Sec. III, we review
e"e*~ hadrons® as well as the production from a
scalar source. In Sec. IV, we discuss hadron
electromagnetic form factors. In this model, the
Brodsky- Farrar® picture fails; nevertheless, the
form factors fall like a power (¢%)™'™®, where 8 is
a dynamically determined parameter. In Sec. V,
we discuss deep-inelastic lepton scattering, e &
- e"X, showing that, in the Bjorken limit, the
asymptotic behavior is the same as the “handbag”
diagram even though there are no quark final
states. The Drell-Yan-West!° relation and Bloom-
Gilman' duality are satisfied. Finally, in Sec.
VI, we summarize the lessons learned, outline
future applications of the model, and offer
some conjectures about four-dimensional theory.
In subsequent papers, we shall discuss other
inelastic processes, such as inclusive annihila-
tion, e"e*—~nX, and the production of a massive
photon, hh—~e e*X. Even in this deep-inelastic
region, these processes are not simply related
to the short-distance structure of the theory, and
it is interesting to determine whether, in this
theory, they agree with the parton-model predic-
tions.

I. MATHEMATICAL STRUCTURE OF THE MODEL

In this section, we discuss the mathematical
structure of the model. We shall assume that the
reader is already familiar with Refs. 4 and 6, and,
except as noted, we shall generally follow the
notation of these authors. The following discussion
will serve to remind the reader of properties of
the theory. QCD is defined by the SU(N) locally
gauge-invariant Lagrangian

816, 647 "B { - m, 85,
where
Guv,{= 3uA,,,{— 3,,Au'{+g[A“ ’Au]{;

D, 1=0,0l+gA, 1.

Here q‘; is the quark field corresgonding to color
i(i=1,...,N) and flavor @, and A, | is the anti-
Hermitian, traceless gluon field.’® It is related
to the auxiliary U(N) field A] by Al=A{

- (1/N)d{ A%, [The singlet trace, A%, is simply a
free field, but it is simpler to write the Feynman
rules in terms of the U(N) field.]

In two dimensions, the coupling constant g has
the dimensions of mass. The theory is super-
renormalizable, with finite mass and coupling-
constant renormalizations. Asymptotic freedom
is trivial, simply demonstrable by power counting.
From the point of view of confinement, however,
the essential simplification of two dimensions,
however, is that one can choose gauges such that
the commutator [A4,,A,] vanishes, and, conse-
quently, the self-coupling of the gluons disappears.
This makes it possible to understand easily the
infrared behavior and to solve the theory non-
perturbatively. The theory appears to be simplest
when viewed in the infinite-momentum frame.
Correspondingly, we introduce “light-cone”
coordinates and Dirac matrices (the metric tensor

isg,.=g.,=1,8,,=2..=0):

+ 1 0 1
=P = ——— + s
P =ps o3 (p°=p")

prq=p4a.+b4.,
'}’+2=‘/_2=0, {YHY-}:Z’ [71-’7-]5275-

We choose the gauge A_ =0 and quantize on a null
plane (line). We will think of x_ as the “time”

and x, as the “space” coordinate. The two compo-
nents of the quark field g ;= 3(1% ¥s)q are not in-
dependent dynamical variables, so one must
modify the canonical quantization procedure.!* One
chooses

1

{aa00), ak (M)} =60, ~v,) L= ()
Then

ar= —zz'm 81_‘11?,- (2)

As in Ref. 13, we define the integral operator
8_"! to be the principal value

31_— = %f Py e(x,-v,)0(x.-y), (3a)

or in momentum space

1 _1 1 1
—_— = = — 3
B, 2 k.+ic | F.—ie (3b)
A. Infrared structure
Another nondynamical equation of motion is
B-ZA...:—J.:—\/’z—qu}'eqR- (4)
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The general solution for a point source 5%(x) is
A,=6(x) (3 |, |+Bx,-A). (5)

The first term is a linear potential, the Coulomb
potential in two dimensions. This is responsible
for the binding force between gq pairs in singlet
channels. The second term corresponds to a
constant background colored “electric” field.
Without loss of generality,'* we may take B=0. The
constant term A contains no physics and can be
gauged away, even within the class of gauges
having A_=0. So, without loss of generality, we
may also choose A =0 if we wish.!> So we may
take

2 [ [ ot @

or in momentum space

1 1 1 1

72 =§[(k_ o (k_+i<)2] ’ (6D)
a definition which has been called® the “regular
cutoff” of the infrared singularity at £_=0. A dif-
ferent procedure was employed by ’t Hooft, which
has led to some confusion of interpretation.
Faced with ill-defined momentum integrals, he
simply cut away the small momenta, Ik_l >
In coordinate space, this looks rather compli-
cated,'® but as A~ 0, we find

8.2 = %(Ix ] _%>a(x_). )

Thus, as A~ 0, we may think of A" as the gauge
pavameter A. Consequently, we are assured that,
as A—0, it will simply cancel out of any gauge-
invariant quantity. This is why, as we shall dis-
cuss further below, ’t Hooft found that the terms
dependent on A cancel out of the hadronic bound-
state equation and why, in Ref. 6, all gauge-in-
variant quawcities are finite and independent of A
as A—~0. It is nof so much a miraculous cancella-
tion of infrared divergences which is operating
here as it is simply an expression of gauge in-
variance.!” Instead, as we shall elaborate below,
the dependence on A has nothing whatever to do
with the confinement mechanism. Except when
otherwise stated, we shall employ the regular cut-
off in this paper.

In summary then, we obtain the Feynman -
rules as in Ref. 4, except that the free quark
propagator is

_ Doy (mP/2p )y +m
= P

S, (8)
instead of Sy=1/(# - m).

To leading order in 1/N, the dressed quark pro-
pagator is the sum of “rainbow” graphs and is

©+®+®+ ...... =O

FIG. 1. Fermions are produced independently of the
presence of the “gauge-dependent” interaction.

given (for arbitrary A) by

Py (m*/2p )y +m )

= PP—m2+g®N/m—-g?NA [p_1"

It has been suggested® that, because the pole in p,
moves off to infinity as A -~ this is the reason
quarks are confined. To see that this is #nof

true, let us switch off the Coulomb potential but
retain the constant, gauge-dependent term in A.'®
This is equivalent to adding a term to the free-
quark Hamiltonian of the form AEM Q_:Q_f , wWhere
Q_f is the “null-plane” color charge:

Q-f=ﬁ fdxﬂg‘hn-

The denominator of the dressed quark propagator
is simply p>~m*— A |p_|. However, if one con-
siders a gauge invariant such as the two-point
function of a color-singlet, local source as J,,
=gy,q, one finds that the interaction between qq
pairs precisely cancels the term in the self-en-
ergy, so that free quarks of mass m are produced
(see Fig. 1).

B. Gauge invariance

Next let us discuss the bound-state equation
from the point of view of gauge invariance.
t’ Hooft begins with the proper vertex '’ (p,7)
for finding quark @ and antiquark b in an on-mass-
shell, bound state n. It satisfies a simple Bethe-
Salpeter equation (Fig. 2)

b _ig°N d’k b
retp )= 5= [ k), (10)
where we have defined the wave function
Y p,7) =SH(PITEP (P, 7)SE(p - 7). (11)

[To simplify notation, we have suppressed the y
matrices. Following Ref. 6, we have defined
y-S(p)y-=2S,(p)y-.] We remark thatall the quan-
tities defined above, propagators and vertices, are
gauge dependent. Define

v =2 [ ap ) wep /). (12)

r:}:<p= r;nx?:{p

FIG. 2. Bethe-Salpeter equation for mesons.
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The variable x may be identified with the momentum
fraction carried by the quark in a right-moving infi-
nite-momentum frame. This satisfies the simple
equation*

Wy alx) = H,(x) , (13)

where the “Hamiltonian” H is given by H=H +V,

H) = (s 2oL o, (142)
V<¢>(x)=—)(1 g(f)xd)yz (14b)

[v,= (n/g®N)m,2], where: f denotes the principal value

' defined by Eq. (6b). It has beenpointed out by W. Bar-
deen that the equation may be regarded as a bound-
ary-value problem in potential theory. The argu-
ment is presented in Appendix A.

