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A detailed quantitative calculation is carried out of the tunneling process described by the Belavin-Polyakov-
Schwarz-Tyupkin field configuration. A certain chiral symmetry is violated as a consequence of the Adler-
Bell-Jackie anomaly. The collective motions of the pseudoparticle and all contributions from single loops of
scalar, spinor, and vector fields are taken into account. The result is an effective interaction Lagrangian for
the spinors.

I. INTRODUCTION

When one attempts to construct a realistic gauge
theory for the observed weak, electromagnetic,
and strong interactions, one is often confronted
with the difficulty that most simple models have
too much symmetry. In Nature, many symmetries
are slightly broken, which leads to, for instance,
the lepton masseS, the quark masses, and CP
violation. These symmetry violations, either
explicit or spontaneous, have to be introduced
artificially in the existing models.

There is one occasion where explicit symmetry
violation is a necessary consequence of the laws of
relativistic quantum theory: the Adler-Bell- Jackiw
anomaly. The theory we consider is an SU(2) gauge
theory with an arbitrary set of scalar fields and
a number, N, of massless fermions. The ap-
parent chiral symmetry of the form U(N~)
x U(N ) is actually broken down to SU(N ) x SU(N~)
x U(1). This paper is devoted to a detailed com-
putation of this effect.

The most essential ingredient in our theory is
the localized classical solution of the field equa-
tions in Euclidean space-time, of the type found
by Belavin et al. '

Although the main objective of this paper is the
computation of the resulting effective symmetry-
breaking Lagrangian in a weak-interaction theory,
we present the calculations in such a way that
they can also be used for possible color gauge
theories of stong interactions based on the same
classical fieM configurations. For such theories
our intermediate expressions (12.5) and (12.8) will
be applicable. Our final results are (15.1) to-
gether with the convergence factor (15.8).

Our general philosophy has been sketched in
Ref. 2. We are dealing with amplitudes that depend
on the coupling constant g in the following way:

8n""
g cexp ——(1+a g'+ ~ ~ ~ )g2

The coefficient a, involves one-loop quantum cor-

rections, and it determines the scale of the ampli-
tude. Clearly, then, to understand the main
features of such an amplitude, complete under-
standing of all one-loop quantum effects is de-
sired. For instance, if one changes from one re-
normalization subtraction procedure to another, so
that g'-g'+ O(g'), then this leads to a change in
(1.1) by an overall multiplicative constant. Thus,
the renormalization subtraction point p, may enter
as a dimensional parameter in front of our ex-
pressions. This is just one of the reasons. to
suggest that our results will also have interesting
applications in strong- interaction color gauge
theories.

The underlying classical solutions only exist
in Euclidean space, but they give rise to a
particular symmetry-breaking amplitude that can
easily be continued analytically to Minkowski
space. We interpret this amplitude as the result
of a certain tunneling effect from one vacuum to
a gauge-rotated vacuum. We recall that, indeed,
tunneling through a barrier can sometimes be
described by means of a classical solution of
the equation of motion in the imaginary time di-
rection. 2' 3

We compute in Euclidean space the vacuum-to-
vacuum amplitude in the presence of external
sources, thus obtaining full Green's functions.
Of course, we must limit ourselves to gauge-
invariant sources only, but that will be no problem.
It turns out to be trivial to amputate the obtained
Green's function and get the effective vertex.

The various calculational steps are the following.
We first give in Sec. II the functional integral ex-
pression for the amplitude, first in a conventional
Feynman gauge: C, = B„A„. Later, we go over to
the so- called background g3uge: C4 = D„A'„".
This is actually only correct up to an overall fac-
tor, as will be explained in Sec. XI. It is just for
pedagogical reasons that we ignore this compli-
cation for a moment. It is in this gauge that the
quantum excitations take a simple form: "Spin-
orbit" couplings commute with the oper3tor L,'
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= ——,'L„„J„„,where

(1.2)

so that we can look at eigenstates of L'. (In other
gauges only total angular momentum J= L+ spin
+ isospin is conserved, not L'.)

In Sec. III we consider the quantum fluctuations
described by an eigenvalue equation. ,

(1.3)

in order to compute det%. Now this looks like an
ordinary scattering problem (in 4+ 1 dimensions),
and, indeed, we show that the product of all non-
zero eigenvalues E, in some large box, can be
expressed in terms of the phase shift q(k) as a
function of the wave number k.