The bound- state equation (13) is, as ’t Hooft
showed, independent of A, which we have reinter-
preted as the gauge parameter A, For this
reason, as well as a desire for the bound- state
spectrum (mesons) to be physically significant,
one suspects that p,? and ¢,(r) are gauge invari-
ants. That this is correct may be seen as follows:
Assuming there exists a physical meson }n), we
define a gauge-invariant wave function®®

¥, (x;9) = i’<n

Fwexs e [ ag,anlo)|0). (1)

[The integration is along the straight path & L=V,
+&(x,-y,), 0=£=1. We have suppressed color
indices, the color-singlet bilocal operator is to be
understood. The time-ordering precedes the con-
traction of the indices.] To obtain a gauge invari-
ant, we must allow for the possibility of an in-
finity of gluon emissions between x and y. To
leading order in 1/N, the wave function may be
depicted as in Fig. 3. What does this look like

in the light-cone gauge A_=0? The exponent is
simply

w.-v.) | A0,

Consequently, for x_=y_, the exponent vanishes
so that the wave function reduces to

T, (039) = Tn | Px_, x,) 9. ,v,) |0). (16)

bonsequently,_ the gauge-variant wave function,
Ba,9) = Tn [§()9(3) |0), is, for x.=y._, equal
to the gauge-invariant wave function ¥,. In
Fourier-transform space, the condition x_=y_

is realized by integrating over the conjugate mo-
mentum p,. The function ¢,(p./7.) is simply the
Fourier transform

0 B)e [, 5 0,0,,50). 1)
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FIG. 3. Diagrammatic form of the gauge-invariant
wave function,

In conclusion, ¢,(x) is a gauge-invariant quantity.
In the A_=0 gauge, it may be interpreted as the
probability amplitude to find a quark with mo-
mentum fraction x in the right-moving infinite-
momentum frame.?° [Indeed, |@,(x)| turns out

to be, in principle, measurable in deep-inelastic
lepton scattering. ]

Recall that $2°(x) is nonzero only for 0=x =<1;
in the infinite-momentum frame, the wave func-
tion scales only for both constituents ab moving
in the same direction as the hadron. However,
the proper vertex I'%’(p,7) obeys crossing and
represents not only the amplitude to find a quark-
antiquark pair in the meson, but also the ampli-
tude for a quark or antiquark to emit a meson
(Fig. 4). From Eq. (10), we see that I"?” in the
regions ¥ <0 and ¥ >1 is uniquely determined by
the values inside the interval 0=x =1, since (Fig.
5)

F:b(x’mgTZNfon o <f—>

1
- rad(x) ..

m

(18)

It is sometimes useful to extend the definition of
¢,(x) outside (0, 1) so that
ab _—gzN 2 Ya"'l Yb_l ab,
r = 22X (uzo Zeml o 2= Dyowg) (9)

holds everywhere.

(a) (b) (c)

FIG. 4. Three processes related by crossing sym-
metry: (@) §q—~hk, (b) §—gqr, and () g —~hq.
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C. Confinement

Next, we wish to discuss completeness of the
meson spectrum and confinement. Consider the
Hilbert space L2[0,1] of square integrable func-
tions on the interval (0,1) with the usual inner
product. The Hamiltonian H is not well defined
on this space since, even if ¢ € L%, H¢ may not
be. To define H, we restrict its domain to func-
tions which vanish at the boundary like x%2[(1 - x)8?]
as x—~0(1). (This set is dense in the Hilbert
space.) Then, as ’t Hooft showed, H is Hermitian:

@,HP)=(HY, ).

Although H is Hermitian, it is not self-adjoint.
If we showed that H possesses a self-adjoint exten-
sion, then we could conclude that its spectrum is
complete. If H were essentially self-adjoint,?*
then it would have a unique self-adjoint extension
and its spectrum and eigenfunctions would be
unique. Since we are examining square-integrable
functions in an infinite potential well, it seems
likely the spectrum is purely discrete. If so, we
could finally conclude that the eigenfunctions
{®a(x)} were unique and complete on L2

Even if all this were proved, this would no?
settle the confinement issue. For example, if one
were solving the nonrelativistic hydrogen atom and
restricted oneself to square integrable functions,
one would find the bound-state solutions but would
miss the ionization states, which are not normaliz-
able. Inour case, since the meson spectrum extends
to infinity, we suspectthata meson cannot ionize
to a quark-antiquark pair, but it is worth asking
how the infrared behavior prevents this. Let us
write the bound-state equation as

b=~ V.

MKy Z- HO

Normally what would happen is that at those mo-
menta x, where the quarks would go on-shell
[where p,%=(y,-1)/x,+(y,-1)/1-x,)], the
energy denominator would vanish, so that ¢,(x)
would develop a pole, corresponding to the decay.
Confinement requires that T, (x,,7)=V¢,=0 at
those two values of x. In fact, it is easy to see
that this must be the case, since if we supposed
¢, had a pole at some value x,, then V¢, would be
even more singular there. More generally, self-
consistency of Eq. (13) requires that ¢,(x) not be
singular in (0,1). Consequently I',(x) must vanish
at least linearly at x,. )

Note that if the potential were cut off, e.g., in
a Yukawa fashion so that

(y)dy

’ =
V== ) o

then V'’ ¢, would remain finite even if ¢ had a pole

o |

FIG. 5. Hadron emission is determined by the proba-
bility amplitude ¢,(x) to find constituents.

and, as expected, u,* would become complex, so
there would be no bound states at all. The con-~
finement condition

1
[ 52 sum=0

(y-x,)
is an amusing property of these wave functions.

To summarize these results, we find that, in the
N - limit, the color-singlet meson sector con-
tains an infinity of stable meson states, i.e., in
first approximation, this is a free particle theo-
ry.

The quark-antiquark continuum has disappeared
in this nonperturbative approximation to the field
theory and, it is hoped, will not appear in higher
order in 1/N. This seems likely, unless polar-
ization effects somehow cancel the Coulomb po-
tential.

D. A scaling relation for the mesons

In preparation for later applications, we wish
to point out a simple scaling law for the wave
functions. Consider $2%(x) and let x=£/p, 2.

Then it can easily be shown from the bound- state
equation that??

. £
lim 6" (12

n n

)= ¢ (8), (20)

where the scaling function obeys the equation
(for £>0)

(1-2er ) o= - G2 1)
Some properties of the scaling function are

PUE)~ £ as -0, (22a)

¢%(&) ~ sin(¢/m) as £~ (22Db)

Similarly, one may define

#(©)=tim(-y 0?1 ) . (23)

Another useful property for future work is de-
rivable from the parity relation,®

14 L oa

Then
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© © b
md/ % ¢a($)=mbf0 il_gq;_(g_) . (25)

Since the left-hand side depends only on m,,

while the right-hand side depends only on »,, they
must be independent of the quark mass. In Sec.
III, we will show that agreement with the short-
distance behavior of the theory requires that

(27’a)1/2
T

L a1, (26)

0

but have not found a direct demonstration of the
remarkable relation. Another relation which fol-
lows from this is

lim p,? f ax 6,0 =75 (V, #V75). @7

[Choose — (+) for even (odd) parity.]
Although the integral

/ Tar o).

formally diverges, we may define it from the in-
tegral equation to be

f:dg °(£) =7, j%f $°(8)

=1r<%>1/2. (28)

These relations will also be very useful in later
applications.
Define the Green’s function G(x,y; u? by

(K- H)G(x,y; u?)=0(x-v), *,9€(0,1). (29)
Of course, the solution to this equation is

G(x v; “2) Z ¢ab(x)¢ab(y) (30)

- ui+ie”
Now consider G(x; ,uz) = fol dy G(x,y,; u?), satisfying
(K- H)G(x; i?) =1 (0<x<1). (31)

[1t is sufficient for subsequent applications to
suppose m,=m, here, so G(x; u?)=G(1 - x; u?.]
Suppose u?>0 and let x=£/u% Then one can show
that

lim w6 (55 ) =he), (32)

12 400

where the scaling function 4,% satisfies

(1223 SECR f ”(n—f’éphzm)ﬂ. (33)

h2(£) has both a real and imaginary part, although
the imaginary part is rather ill-defined because
ImG is a series of 6 functions. Using the smooth-
ing procedure discussed more fully in Sec. III, we
find a simple relation between 2,* and ¢°:

EINHORN 14

au °(u)
u(é —u+ie)

(o) -2 n

(27,,)”2f du $°(u)

::1._ .
T Uu—£—~ie

(34)

Consequently, %%(£) is the boundary value of an
analytic function 4°(£), analytic in the complex
plane cut along the positive real axis. Note

Imhi(8) = - (2v,)"29%(8). (35)
Some other useful properties are
ni(E)~ & as -0, (36a)

(&)~ 1+y,/t as &— (exceptalongthe
positive real axis). (36b)

For a massless quark (m,=0), h*(&)=1 is the so-
lution. We may also define a spacelike scaling
function

hi(¢)= lim uzG< Euz ; u2> (£>0). (37a)

B2oan

One can show that
hi(E) =h%(-£). (37b)

More generally, if we take p®- along any ray,
we may define

he(8)= lim u2G< gz ; u2> ,
w2+ [J‘
where £ is assigned the phase of u2.
Although it is unnecessary for the applications
in this paper, one can also show that the Green’s
function itself scales:

lim 6 (25553 %) = (5,8 (38)

2=

where the scaling function is given by
1[” dx
N=— —_— a ’
(6 8)=0 | ST 00, (39)

E. Cluster properties

In a theory of confinement for which, by defini-
tion, there are no asymptotic physical states associ-
ated with the basic fields but only with composite
fields, the cluster decomposition of Green’s functions
must break down. Let us consider, for example,
the “T matrix” for quark-antiquark scattering in
a color-singlet channel. This was derived in Ref.
6 and is given by (Fig. 6)

1

T(x,y;7) = gzz GoF

m

= () X e TRIT),
(40)
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X—v y ———— X~ In rﬁy
T - +

n

FIG. 6. g scattering in the color-singlet channel.

where T',(x) is the proper vertex function defined
earlier, Eq. (18), x=p./v., y=p./7., and u?
=77%/g®N. For u?--— for fixed x, this is a light-
cone limit for which the Born series converges,
each term of which is suppressed by g2N/m#2=1/u?
with respect to the preceding term. However, for
u2— 4+ the timelike region, the Born series di-
verges. The imaginary part of T is given by

7= () 3 B - TR
(41)

and is either zero or infinite. This divergence of
the perturbation series results in the formation of
bound states. For the purpose of discussing uni-

tarity, it is useful to rewrite the series as follows:

For x,y<(0,1), we may use the completeness
relation and bound-state equation to manipulate 7'
into the form

T=;i_2 (uz— )5(x—y)

_éz_(uz_h:_l_b_:l>
72 x 1-x

Yo—-1 7
X 2 _fla Iy T
(“ y “1-y
The appearance of the 6 function illustrates the
breakdown of the cluster decomposition. In any
calculation involving gq scattering for x,y<(0,1),
the first term cancels the disconnected diagram?®

Ye=1 7p-1
X X

)G(x,y, b, (42)

FIG. 7. Hadron-hadron scattering.

(see, e.g., Fig. 7). The second term contains two
inverse energy denominators, precisely as re-
quired to cancel quark singularities, leaving only
a sum over meson states. Although Eq. (42) is
less convenient than the Born series for obtaining
the asymptotic behavior, it is much more suitable
to a discussion of unitarity. [We remark that,

for either x or y outside the region (0,1), the

0 function does not emerge and the disconnected
diagram appears to survive. ]

One final remark about interpretation: Ina
gauge theory, the Hilbert space depends on the
choice of gauge. The choice A_=0 has the ad-
vantage of being ghost-free and manifestly co-
variant. There is still the freedom to shift A, by
a constant, and the natural choice of “regular
cutoff” [A =0 in Eq. (5)] has the advantage of pre-
serving manifest covariance. In this gauge, there
are quarks of finite mass® (m 2 — g°N/m)'/2.
Choosing a gauge with A #0, although somewhat
more difficult to interpret, has the great compu-
tational advantage that, when calculating a gauge-
invariant quantity, the dependence on A must can-
cel out. For some purposes, 't Hooft’s choice
A~ is convenient; for others, A—0 seems more
natural.

This concludes our discussion of the mathemati-
cal structure of the model. Let us now turn to ap-
plications involving local currents. Hereafter,
except as indicated otherwise, we shall choose
units so that gN/7=1.

II. QUARK “FORM FACTOR”

Consider the three-point function I" for an arbitrary local source A. (See Fig. 8 for notation.) (For
simplicity, we shall restrict ourselves to sources independent of p,.) It is a simple matter to insert the

T matrix and obtain the solution

1 1 1 d d ?
TA(x,q)=A(x,q)—Zf f ——y—l—G(y',y;qz)[w-<n+
0 0

(y -x)?

where x=p_/q.. The second term is obviously proportional to y_.. If we insert the explicit form for the

Green’s function, we find

T(x,9) =[x, q) - E —-zr-‘-g——)%(q) (44a)
where
Y$=ifoldy’¢n(y’)[ <m+y,q >A(y ,q)< ﬁg)?’jl ' (44b)

y5 is the direct coupling of the source to the meson; T,

For example, for a scalar source, we have

the coupling of the meson to the quarks.
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dydy’ o (ma m, )
rs(xaQ) e_— (y x)z (yry ’q) 7—1_—3)1 . (45)
For a vector source, we have
mm,
Tp,g)=ev, -er. IJWG(%J) q)[ e mgu-]- (46)

r

From the bound-state equation and the parity rela-
tion Eq. (24), it is easy to show that

1 dy'¢,,(y')
y'(1-9y)"
Noting that only odd-parity states contribute to
the vector current, we find for the divergence

1
b [ o3y =omm,
o (]

n _ ey.
q Fu(pyq)‘eé+2q_x(1 __x) .

In the theory defined by quantization at equal time,

it is easy to show that this is the generalized

Ward-Takahashi identity. In the light-cone quan-

tization scheme, it is much more laborious to

prove but equally true. We omit the proof here.
For future work, it is convenient to note here

a simple formula for T (p,q) =ey.T'(x,q):

re, -1~ [ =25 60 (472)

:<q2_y“x_1 71"_1>G(x q), 0<x<1.

(47p)

The first form is convenient for obtaining the
asymptotic behavior, the second, for understand-
ing the unitarity structure. Note that, for x €(0,1),
it is, in a sense, fair to say that the bare coupling
to quarks has been cancelled. On the other hand,
as ¢g®— for fixed x, I'~1, so it is the same as if
the coupling were bare in either case.

If the quarks try to go on the mass shell, the
inverse energy denominator vanishes. It is amus-
ing to note that a similar thing happens to prevent
two mesons from producing a gq pair (Fig. 9).
Armed with the decomposition of the T matrix,

Eq. (42), it is not difficult to show that this ampli-
tude vanishes if we attempt to go on the quark mass
shell. Even though this, and the preceding, are
gauge-variant statements, they do accurately re-
flect the mechanism which, as we shall see be-
low, operates in all gauge-invariant calculations.

|

Fel
-
- ——

FIG. 8. The quark form factor.

IIIl. TOTAL HADRONIC CROSS SECTIONS

Although this has been discussed in part in Ref.
6, we wish to review it here to establish notation
and to emphasize several concepts which are rele-
vant to the discussion of the more complicated pro-
cesses treated in subsequent sections.