In Sec. IV we show that Eq. (1.3) is essentially
the same for scalars, spinors, and vectors, from
which we derive the important result that the prod-
uct of all nonzero eigenvalues is the same for
scalar fields as for each component of the spinor
and vector fields. So, we turn to the (much
easier) scalar case first.

But even for scalars Eq. (1.3) has no simple
solutions in terms of well-known elementary func-
tions. We decide not to compute det% by solv-
ing (1.2), but we compute instead

det[(1+ x2)3R(1+x')] .

The factors 1+x' drop out if we divide by the same
determinant coming from the vacuum (i.e. , the
case A" = 0). The equation

(1 2)2

is a simple hypergeometric equation that can be
solved under the given boundary condition (Sec.
v).

Now we must find the product of all eigenvalues
X, but that diverges badly even if we divide by the
values they take in the vacuum. We must find a
gauge- invariant regulator, and the regulator
determinant must be calculable. Dimensional
regularization is not applicable here, but we can
use background Pauli- Villars regulators. They
give messy equations unless they have a space-
time-dependent mass:

M]
(1+x')' '

The rules are formulated in Sec. V.
In Sec. VI we compute the product of the eigen-

values using this regulator. In Sec. VII we make
the transition to regulators with fixed mass by ob-
serving that a change toward fixed regulator mass

must correspond to a local, space-time-dependent
counterterm in the Lagrangian. The effect of
this counterterm is computed.

Using the result of Sec. IV we now find also the
contributions of all nonvanishing eigenvalues for
the vectors and spinors. But there are also
vanishing eigenvalues. They are listed in Sec.
VIII. For the vector fields, we have eight zero
eigenvectors in addition to the ones computed via
the theorem of Sec. IV. They are to be interpreted
as translations (Sec. IX), dilatation (Sec. X), and
isospin rotations (Sec. XI). The last need special
care and can only be interpreted correctly when
different gauge choices are compared. This leads
to the factor mentioned in the beginning.

In Sec. XII we combine the results so far ob-
tained and add the fermions. This intermediate
result may be useful to strong-interaction theo-
ries. In Sec. XIII we reexpress the result in
terms of the dimensionally renormalized coupling
constant g, as opposed to the previous coupling
constant which was renormalized in a Pauli-Villars
manner. In Sec. XIV the external sources for the
fermions are considered and the amputation
operation for the Green's function is performed.
We obtain the desired effective Lagrangian, but
there is still one divergence. So far, we only
had massless particles, and as a consequence of
that there is still a scale parameter p over which
we must integrate. Asymptotic freedom gives a
natural cutoff for this integral in the ultraviolet di-
rection, but there is still an infrared divergence.
In weak-interaction theories the Higgs field is
expected to provide for the infrared cutoff. Sec-
tion XV shows how to compute this cutoff.

The Appendix lists the properties of the symbols

g, q which are used many times throughout these
calculations.

II. FORMULATION OF THE PROBLEM

Let a field theory in four space-time dimensions
be given by the Lagrangian

2 =- —, O'„„O'„„—D„4*D,C —gy, D, g+ P,J„P, ,

(2.1)

where the gauge group is SU(2):

(2.2)

The SU(2) indices will be called isospin indices.
The scalars 4, taken to be complex, may contain
several multiplets of arbitrary isospin:

D„4 =8 4 —igT'A'4,

[r', r'] =f,e,„r'.
The spinors g are taken to be isospin- —, doublets.
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xexp Z —g t",' A + aghast &, 2.4

to be expanded with respect to 8. Here C, (A) is
a gauge-fixing term, and Zgh'" are the correspond-
ing ghost terms.

As is argued in Ref. 2, the U(1)-breaking part of
this amplitude comes from that region of super-
space where the A field approaches the solutions
described in Ref. 1:

Ag (
)cl 'gggP(x ~)

g (x —z)'+ p' ' (2.5)

where z„and p are five free parameters associated
with translation invariance and scale invariance.
The coefficients q are studied in the Appendix.
Conjugate to (2.5) we have its mirror image,
described by the coefficients q (see Appendix).