Consider the two-point function for an arbitrary
local source® A. Either using the form factor of
the preceding section or the T matrix given ear-
lier, one finds (Fig. 10)

Ty,a,(0) = ——f fdxdyg Wx, )G(x, y;¢°)

xg22(y,q) , (48)

where

Tr(AN,y -N,_) < =k->
gA(x,CI) 4x(x_1)q- "Z ’
and N,=k_y, + m®_/2k_+m is the numerator of the
quark propagator. We have expressed this in a
form which obviously factorizes at the bound-state
poles and has no quark singularities. The integral
converges at the end points because G vanishes
there. Because of this vanishing at the ends, in
general, one cannot interchange the limit as g?—~
with the integration.
If we insert the definition of G, we may write
this in the meson-dominated form (see Fig. 11)

EN 5~ &)y e)
T, a(0) =~ E D (49)
el R
The coupling g2 of the bound state to the source
is given by?®

1
&nlq) = l dx g%(x, @) (x) .

Note that the preceding formulas are manifestly
gauge invariant.

Consider, for example, a scalar source. Then
we find that

m(1l - 2x)

g =g ma (50a)
j‘ ¢ (x)(1 Zx)
&= A& e

=mf01?l£’-cl dx (even parity) (50b)
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FIG. 9. rh—qq.

As n—=, g5 tends to a constant g,,. Letting x
=¢/u,2, we have
,,T;gw f - 0q(8). (51)

Since u,?-nm?, the sum Eq. (49) diverges (log-
arithmically) and requires subtraction, which
comes as no surprise since the scalar bubble di-
verges by power counting. The asymptotic be-
havior may be obtained as follows:

lg(g®) -1 S(0=——-— Z T ) (52)

For large ¢, we may write

i (&) 1 (= duXg)?
[T LTI B N VT

- f“" dz
q*m? 2 z(z+1)

n=N

A/=q
-3 (&) =™ (53)
Hence,
(a9~ - (£2) 1. (54)

Since the theory is asymptotically free, this must
agree with the result obtained from the bubble

(first term in Fig. 11), which is simply (—-e2N/27)
X In(—q ) Therefore, it must be that
_m dg ¢> (8) 1
e (%9

This result is typical of the rather remarkable
identities which must be satisfied by the wave func-
tions. Others can be generated by considering
nonleading terms in the asymptotic expansion. We
have seen in Sec. ID that this integral must be in-
dependent of »; unfortunately, a direct proof of
the result has eluded us.

g
AIQAZ + 0D, - xn:z:n

FIG. 10. The total cross section for hadronic produc-
tion by a local source.

©- S+ D-

FIG. 11. Corrections to e¢”e”— X which cancel to leading
order.

As a second example, consider a vector source.
Regulating in a way which preserves current con-
servation, we write?’

Hu,l': (qu.qu - nguV)HV(qz) .
II.. is simplest to calculate. We find, as in Ref. 6,

gla)=q., gf.’=fdx¢,.(x)

Then
e2
M,(q?) = (x,9; 4%
e’N (gh)?
—— —=28L 56)

To discover the asymptotic behavior of g?, note
that

tdx ¢ (x)
2,V .,,2 n
Ho&n=m ,[x(l—x)
2 (Fdxu(x) _ .
=2m —;’L——=2mgf (odd parity) ,
[

(57)
(gP can be shown to be the coupling to a pseudo-
scalar source. Asn—«, gf~g .) Hence

2mg.,
g,',’-‘ T

(58)
Writing
_eN Ko (gy)?
a9 =~ 25 [z(g:)uzf‘%], (59)

2 A&7)?=1 by completeness.® Similar to the scalar
case, the asymptotic behavior of the second term
on the right-hand side must be treated with care
since we cannot interchange the limit g2 - © with
the sum. We find

2 2 2

(g% = —% [1 +<2m%> Lll(z],zg_)+ .
A direct calculation of the vector bubble agrees
with the above formula, provided 2g.2/7%=1, the
same condition we obtained for agreement in the
scalar case. One might have expected terms of
order g2N/mg? to appear from the next terms in
the perturbation expansion (Fig. 11). However, as
m— 0, these terms must vanish for a vector
source, so the coupling constant can only enter in
next order as g2Nm?/ng*.

j! (60)
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To summarize the asymptotic behavior, we find
that, as expected by superrenormalizability, the
limit as ¢®>— < (in any direction in the complex
plane other than positive g?) may be calculated
perturbatively from graphs involving quarks and
gluons. However, for ¢>>0, the timelike region,
the perturbation series diverges and the theory
must be solved nonperturbatively. For example,
for the scalar source,

ImIlg(g®) = e*N Y (g5)%0(¢® - ,2) - (61)

Thus the imaginary part is either zero or infinite.
However, recalling Eq. (54), we expect in an
average sense

2
62N<§—°3-> ~ lim Z (gf)zé(qz — 0. (62)
T a2 <
To demonstrate this directly, some sort of
smoothing procedure must be applied such as aver-
aging over several resonances or averaging the
values® of 4(g®) at ¢°= p,2+iA. The simplest way
is to interpolate, using the fact that u,2—nn®.

Then

3 g 970 -, Lim [t $)50(g° -
n =2 JIN
S
~ im<gn(612)>2
géew m

where n(g?% =q¢?%/n% It has often been remarked®
that, in two dimensions, the scalar source is more
nearly analogous to € "¢ — hadrons in four dimen-
sions, since a scalar current can create a g7 pair
of massless quarks while a vector current cannot.
(This is the reason that the imaginary part of I,

is proportional to m2 From the point of view of
the operator-product expansion, this requires cal-
culating nonleading terms in singular functions for
the vector case.)

Notice that the exact imaginary part has only
hadronic intermediate states. However, when
properly smoothed,* its asymptotic behavior is
the same as obtained from the imaginary part of
the bubble graph which comes from quark dis-
continuities. In fact, when the perturbation theory
is summed, all quark discontinuities are precisely
and completely cancelled and replaced by hadronic
discontinuities. This illustrates the inadequacies
of all previous attempts to formulate parton mod-
els mathematically. The so-called covariant par-
ton model®! neglects connected diagrams with re-
spect to disconnected graphs, ignoring the fact
that, in any theory of confinement, the cluster de-
composition must break down. This formulation

FIG. 12. General form of hadron form factors.

certainly gives scaling but unfortunately also gives
quarks. The massive parton model®® is a step in
the right direction except that technically there
are many differences. The kinematical limit in
which the quark mass becomes infinite bears some
resemblance to the A~ gauge, but confinement
clearly arises dynamically, and there is really no
need for infinitely massive quarks. At this point,
it does not seem justified to associate scaling with
Pomeron exchange. A somewhat more general
formulation®® comes closest to our experience with
this model, although the speculations about the role
of duality cannot be investigated in two dimensions.

IV. MESON FORM FACTORS

In this section, we shall discuss the electro-
magnetic form factors of the meson bound states.
Consider the transition form factor from state »n to
state m (see Fig. 12),

2_, 2
(F\um = (pp opp Uzt q,,) Fon(a?

=(n|J,|m) . (64)

Here we have p*=u,% p'?=u,% q=p -p’. To lead-
ing order in 1/N, the form factor is given by the
diagrams depicted in Fig. 13. From the Ward
identity noted earlier, it is a simple matter to
show that these diagrams satisfy current conser-
vation. It is simplest to calculate F_, for which
we find**

F_tn= "2 [ @RT (0, p)S3 (DT (k)55 (k - 0)

XTow(k-q,p")Sh(k-p) . (65)

(We have written the contribution from the inter-

i s ;

x<y<l O<y<x

FIG. 13. “Time-ordering” in the infinite-momentum
frame [Eq. (66)].
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action with the quark a; to this we must add F_2 | Let us now choose a Lorentz frame for which ¢q_
the coupling to the antiquark b.) Recall that >0. Because the vertices depend only on k_, we
may perform the integration over k,, giving the
e -1 two contributions of Fig. 13, corresponding to the
Sg(p) = [2p+ -2 —‘nAe(p_)] . two “x_ time-orderings” of the process. Defining®®

x=q_/p_ (0<x <1 for spacelike ¢?), we find

reore (2,0 (32,

1
F_im=2e,p_° fdy<
x

y 1-y/\1l-x y-x 1-y
x L2 (y,p)T° < ,q>1“°"<{ "m')
—f dy =X ) (66)
() < 2_70-1 7b"1><_____7a"1_7a"1>
" y 1-y y x-y

We recognize the energy denominators corresponding to the two “time” orderings. Indeed, calculations

in the A_=0 gauge are most efficiently performed by directly writing down the Feynman rules for old-fash-
ioned perturbation theory in the infinite-momentum frame.?® Using the bound-state equation and the formu-
las derived in Sec. II for the quark form factor [Eq. (47)], the equation above may be written as®? (suppress-
ing flavor indices)

Fotm=2ep.[ [ dyoul Ir(; 4)on(32Z) - f ayou(06(La?)(fa =l _nmlyy (3om) ]

(67)

In manifestly covariant language, x satisfies the equation®®

q2 IJ' 2
2_Y4 m
B s e " 1ox

We are especially interested in the asymptotic behavior as ¢®>=-Q%—~ —w. Suppose we choose a frame

where x= 1 - 11,2/Q% as @%—. In the first term, we let 2 =(y —x)/(1 ~x) and insert the form of the quark
form factor from Eq. (47a). After some manipulation, we may bring it into the form

F.':m-ze,.p.(l—x){fo1 de 4>,.[x+(1-x)z]<pm(z)+x2fo [d“dz “’"Li"(’{’_;f):ﬁi‘fﬁz‘]:"z’ G(u;q"‘)%(z)} .

(68)

The equation may be described graphically as in Fig. 14: The first term is the bare coupling to the quarks;
the second and third terms involve mesonic couplings to the photon. A gluon exchange has been extracted
so that all quark constituents of mesons have momentum fractions in the interval (0, 1). Note that the ex-
tracted gluon cannot be infrared singular (at finite ¢%. The expression above is exact; now let us consider
its behavior as x - 1. Using ¢,(¥)~c,(1 -x)? as x - 1, we find for the first integral simply

eall=0)% [ da(1-2)%9,c)

We cannot simply let x — 1 in the second term because the integral becomes singular. Let x(1 —u)
=y(1 ~x). Then we find for the second integral

B, 1 o 8 B
<, 222 Mg [ a2 =Em2 e 2.

(v+2)*

Putting it all together, we find for g%— —«

F:m<q2>=2e..c,.<-_‘%;§~)”ﬂ" [ @ou@a-a%- 55 [aone [ av S S L

A (v+2)?

(69)
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(I-x)z  + | (I-x)z

I-x

FIG. 14. Diagrammatic description of Eq. (68); all
quark constituents of hadrons have momentum fractions
in (0,1).

The form factor is power behaved, but the power
is dynamically determined.*® In particular, the
mechanism is not that described by Brodsky and
Farrar,’ a point which we discuss further below.
We have not found a simple interpretation for the
coefficient of the power; it seems to be compli-
cated. Although the power is the same as one
would obtain from a partonlike calculation (neglect-
ing vertex corrections to the bare quark coupling),
the coefficient is different. Thus, there does not
seem to be any direct relation to the short-dis-
tance behavior of the theory. From the mathe-
matics above, it is clear that the form factor
probes the probability amplitude that the struck
quark a carries all the initial-state momentum,
while the antiquark b carries none. This is simi-
lar to Feynman’s description,® although in the mod-
el we can go further to say that this amplitude
goes as (1 —x)Ps.

The form factor must be an analytic function of
g?* with only a right-hand cut. However, the wave
functions are not analytic functions, so it is im-
possible to see this from our formulas. However,
we can calculate the form factor directly for time-
like g% and check, for example, that the asymptotic

behavior agrees with the spacelike limit. So let
J

mZ—-1 my2~1
=9 f G( ,2<____a__b_
F_om e,ﬂ[ dy G(y;9%) " =y

I~w I-w
- + -
y
l-w I-w
e (1-w)z 4 ooee (l-w)z
Wu
w

FIG. 15. Two forms for the timelike form factors.

us consider the “decay” of a virtual photon into two
mesons n and m. Defining w=p_/q_, we have the
relation 0<w<1
P

q°= ——J + I—:—‘; . (70)
There are two solutions wg and w;, corresponding
to whether the decay occurs with meson # moving
to the right or to the left. Of course, by parity
invariance, these two amplitudes must be equal,
which implies that, when written in terms of w,
the form factor must be invariant under the sub-
stitution

1-w
T+w(ip® = e/ Ky®

W= (71)

We have not been able to demonstrate this invari-
ance.

Proceeding in a manner similar to the spacelike
case, we find (see Fig. 15 for notation)

> %(ﬁ—)%@{—:’;)

m2—1
fdyqu"’)(l 5 1“_y -

ey L o) 2 ] (72)

Notice that the coupling of the photon is entirely meson-dominated. Changing variables and using the

bound-state equation leads to

G(wu;q%) - G(w+2(1 - w);q?)

-1 1
F—:m Zeaq-w(l—(U)J f dudz
0 0

(1 = w) +w(l -u)]?

Pa)Pm(2) - (73)

To obtain the asymptotic behavior as w—1, we let w(l —u) =(1 - w)v:

. (1) gm_i”ﬁb_lf I dvo™
Fan(a)=2ac,(25) )5 [ dzone) [P0

It is reassuring to find the same power as for the
spacelike asymptotic behavior.*°

Inserting the explicit sum over states for the
Green’s function, the form of F 2, is, from Egs.

(5 (bp?(1+0)) =15 (1p(1 —z))]} . (74)

—

(64) and (72),

gkYknm
m=€q
2o At (9)
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with an obvious definition for ¥,,(q%). Itis im-
portant to note that, although real, y4,, is a func-
tion of w, hence, of ¢2. However, by analyticity,
there can be no singularities in g2 other than the
poles displayed. Therefore, up to an additive poly-
nomial, the function above must be unchanged if
we replace Yinm(22) bY Yinm(Ke?), the three-meson
coupling constant. In fact, because F,,—~0 as ¢*
-0, no polynomial is present. On the contrary,
since q°F,,,—~ 0 as well, we must have the super-
convergence relation

Zkl &L Venm (12 =0 . (76)

In summary, the form factor will satisfy a meson-
dominated dispersion relation. Because this dis-
persion relation is unsubtracted, the so-called
“bare quark coupling” term which we found con-
venient to extract on the spacelike region is purely
a matter of language and has no counterpart in
unitarity.*

Having concluded our discussion of the behavior
in this model, let us compare it with the picture of
form factors put forth by Brodsky and Farrar®
whose structure closely resembles the one here.
Those authors would obtain the asymptotic behavior
from Eq. (73) by letting g*~ o (w— 1) for fixed
constituent momentum fractions # and z:

F;‘.m(qz)”a‘z‘z%xg{ﬂmz [ de ool -1, —z))]}

where we have inserted a parameter & to facilitate
comparison with Ref. 9. (Of course, 6 =1 in this
superrenormalizable theory.) The first factor in-
volving ¢, is the wave function at the origin in co-
ordinate space plus a correction .° because of
vertex corrections to the photon coupling. The
second factor involving ¢, is divergent, because
¢,(u) does not vanish sufficiently rapidly as u— 1.
In more physical terms, this divergence informs
us that the large momentum does not flow through
the gluon exchanged. Indeed, a glance at the cor-
rect calculation, Eq. (74), reveals that the mo-
mentum continues to flow with the quark and is
taken up by exchanging the infinity of gluons which
bind the quarks. On the other hand, for a renor-
malizable theory (6 =0), the demands on ¢,(u) are
less stringent and the last factor may be finite. In
any case, the result depends on the rate at which
¢,(x) vanishes at x =1, which is not a property to
be inferred from the short-distance structure of
the theory. Although ¢,(«) is determined by the
light-cone structure (x_=0), the behavior as u—1
(p_—~7_) determines the probability amplitude for

finding the antiquark at large distances (x, - )
along the light cone. This last property would seem
to carry over to renormalizable theories as well.*?
We shall speculate further on this subject in Sec. VI.