Now these solutions form a local extremum of
our functional integrand, and therefore it makes
sense to consider separately that contribution to
W in (2.4) that is obtained through a new perturba-
tion expansion around these new solutions, taking
the integrand there to be approximately Gaussian.
The fields C, P, and g all remain infinitesimal so
that their mutual interactions may be neglected in

the first approximation. Of course, we must also
integrate over the values of z„and p. This will be
done by means of the collective-coordinate formal-
ism. ' One writes

A' =A'" Aa "
u v + u (2.6)

and those values of A'" that correspond to transla-
tions or dilatations are replaced by collective co-

The total number of doublets is 1Vf. Mass terms
and interaction terms between scalars and spinors
are irrelevant for the time being,

We inserted a source term in a gauge-invariant
way, with respect to which we will expand, in
order to obtain Green's functions. The indices
s, t=1, . . . , N~, called flavor indices, label the
different isospin multiplets. Isospin and Dirac
indices have been suppressed. 8„must be diagonal
in the isospin indices but may contain Dirac y
matrices.

The system (2.1) seems to have a chiral U(N~)
&& U(N~) global symmetry, but actually has an Adler-
Bell- Jackiw anomaly' associated with the chiral U(1)
current, breaking the symmetry down to SU(N~)
x SU(N~) x U(1). The aim of this paper is to find
that part of the amplitude that violates the chiral
U(1) conservation.

The functional integral expression for the ampli-
tude is

w=,„,(o io),,

where

S"= Z(A")d'x

= —8n (2.6)

and the "covariant derivative" D„only contains the
background field A'„', for instance:

A''"= g A' '"+ge AbclAc&u
V g V abc (2.9)

etc.
We abbreviate the integral over (2.7) by

S"—2A'"3R„A'"+ t/i3Rqg C*3ROC (f&*3R,„Q,

(2.10)

where the last term describes the Faddeev-Popov
ghost. Thus, expression (2.4) is (ignoring tem-
porarily the collective coordinates, and certain
factors v w from the Gaussian integration; see
Sec. IX)

W= exp(-Bw'/g')(det3R„) ' 'det3R~(detNo) '

x detNgh. (2.11)

The determinants will be computed by diagonal-
ization:

3R,.J=E,.P, (2.12)

after which we multiply all eigenvalues E. Since
there are infinitely many very large eigenvalues,
this infinite product diverges very badly. There
are two procedures that will make it; converge:

(i) The vacuum to-vacuum amplitude in the ab-
sence of sources must be normalized to 1, so that
the vacuum state has norm 1. This implies that
W' must be divided by the same expression with
A"=0.

(ii) We must regularize and renormalize. The
dimensional procedure is not available here be-
cause the four-dimensionality of the classical
solution is crucial. We will use the so-called
background Pauli-Villars regulators (Secs. IV
and V).

Taking a closer look at the eigenvalue equations
(2.12) as they follow from (2.7), we notice that the
background field in there gives rise to couplings
between spin, isospin, and (the four-dimensional
equivalent of) orbital angular momentum, through
the coefficients 7l,„„in (2.5). Now these couplings

ordinates.
The integrand in (2.4) now becomes

Z(A") ——'(D A'")'+ —'(D A'")' —gA""e G~ "A''"

—D„C*D„C—gy„D, g+

/JAN-

& C, '+ 2f '"

(2.7)
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simplify enormously if we go over to a new gauge
that explicitly depends on the background field'

C'(A'") =D A''"

and T 'A. '„= i&,~A'„ for the vectors. Then

8 3 8 4, 8 4x'
D = —+————I— T I — TBr r Br r' r'+ 1 ' (r'+ 1)'

=8 A''"+g& Ab "A''"
abc (2.13) (2.17)

Aa qu D2Aa Qu 2gf GbclA c qu
p " p abc pv v

KoC= —DC,

3R „(f&=—D2$.

(2.14)

In order to substitute the classical solution (2.5)
with @=0 and p=1 (generalization to other z and

p will be straightforward), we introduce the space-
time operators

Thus the third and eighth terms in (2.7) cancel.
This choice of gauge will lead to one complica-

tion, to be discussed in Sec. XI: The gauge for
the vacuum-to-vacuum amplitude in the absence
of sources, used for normalization, in the region
A„-O, is usually invariant under global isospin
rotations, but the classical solution (2.5) and the

gauge (2.13) are not. Associated with this will be
three spurious zero eigenvalues of 3R„ that cannot
be directly associated with global isospin rotations.
The question is resolved in Sec. XI by careful
comparison of the gauge C, with C4 and some in-
termediate choices of gauge.

There will be five other zero eigenvalues of
3R~ that of course must not be inserted in the
product of eigenvalues directly, since they would
render expression (2.11) infinite. They exactly
correspond to the infinitesimal translations and
dilatations of the classical solution, and, as
discussed before, must be replaced by the corre-
sponding collective coordinates (Secs. IX and X).

The matrices K are now (ignoring temporarily
the fermion source)

where r'=(x z)'. This clearly displays the iso-
spin- orbit coupling.

The vector and spinor fields also have a spin-
isospin coupling. For the spinors we define the
spin operators

8'Uagv'Ygrv & ~

8«awv'Y, 'Yv & ~

(2.18)

satisfying

[S~,St] = i 5 (2.19)

$2 ~5
4

2 3 1 + P5
2 4

(2.20)

For the vector fields we define

$;A ~"= ——'ig, v A ~",

(2.21)$', A ~"=- 2iq, „„A'„",
$2 $2

For the scalar fields %, =%,=0. Thus right- and
left-handed spinors are (2, 0) and (0, 2) represen-
tations of SO(4), and vectors are (&, &) represen-
tations. Scalars of course are (0, 0) representa-
tions.

In terms of the operators $ and T, the spin-
isospin couplings turn out to be universal for all
particles. Substituting the classical value for
G'„„" in (2.14) we find

with

a 1 ~ 9
Qapv v y9x

a 1 a
&~'9apv+ - v &Bx

(2.15)

8 ' 3 8 4, 8
3R = — ————+—,L'+

BJ 1 8+ '7 1++

4r 2
2 16

(1+r')' (1+r')' (2.22)

(2.16)

They represent rotations in the two invariant SU(2)
subgroups of the rotation group SO(4).

Isospin rotations will be generated by the oper-
ators T' for the scalars, T'= &7' for the spinors,

with %=SR„or —%&' or %o or %~.
Observe the absence of spin-orbit and isospin-

orbit couplings that contain x„or 8/Bx, explicitly.
It all goes via the orbital angular momentum oper-
ator L, and that implies that L' commutes with%.
This would not be so in other gauges. Further, %l
commutes with J, =L,+f,+ T and L, and%, . Eigen-
vectors of 3R can thus be characterized by the
quantum numbers
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s, and s, (both either 0 or 3),
f (total isospin, arbitrary for the scalars, 3 for the spinors, 1 for the vector and the ghost),

1l=0, 2, 1, . . . ,

j,= l —s, —t, l —s, —t+ 1, . . . , l + s, + t, as long as j, - 0,
'3= j],) a ' 0 +j].

3=S2 S2~' )+S2 ~

l2 lp ~ ~ ~ p+l ~ '

(2.23)

9 ' 3 9 4
3R — — ——+—1.er r er (2.24)

For normalization we need the corresponding
operator 'R for the case that the background field
ls zero: @(r) cc Cr-3/3[e-(}}(r+a}+ g(k) ei&(r+a}]

. =2C'r 3~' cos[k(r+ a)+ rj(k)]. (3.5)

If we require at r =B the same boundary condi-
tion for 4, then we must solve

~n. DETERMmAmS mo PHAsE SHiFTS k(n)(ft+ a)+ }I(k(n))= k, (n) (R+ a), (3.6)

Z(n)II z, (n)
(3 1)

The scattering matrix S(k) = e""(~}will be defined
by comparing the solution of

(3.2)

with

3R4 =k4 (3.3)

both with boundary condition 4 -Cr" at r = 0. Let

(r) Cr 3/3(e ik(r+a} + 8+i}!(r+})a
=2Cr 3~'cosk(r+a) for large r (3.4)

The eigenvalue equation (2.12) with K as in
(2.22) differs in no essential way from an ordinary
Schrodinger scattering problem. In this section
we show the relation between the corresponding
scattering matrix and the desired determinant.

Temporarily, we put the system in a large
spherical box with radius R. At the edge we have
some bounda, ry condition: either 4(R) =0, or
4"(R) =0 (or a linear combination thereof). Here
4 stands for any of the scalar, spinor, or vector
fields. In the case 4'(R) = 0 the vacuum operator
PRO has a zero eigenvalue corresponding to 4'

= constant, and also the lowest eigenvalue of K
may go to zero more rapidly than 1/R' when

8-~. Such eigenvalues have to be considered
separately (negative eigenvalues can be proved
not to exist).

We here consider all other eigenvalues of %.
They approach the ones of %, if R- ~. We wish
to compute the product

thus

k(n) ri(k(n))
k„(n) (R+ a)k(n)

' (3.7)

The level distance &k = k(n+ 1) k(n) is in both
cases, asymptotically for large R,

&k= —+0 (3.8)

We find that

g[ —=e~ 2 g ln[k(n)/k, (n)]
E(n)

E,(n j.