V. DEEP-INELASTIC SCATTERING

We would now like to take up deep-inelastic scat-
tering e "h—~¢e~X by discussing the Bjorken limit of
virtual Compton scattering. Because the theory is
superrenormalizable, one expects to find exact
scaling, and this will be borne out by explicit cal-
culations. Our interests here are two-fold: (1)
How does it work that the model scales and, with-
out creating any quark-antiquark pairs by polariz-
ing the vacuum, manages to have only hadronic
final states? (2) The short-distance expansion and
the light-cone behavior are simply related by the
so-called moment sum rules for the structure
functions. One might be concerned that infrared
singularities might somehow destroy this relation.
Since this worry will be settled in favor of the
naive expectations, we relegate to Appendix B a
brief discussion of these issues.*®

Diagrams contributing to the imaginary part of
the virtual Compton amplitude are shown in Fig.
16. Confident that quark singularities cancel as
usual, the only final states which will contribute

to leading order in 1/N are the single-meson
states (Fig. 17). Thus to calculate the imaginary

part of Compton scattering, we simply need to
square the form factors. To be specific, define
the structure function W as

. . 1 )
e 582 - 42) B
(78)

where as usual, we define p - ¢ == u,v. Then, e.g.,

W__=(@21)2 ) |F_4u(d?) +F_n(a?)]?

X6((p - )%= 1, . (79)

We are interested in the asymptotic behavior ¢2
~—for fixed xy = q%/2p-q. Of course, we must
somehow smooth the 8 functions if we are to cal-
culate directly from the formula above. We pro-
ceed as in the discussion of the hadronic total
cross section by writing

W__= 41%;}.11 |F_ om(a?) +F f’.,..@)(qz)lz s (80)

where m(v) is defined by (p - q)%*= 2u,v(1 —x g
=W, 2=m(v)r% Defining x =q_/p_ as before, we
have, in the Bjorken limit, x=xg; . (A simple way
to see this is to take g, -~ —» for fixed ¢_>0 and
fixed p.) Returning to Eq. (68) for the form factor,
let us again take its asymptotic behavior but now
for fixed x (K,2~). Since ¢,(z) . V2 sinmnz,
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FIG. 16. Contributions to the virtual Compton scatter-
ing amplitude.

the integrals are dominated by their behaviors for
2= 0,1. Consider the first term coming from the
bare coupling: The region z=1 is suppressed rel-
ative to z= 0 because ¢, vanishes there. Letting z
={/W,%, we have

s [

3

dyg._-(m) fw M[%@—

b (M +§) B

The integral over £ behaves as 17! for large.
Since g_(n)—~ 1 as n—~«, the integral over 7 diver-
ges logarithmically. Altogether then, we find this
region gives a contribution of order In(-¢%/g*.
Similarly, one can show that the region z= 1 is of
order ¢ ™%,

The contribution of the antiquark may similarly
be shown to come from the bare coupling term

F_lu(@9)=2,p-(1-x) [ dz ¢a(1-2))0n(e) -
(84)
Letting z =1 ~£/u,,%, we find**

P 22028 o0 [T atn(1- 25

z%;?’—ﬂ ”mb xPu(l=x) . (85)

Inserting these results into Eq. (79), we find for

(1-x)n

2

(a) (b)

FIG. 17. Inelastic production as the square of form
factors.

F_% =2e,p (1-%)
-nm AL = unZ
e
< TR i) [ o (81)

Using Eq. (28) for the last integral, we conclude
that this term gives

T €,y X Py(x)

hmF_,,mq) R v (82)

This is in fact the exact result, since the other
terms in Eq. (68) vanish more rapidly, as we will
now argue. For the region z= 0, the dominant con-
tribution comes from u= 1. Letting z =£/u,,%,

u=1-n/(-¢q?, we find that
o 220
- Tig%?wx)fo'qzdng-(n) [ arl

(83)

the structure function

1 2
lle WW(Q 3 V)
212 x2 2
= (—‘;;Tz—le Ma@y (%) +(=1)"€,m, 9p(1 —x)|
(86)
or
liBrjnvzW(qz, v) =212 e,2m, 20, (%)% 1+e, 2my 20,5 (1 -x)] ,

(87)
which is exactly what one would obtain from the
“handbag” diagrams?*® [Fig. 18(a)]. Actually, the
specification of the “handbags” requires care in
order that they lead to a gauge-invariant result.
The correct correspondence, as one might have
guessed from the short-distance expansion, is to
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choose A_=0 in a frame where x —~x, and to take
bare (pointlike) couplings of the photon to the
quarks. In the Bjorken limit, the high momentum
flows through the quark propagator between the
photons, so this quark may be chosen to be bare.
However, the other three quark propagators should
be fully dressed in order to obtain the correct,
gauge-invariant asymptotic limit. In other gauges,
Eq. (87) would not be given by the “handbags”
alone. This is discussed further in Appendix B.

In going from Eq. (86) to Eq. (87), the interfer-
ence term proportional to

(_)mzeamaebmbqbn(x)q)n(l _x) (88)

has been dropped on the grounds that the phase
factor (=1)™ = ei?=0%T oscillates infinitely rapidly
as (p — q)®~«. One might naively expect this in-
terference term to survive, because final states of
only one parity will contribute (m is either even or
odd). However, we must remember that this form-
ula was arrived by smoothing the 6 -function dis-
continuity. The proper interpretation of all these
terms (including this phase) should be determined
by taking the limit (p — ¢)*~« in some direction
other than along the positive real axis.*® We pre-
sent an argument along these lines in Appendix C,
showing that, to this order, the interference term
contributes only to the real part of the Compton
amplitude. One expects this interference term to
correspond to the “crossed handbag” Fig. 18(b).
One can check by direct calculation that the lead-
ing contribution from Fig. 18(b) does not scale.

The physical picture which goes with the mathe-
matics here is quite similar to the discussion of
the total cross section (Sec. III), but we feel that
it bears repeating. For (p —¢q)? off the real axis,
the perturbation expansion converges and, because
the theory is asymptotically free, the high-energy
behavior may be simply calculated from the lowest-
order graphs (“handbag” diagrams). For (p —q)?

(b)

FIG. 18. The three “handbag’” diagrams of the parton
model: (a) scattering from the quark and antiquark, and
(b) interference term corresponding to absorption by the
quark and emission by the antiquark.

>0, the perturbation expansion diverges and the
discontinuity comes entirely from mesonic final
states. Nevertheless, the asymptotic behavior is
exactly the same as if we calculated the discon-
tinuity of the handbag diagrams (Fig. 18) with
pointlike couplings to bare quarks.?” This resolves
very clearly the paradox of how the parton model
works without producing quark final states. This
should also clarify the meaning of the “as if” na-
ture of all calculations performed in the language
of bare quanta (parton model, charmonium, etc.).

Notice that, as x =1, VW~ (1 —x)%8, which is the
analog of the Drell-Yan-West relation'® between the
behavior of the structure function and the falloff of the
formfactor. Secondly, because the resonances inthe
final state not only contribute to, but in fact satur-
ate, the scaling function, the model illustrates
very nicely the duality between resonances and the
scaling function.'!

As discussed in Sec. IV the form factor may be
thought of as meson-dominated. From the point of
view of the color-singlet, asymptotic states of the
theory, the virtual Comptonamplitude may be de-
pictedasin Fig. 19. Thisis, of course, a general
correspondence principle of any field theory of con-
finement. Since normalanalyticity and unitarity hold
true, toany description in terms of bare quanta (par-
ton model), there must correspond a description en-
tirely in terms of physical (gauge-invariant, color-
singlet) states.