=exp p —g ap — +0-8 "
}I(k) 1

Rk

- exp —— " dk
2

"
}I(k)

m 0 k
(3.9)

provided that the integral converges at both ends.
At k-0 the integral (3.9) converges provided

that the interaction potential decreases faster than
1/r' as r ~; at k-- ~ the integral converges if the
interaction potential is less singular than 1/r' as
r-0. The latter condition is satisfied if we com-
pare % and %, at the same values for the quantum
number l; the first condition is satisfied if (L, + T)'
for the interacting matrix is set equal to L, ' for
the vacuum matrix. If we consider the combined
effect of all values for L' and (L, + T)3 both for the
vacuum and for the interacting case then we can
split the integral (3.9) somewhere in the middle,
and combine the k ~ parts, so that we get con-
vergence everywhere.
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An easier way to get convergence is to regularize:

1 "
7)(k) M'

w k (k'+ M')

(3.10)
L,'+ S,'=L, l'= l + 2, (4.5)

l jy, t generates two solutions with s,' = 2, l ' = l + 2

j,'=j„ t'=t. In terms of the operators I., S,
and T the new solutions to the coupled equations
can be expressed in terms of the 8= 0 solutions
a,s follows:

Regulators will be introduced anyhow, so we will
not encounter difficulties due to no convergence
of the integral in (3.9).

e' = — (2I,' 2L,"+—,') +
1
r

4x, 8S' ~ T 4+ —4.1+x2 ' ez

(4 6)

IV. ELIMINATION OF THE SPIN DEPENDENCE

In Eq. (2.22) the operators T I., and T ~ S, do not
commute. Only in the case that

(as defined in 2.23) do they simultaneously di-
agonalize. If

I
~

&s+t

j~0, l wO, s= &, tcO,

then we have a set of coupled differential equations
for two dependent variables.

In any other case there would be no hope of
solving this set of equations analytically, but here
we can make use of a unique property of the equa-
tion

(4 1)

which enables us to diagonalize it completely.
If s, = 0 the equation could describe a left-handed
fermion with isospin t:

(4.2)

It is easy to check explicitly that i.f 4 satisfies
(2.22) with S, =O, then the two wave functions 4'
both satisfy (2.22) when the operators I, , S, T are
replaced by the primed ones.

Asymptotically, for large r, 4" =(8/sr)4, and
hence the phase shift q(k) is the same for the
primed case as for the original case. Consequently,
the integral over the phase shifts as it occurs in

(3.9) is the same for spinor and vector fields
(with s, = 2) as it is for scalar fields (with s, = 0).

The above procedure becomes more delicate if
E=O. Indeed, although scalar fields can easily
be seen to have no zero-eigenvalue modes, spinor
and vector fields do have them. In conclusion,
the nonzero eigenvalues for the vector and spinor
modes are the same as for the scalar modes, but
the zero eigenvectors are different.

In the following sections we compute the uni-
versal value for the product„Note that also the
regularized expressions (3.10) are equivalent
because the q(k) match for all k. The regulator
of Eq. (3.10) corresponds to new fields with
Lagrangians

(4.7)

for vectors,

But then we can define, if E @0,

with

(4.3)

&= yI- (y D)' —M'] y for spinors, (4 8)

3Rg' = Eg',
(4, 4)

Now ~/r' has s,' =-„and hence we found a solution
for the set of coupled equations with s,'= & from
a solution of the simpler equation with s, = 0. The
operater y Din Eq. (4.3) does not commute with
L, , so if P has a given set of quantum numbers

I,j„f then g' is a superposition of a state with &'

= l + 2 and one with l' = l —&. Now & does commute
with I, so if we project out the state wj.thl'=/+ 2

or l' = l —& then we get a new solution in both cases.
Thus one solutionwith s, = 0 and quantum numbers

%ithin the background field procedure it is ob-
vious that such regulator fields make the one-loop
amplitudes finite. I ater (Sec. XIII) we will make
the link with the more conventional dimensional
regulators.

V. A NEW EIGENVALUE EQUATION AND NEW
REGULATORS

As stated in the Introduction, the solutions to
the equations %4 =EC even in the scalar case can-
not be expressed in terms of simple elementary
functions. But eventually we only need detÃ/
detÃ0, and this can be obtained in another way.
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We write

V= —,
' (1+r')% (1+r'),

Vo = —,
' (1+r')SRO(1+ r'),

and, formally,

(5.1)

det('N/Kg = det(V/V, ) .
The equation

corresponds to the expression

(5.2)

e ' 3 a 4, 4, , 4(T'+X)'
+ ————

2
I' ———,(J,' —L')+ ',

2
4'=0;

8~ r ar r' 1+r' ' 1+r')' (5.4)

Write

1x=
1+f'

4=r"(1+r') ' J& 'C(x),

(5 5)

+ ' — —+ [T'+Z —()+j,+))()+j, 2)]IS=0.2(j,+ 1) 2(l+ 1.)' s 1
Bx x 1 —x Bx x(]. x)

(5.6)

e(x)=g a„x" (5.7)

(v —n) (v+ n + 2l + 2j,+ 3)
(v+1) (v+2 j,+2)

where n is defined by

(n + l +j,+ 1) (n + l +ji + 2) = T + X .

(5 3)

(5.9)

If n = integer ) 0 then the series (5.7) breaks off.
Otherwise C is not square-integrable. So we find
the eigenvalues

X„=(n+l+j, +1 —t) (n+l+ j,+2+t), (5.10)

This is a hypergeometric equation. The physical
region is 1/(I+A') ( x (1. In the Hilbert space of
square-integrable wave functions the spectrum is
now discrete, which implies that we can safely
take the limit R-. The solutions for 4 are just
polynomials;

The regulators M,. withe =1, . . . , R are as usual
of alternating metric e,. = + 1. Consequently, detSR

is replaced by

(de))K) i$ (da))R,.)'i. (5.13)

We choose M' here so large that anywhere near
the origin the regulator is heavy. Far from the
origin the classical solution is expected to be
close enough to the real vacuum, so that there
the details of the regulators are irrelevant.

Of course the regulator procedure affects the
definition of the subtracted coupling constant. In
Sec. VII we link the regulator (5.11) with the more
acceptable one of Sec. IV, and in Sec. XIII we make
the link with the dimensional regulator.

The eigenvalues of the regulator are

))„=(n+l+j, + 1 —t) (n+l+ j|+2+t)+M . (5.12)

n=0, 1, 2, . . . , T' = t (t+ 1) . This converges rapidly if

The vacuum case Vp+ Xp@ ls solved by the
same equation, but with j,=l, f, =0.

The product of these eigenvalues, even when
divided by the vacuum values, still badly diverges
so we must regularize. The regulators of Sec.
IV are not very attractive here because they
spoil the hypergeometric nature of the equations.
More convenient here is a set of regulator fields
with masses that all depend on space-time in a
certain way. They are given by the I.agrangians
(4.7)-(4.9) but with M' replaced by

e,.=- 1,

g e;M;=0,

R
2=e;M; =0, . . . ,

a

R

e, lnM, =-- lnM= finite.
1

I,et i=0 denote the physical field, then

(5.14)

4M'
(1+r')' (5.11) ep=1, Mp=0, e,- =0, etc.

4=0
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VI. THE REGULARIZED PRODUCT
OF THE NONVANISHING EIGENVALUES

We now consider the logarithm of the regularized
product of the nonvanishing eigenvalues, for a
scalar field with total isospin t:

replacing t with zero and adding an additional
multiplicity 2t+ 1, thus

lnll, (t) = g g e, (s'- -'s)2t+ 1

s=3/2 i

lnll(I)= g n,. P Inl"'
c=o

with

))~3 = (n+I+j,+ 1 —t) (n+I+j, + 2+ t)+M

(6.1)

(6.2)

x ln(s'+ M, ' ——') . (6.7)

Now we interchange the summation over s and i,
letting first s go from t+ 2 to A and taking A-
in the end. We get

0=l+j, —t«0,
r —=j, —l+t«0, r~2t, n «O.

(6.3)

[Later we will divide II(t) by the vacuum value
ll, (t), which is obtained by the same formulas as
above and the following, but with t replaced by
zero, and the degeneracy will be (2t+ 1) (2l+ 1)'.]