To describe the situation again in a language
similar to Feynman’s,® consider the process in the
brick-wall frame defined by

1
-9 :'ﬁ' (0; _sz) ’

_ 1 Ky’ [

p‘ﬁ'(‘D*zp P-3p
We shall analyze the process in old-fashioned per-

turbation theory in the infinite-momentum frame.

The amplitude to find quark a in the initial state
with momentum

— 1 mﬂz ma2
k‘«“i'(y“z*y‘ﬁ’yp"w

is ¢,(y). The antiquark b has momentum

Lk Ko’

n n

FIG. 19. Deep-inelastic scattering in terms of ha-
dronic, asymptotic states.
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1 y’ s
por=gp(0-9p e g 0-9P - g5p):

The amplitude that the struck quark combines with
this antiquark to form the final-state hadron of
mass M,*= 4x(1 -x)P? is ¢,((y —=x)/(1 =x)). As
W2~ the wave function oscillates rapidly so
that we obtain contributions only for y=x +£/4xP2.
The “invariant mass” of the struck quark is 2(&,
-q,) (k. —q_)= (m%/y +4xP?(y —x)= £. Thus the
rapid oscillation of the final-state wave function
forces the quark’s invariant mass to be finite.*® In
Feynman’s language, this corresponds to the as-
sumption of “finite interaction energy” in the in-
finite-momentum frame, so that the struck quark
differs from being on-mass-shell by a finite
amount A= £ - m,%. Asymptotic freedom then
guarantees that we must get exactly the same re-
sult as for the “handbag”.*’

VI SUMMARY AND SPECULATIONS

In this paper, we have clarified several aspects
of the two-dimensional theory, in particular, ques-
tions concerning gauge invariance and confinement.
We have shown how all previous attempts to make
mathematically precise parton models fail here.
By inserting a transverse momentum and assuming
it is damped, it is clear how one could proceed
ad hoc to construct a parton model patterned after
what we have learned here. This could be con-
siderably useful for phenomenology.

We have considered hadronic form factors and
shown them to be power-behaved for large g¢2. The
power is dynamically determined by the coupling
constant, and the physical picture is not that of
Brodsky and Farrar.® To what extent can we ex-
pect our conclusions to apply to the four-dimen-
sional theory? In four-dimensional QCD, the
coupling constant g is dimensionless. However, if
we believe confinement occurs, then there will
arise dynamically some transverse-momentum
cutoff or Regge slope a’ which sets the scale of
hadron mass splittings. To say this in another
way, the confinement phase is a nonperturbative
solution in which there are neither quarks nor
massless gluons. This will be expressed by the
replacement of the long-range force typical of
massless exchanges by a damping factor or co-
herence length which determines the scale of had-
ron sizes or masses. Thus, even in the four-di-
mensional theory, quite apart from quark masses,
there exists a dimensional parameter in the theory
which we may take to be the Regge slope o' ~ 1
GeV~% The BF arguments, which are essentially
perturbative, might well fail for the confinement
phase.® Instead, we can imagine that after inte-
gration over p,, our equations look much as in this

paper. If we wish to make contact with a param-
eter of our two-dimensional model, we would set
1g 3N =a'"'. But if we argue that the form factor

is controlled by the details of the confinement
mechanism which determines the hadron wave func-
tion and not by the short-distance structure, how
can we account for the phenomenological success
of the dimensional counting rules®? Our meson
form factors go as (¢%~'"8, whereas BF would
predict (¢2)7'.%% As % Hooft has speculated, in a
theory such as this one in which the light mesons
obey quadratic mass formulas,® the nonstrange
quark masses are very small, of order m= 15
MeV. But then 8 turns out to be about 0.025. Thus,
in effect, light quarks reproduce the dimensional
counting vules. For strange quarks, which are
substantially heavier, m =200 MeV, we find S,

= 0.33, which may begin to be a testable difference.
As we have seen, the form factor will be controlled
by the lightest quark, so to discriminate, one
would have to formulate tests sensitive to the
strange quark component. Perhaps with sufficient-
ly accurate measurements, one could see that the
pion form factor is a single power but that the

kaon form factor is the sum of two different pow-
ers.”

Since we are suggesting that the picture here
applies to four dimensions, we may attempt to
anticipate how spin will alter our results. We
recognize the factor m,%/@% as coming from the
helicity-flip coupling to the quarks. As Feynman
has emphasized,®® the “transverse” transition
form factors, such as 7-p,, would fall less rapid-
ly by one power of €. Thus, we anticipate
F”Pl @3~ @28 an extremely slow decrease.
Presumably, this could be tested in p leptoproduc-
tion, whose contribution to vW, in the Bjorken
limit would fall as (@2)~2%. Thus, if =0, there
would be exclusive channels, such as “y”’p —p%,
which would scale (Fig. 20). This prediction is
dramatically different from the BF result,* which
leads to FWP.LN @®72. The available data® show
that p~p — n~p% falls dramatically at very small
Q2 (from @2=0 out to @3~ 0.3 GeV?). Thereafter,
this exclusive reaction remains a nearly constant
fraction of the total cross section, from @2~ 0.3
out to @%= 3 GeV>.*® It should not be prohibitively

FIG. 20. An exclusive reaction which almost scales in
the Bjorken limit (p in current fragmentation region, p’
in target fragmentation region).
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difficult to perform accurate measurements in the
timelike region of the pion form factor and of e"e*
- mp to test these predictions directly.

Turning to deep-inelastic phenomena, we have
shown how the model achieves consistency with its
short-distance expansion ine"k—-e"X. We ob-
tained the canonical scaling result, and it would be
interesting and worthwhile to discuss inclusive
electroproduction e "2 —-e~h’X in various limits
(current, target, and hole fragmentation). A re-
lated, more interesting question is whether we ob-
tain parton-model predictions for reactions which
are not controlled by short-distance arguments,
such as inclusive annihilation, ¢”e¢™ - kX, and the
Drell-Yan process, hh’—~e~e¢*X. These will be
discussed elsewhere.

One could envisage other applications to purely
hadronic phenomena, but since the two-dimen-
sional model is not dual, it is not clear how use-
ful this will be. It might be interesting to see
whether there is a Pomeron in this model.

Perhaps the most interesting question to be
asked of the two-dimensional theory is whether
there are “baryon” bound states in the color-sin-
glet channel formed from N quarks in a totally
antisymmetric state. Unfortunately, the 1/N ex-
pansion seems ill-suited for this purpose, so a
different “non-perturbative” approach must be in-
vented.

To conclude, let us attempt to abstract a few
lessons from the two-dimensional case which may
be helpful to the solution of four-dimensional
QCD. Although it has not been discussed here, it
seems exceedingly difficult to solve even the two-
dimensional model in any gauge other than the
lighi-cone gauge, even to leading order in 1/N.
We might speculate that the compatible choice of
gauge, the use of the proper infinite-momentum
frame, and the 1/N expansion will also lead to
simplifications in four dimensions. The essential
new complication comes from showing that the
transverse degrees of freedom, especially the
massless gluons, are actually damped and that only
massive hadrons arise. Having chosen A_=0 and
eliminated A, as a dynamical variable leaves only
A , and the quark fields, so that spurious degrees
of freedom are conveniently absent. To leading
order in 1/N, we can continue to neglect quark
loops but can no longer suppress gluon dynamics.
Hopefully, this self-coupled glue will lead to a
dual model of mesons.
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APPENDIX A

Following the suggestion of W. A. Bardeen, we
will demonstrate the equivalence of the bound-
state equation to a potential theory problem. De-
fine a function F,(z), analytic except for a cut on
(0,1), by

1 rta
Fn(z)=;/; %@ . (A1)

Writing z=x+4y and F,(z) =U,(x,y)+iV (x,y), we
have that ImF,(x,0) =V (x,0) and our bound-state
equation may be written as

(an_u_'yb—]-)‘,n(x’o):_ﬂ 6_89; U,(x,0) .