We go over to the variables 0 and 7 as given
by (6.3) and s with

(we imply that e0=1 and M, =O). The summation
goes over the values of all quantum numbers. Now
for given n, l,j, the degeneracy is (2j, +1) (2j,+1)
= (2j, + 1) (2l + 1). The values of l, j„and n are
restricted by

In[II(t)/II, (t)] =
3 g e, (A"*(t+2) -4-"'(2))

with

(6.8)

&~'(p)= g (s' s$')In(s'+M, .' y').
s=ty+1

(6.9)

S = XdX+ 2 X+ 2 X
s=P+1

Let us first consider the regulator contribution.
Then M is large. We may consider the logarithm
as a slowly varying function, and approximate the
summation by means of the Euler-Maclaurin
formula,

s=n+l+j, + 2,
We find that

S «t+0'+ 2.

t 3/2

(6 4)

and we obtain

(6.10)

Inll(t) = Q Qe; Q Q (o+ ~+ I) (2t+o —r+ I)
s= t+3/2 i T=O fy=O

x In[s'+ M, ' —(t+ —,')'] .

(6.5)

The summation over 0 and r gives

lnll(t) =
3 g g e,.[s'- s(t+ —,)']2t+ 1

s=t+3/2 i

x ln[s'+M, .' —(t+ ~ )'].
(6.6)

The vacuum value II,(t) is obtained from (6.6) by

2"((t)) = indep((t)) + (t)'(- -,' M' —A' In A- A lnA

—2 A —'-, lnA ——,—'; lnM')

+ 0'(3lnA+I)+0 (,) + 0(—).
(6.11)

The first term stands for an array of expressions,
all independent of (t), and is not needed because it
cancels out in Eq. (6.8).

For 20((t)) the series (6.10) will not converge at
x=p so it cannot be used. After some purely
algebraic manipulations we find

g'((t)) = P s(s+ (t)) (s —(t))[ln(s+ (t))+ ln(s (t))]
s= /+1

A 2g

=indep((t))+4/'g sins+ g s(2$ s) (s —(t)) lns

+0'(—3A —3A- ) lnA+3'(A' —,A —,—,)+ 3'(, InA —-„)+0(—) . (6.12)
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Now we insert (6.11) and (6.12) into (6.8):
2t+j.

In[II(t)/II, (t)]= g s(2t+1- s) (s —t ——,) lns
s=1

+ 1 (t + 1) 4 Q s lns 4A' )nA —2 A lnA —-', lnA+ A*+ -, ln I- -, t(t+ 1) - -,

1
(6.13)

We made use ofZ, e, =0, 2, e, M, '=0, Q, e,. lnM, '—= —lnM. The limit A-~ exists. Defining

A

R= lint P sins —,A'lnA ——, AlnA —,—,lnA+-, A')A~

= 0.248 754 477, (6.14)

we find that

I [11(f)/II,(t)] = t(t+ 1) (2t+ 1)
3 R lnM+4R+ s(2t+ 1 —s) (s —t —R) lns —,' t(t+ 1) —R— (6.15)

In2)T+ y ft (2)
12 2r2

4O

= „(In2n'+y)+ lns
S

y= 0.577215664 9 is Euler's constant,

R is related to the niemann zeta function g(z) as
follows:

R=,—', —f'(- 1)

be absorbed by a counterterm in the Lagrangian,
and hence is local in space-time. So we expect
that, if we make a space-time-dependent change
in the regulator mass, then this change can be
absorbed by a space-time-dependent counterterm.
Moreover, since our regulators are both gauge-
invariant, this counterterm is gauge invariant.
For space- time- independent regulators, this
counterterm can be computed by totally conven-
tional methods:

2

G„„G „&& —t(t+ 1) (2t+ 1) In(p/p, ) .

= 0.937 548 254 315 844.

VII. THE FIXED MASS REGULATOR

4M'"=
(I+~R)R (7.1)

Equation (6.15) gives the regularized product of
all nonvanishing eigenvalues of K. But the regula-
tor used was a very unsatisfactory one, from a
physical point of view, because the regulator mass
p, depends on space- time: Gg cl ~ Qpv4

Ints
g (] + ~2)2 (7 3)

and expression (7.1) for p, we get

(7 2)

From locality we deduce that the same formula
must also be true for space-time-dependent regula-
tor mass p. (x), simply because no other gauge-
invariant, local expressions of the same dimen-
sionality exist. Inserting the classical value for
G V 0

This p, must be interpreted as the subtraction point
of the coupling constant g. Now g does not occur
in II(t)/II, (t), but it does occur in the expression
for the total action for the classical solution, and
as we emphasized in the Introduction, any change
in the subtraction procedure is important. The
problem here is that we wish to make a space-
time-dependent change in the subtraction point,
from p, to a fixed p, We solve that in the following
way.