X 1-x
(A2)
By the Cauchy-Riemann equations,
au, v,
ox ay ° (a3)

Therefore, we may state our eigenvalue problem
in the following terms: Find functions V,(x,») and
eigenvalues p,” satisfying Laplace’s equation
92 92

(a—x'i +'a_y5> Valx,9)=0 (A4)
in the upper half plane subject to the boundary con-
ditions on the real axis:

(1) V,(x,0)=0, x&(0,1) (A5a)

2 ’ya"'l Yo~ 1 )) = _E__
2) (un - 1_x>V,,(x,0) - 5y V,(x,0) ,
(A5b)
xe(0,1) .
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In addition, we require that V (x,y) vanish at in-
finity (in fact, as z™). This is actually a useful
form for obtaining approximate solutions to the
equations. For example, consider the conformal
transformation®®

£=sin?(2z-1) (A6)

mapping the upper half plane onto a rectangle
whose boundary has the real axis as its inverse
image (Fig. 21). Letting £=p+i0, we may restate
the problem as the following: Find V (p,0) satisfy-
ing Laplace’s equation inside the rectangle with
boundary conditions

Lv, <¢—27Z ,or> =0, 0>0 (ATa)

Bo' _ Ye=1l %=1
(2)<2 “1+sinp  1-sinp Vilp,0)

-m 9

=cosp B0 Ve, 0)

(ATb)
(3) V,(p, =) =0, pe (-g : ;’) : (a7c)

Because of Laplace’s equation, we may write the
general solution satisfying boundary conditions (1)
and (3) as

V.(p,0) =Z e[ a sin2mp + be °cos(2m +1)p] .
m=0

(A8)

The remaining problem of satisfying boundary con-
dition (2) may be formulated as a recursion rela-
tion for the coefficients af, and 6%,. This is now in
a form amenable to numerical solution.

The case when y,=v,=1 is especially simple and
can be easily solved numerically to yield accurate
eigenvalues and eigenfunctions.®® We shall not
elaborate this here.

APPENDIX B

We would like to expand on some of the details
of the short-distance and light-cone structure of
the model. The Fourier transform of matrix el-
ements of the product of two current will take the
familiar form

S da) 0,8

where O, are a complete set of local operators.
The light-cone limit generally requires that we
keep our operators of a given “twist”, so that de-
rivatives which are suppressed in the short-dis-
tance limit contribute equally in the light-cone
limit. By gauge invariance, the covariant deriva-
tive must appear, i.e.,

g*1q*z**+ ¢*n(a|g)D, D,, -+ D, ax)| BY,
(B1)

where D, =9, +g4,,. Consequently, it may seem
somewhat surprising that we recover the “hand-
bag” diagrams in deep-inelastic scattering, since
these do not require gluonic operators. We can
realize the light-cone limit by taking g, — - for
fixed ¢_>0. But then, in the A_=0 gauge,

q*D,~q,8. . (B2)

Thus it is precisely because our gauge was chosen
compatibly with our infinite-momentum boost that
no gluons occur. Had we taken instead g_— for
fixed ¢, in this gauge, then the physics would not
simply correspond to the “handbag” diagrams and
would involve an infinity of gluon field operators
as well. What appears trivial in one gauge will
appear horrendously complex in another. (These
remarks will apply equally to the four-dimensional
problem.) :

We would now like to illustrate how the infrared
behavior might lead us to worry whether the light-
cone structure would not be more complicated than
it turned out to be. Consider for this purpose the
lowest-order vertex correction to the quark cou-
pling (Fig. 22). With a vector current, this dia-
gram is given by

1, o2 a® y Sy, SU-qky.
Yy =ig Nf(—z—n—)i——“——-—(k__l_)z . (B3)

In particular, for the y_ component, we find simply

1) _ g°N ! dz
T )"< m >fo 0/x =2V - m*/z(1=2)] ’
(B4)

where y/x =k_/q_, inthe notationused earlier in the
text. If we consider the short-distance limit, ¢*
— for fixed y/x, we easily find the naive power-
counting result

rw Nﬂ@ x >
V(% _
T~ \Yy Y-—-Xx

-2
=0 (gqﬁv > . (B5)
However, for the form factor and for deep-in-
elastic scattering, we found that the dominant be-
havior came from y~x+O(m?/q?) so that T'")
~0(g3N/m?) instead. To see this more explicitly,

wern ||

0 | - | i
2 2
FIG. 21. A conformal transformation of the potential
problem (Appendix A).

4
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-q,
N A
4-q k-q
y3

k

FIG. 22. Lowest-order vertex correction to quark
coupling of photon.

suppose we let y/x=1+nm?/(-q?) and z~1 - ¢m?/
(-g?%). Then we find

Wy &N 7 _dt [ ¢
T ), meep <1+c>' (86)

This is precisely why we obtained corrections to
the parton-model description of the form factor
and, naively, we might expect a similar result for

deep-inelastic scattering where a similar limithad to
be taken. [Recall Eq. (83).] In the latter case,
however, all such scaling contributions cancel
each other leaving us with the famous parton-
model result. This cancellation, seen for ex-
ample in Eq. (83), is presumably related to the
gauge-invariance arguments presented above but
the precise connection has not been made. I be-
lieve this example serves as a warning that, in
processes for which the vesult is not guavanteed
by shovt-distance avguments, these cancellations
may not occur, and we may not recovevr the parton
model. In any case, it makes clear how the in-
frared structure may substantially complicate the
discussion of light-cone singularities.

APPENDIX C

In this appendix, we present an alternate derivation of the scaling result Eq. (87). Its main purpose is
to justify further the neglect of interference terms. Our discussion here parallels the discussion of the
total annihilation cross section given in Ref. 6. The contribution to W comes from the imaginary part of

T=-2w(1—x)zflfldde’G(z,Z';(P—q)z)

0o

X[elo,(x+ (1 =x)2)p (x+ (1 =x)2")+e20,(2(1 - x))p (2 (1 - x))
+2e,8,0,(x+ (1 - x)2)p(2'(1 - x))] . (C1)

Let us obtain the asymptotic behavior by taking (p — ¢)?> -~ (fixed x) in some direction off the positive real

axis. Then we may use the asymptotic expansion

8(z - z") 1 [(ma2—1+1nb2—1

G(Z:Zl;(p‘Q)z)" (p_q)z +(p_q)4

z

>6(z—z')—(z_;z,)2} . (c2)

Just as in e"e* ~X, the term in (p — ¢)"? contributes only to the real part. The first piece of the second

term gives for the contribution to the ¢, term

—27(1 - x)?
-9

z

1 2 2
efj dz ¢ (x+ (1 - x)z)2<m“ =1, my =1
o 1-2

) . (c3)

The integral diverges logarithmically at z~0, which tells us that the leading behavior will be

-27(1 - x)?

(p — q)4 ea2¢n(x)2(ma2 - 1)1n[_ (p - CI)ZJ . (C4)
Continuing back to (p - ¢)* >0 and taking the imaginary part, we obtain
2782
qff e (m = 1), (%) . (C5)

The term in Eq. (87) involving (z — z*)=2 can easily be shown to cancel the 1 in this expression, leaving
precisely the first term obtained in Eq. (87), obtained by direct calculation. A similar discussion of the
term in e,? leads to the second term in Eq. (87). The interference term is proportional to

2e.e, flfl , , m2-1 m?2-1 , 1 ]
b-ar ) ), dzdz' ¢ fx+ (1 = x)z2)p (2" (1 - x)) Tt 8(z - 2') - GZ7 " (C6)
This is easily seen to be perfectly convergent; consequently it does not contribute to the imaginary part of

T. Thus the interpretation given the oscillating phase found in Sec. V by smoothing 6 functions is consis-
tent with a more careful analysis of the asymptotic behavior.
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