The effect of a change in the regulator mass can

4S = AZdx

16 x 12p2
t(t+ 1) (2t+ 1)32m'x 9

p,
R)4 ln (1+x )

= —,'t(t 1)( +t l)n(-,sin '+,—,). (7.4)
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In the expression fixed mass regulators, as defined in (4.9). The
regulator masses M, in there must be such that

with II(t)/II, (t) as computed in (6.15), we must cor-
rect S" with the above 4S", in order to get the
corresponding expression with g subtracted with

R

e,. lnM, = —ln go .

Expression (7.4) must be added to (6.15).
Thus we get

(7.5)

In[11(t)/llo(t)]=
3 o ln —'+4R + g s(2t+1 —s) (s —t —2) lns —

& t(t+1) —';t(t + 1) (2t + 1)

s=1
(7.6)

VIII. THE ZERO EIGENSTATES

First we consider the vector fields. We have

s, =2, t= 1. Careful study of the operator %,
Eq. (2.22), enables us to list the square-intergra-
ble zero eigenstates as follows:

(i) j,=o, I=0: 4'=(1+r') '

(j& = s& = 2),

multiplicity = (2j,+ 1) (2j,+ 1) = 4.
(8.1)

We note that the coefficient of the regulator term
in (6.15) has the correct value. It matches the
coefficient of (7.2) that has been computed in-
dependently. The regulator in this expression,
(7.6), is the same as the one used in (3.10), and
so we can use the result of Sec. IV to do the
spinor and vector fields.

In Sec. IV we proved that the nonzero eigen-
values for vector and spinor fields are the same
as for scalar fields, but we must take some multi-
plicity factors into account. Equation (7.6) holds
for one complex scalar multiplet with isospin t.
Fields with integer isospin may be real and then
we have to multiply by &. The vector field has
four components but is real, and hence its value
for ln(II/II, ) is twice expression (7.6), with t = 1.
The complex Faddeev-Popov ghost has Fermi
statistics and contributes with one unit, but op-
posite sign. Thus, altogether, the vector field
contributes just like one complex scalar with (= 1.

For fermions we must compute det%~, but the
theorem of Sec. IV applies to N~'. The fermions
have four Dirac components. So, altogether,
fermions contribute just like two complex scalars,
but the sign in ln(II/II, ) is opposite because of
fermi statistics.

The above summarizes in words the complete
contribution of all nonzero eigenstates to the func-
tional determinants. But the spinor and vector
fields have a few more modes, with E= 0, and
also the regulators have corresponding new modes,
with E= p,,'.

(ii) j,=0, l = —,': k=r(1 r+')

There are two possibilities for the other quantum
numbers:

(a) j,=0, multiplicity=l,

(b) j = 1, multiplicity = 3 .

(8 2)

(8.3)

This completes the set of zero eigenstates. We
interpret these as follows. States (i) have j,=j,
= &, that is, the quantum numbers of an infinites-.
imal translation. The translations are considered
in Sec. IX. State (iia) is the only singlet. It will
correspond to the infinitesimal dilatation, Sec. X.
State (iib) is just an anomaly. It will be discussed
in Sec. XI. It is indirectly connected with in-
finitesimal global isospin rotations.

Spinors have similar sets of eigenstates, but
their interpretation will be totally different. If
t = 1, then the eigenstates are essentially the
same as the vector ones, but their multiplicity
is half of that because s, = o. In this paper we

limit ourselves to t= 2. Then there is just one
zero eigenstate:

j,=0, t=j, =0, %=(1+r') '~'. (8 4)

Its multiplicity is of course N~ if there are N~

flavors. It leads to an Nf-fold zero in the ampli-
tude [note that in (2.11) the amplitude isproportional
to det%~ and thus is proportional to the product of
the eigenvalues of %&, if we have N~ zero eigen-
values then W has an N~-fold zero). But this zero
will be removed if we switch on the fermion source
g in the Lagrangian (2.1). In Sec. XIV we will
construct the resulting N~-point Green's function.

In strong- interaction theories the fermion mass
mill also remove this zero. The zero eigenstates
must also be included in the regulator contribu-
tions. From Sec. VII on, our regulator mass is
fixed and is essentially equal to p, Every zero
eigenvector of the operator 3R, Eq. (2.22), will be
accompanied by a factor po

' for the regulator (a
zero eigenvector of K„ is accompanied by a factor
Po )
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IX. COLLECTIVE COORDINATES: 1. TRANSLATIONS

Clearly, zero eigenvalues make no sense if they
would be included in the products carefully com-
puted in the previous sections. In the case of the
vector fields, which we will now discuss, they
would render the functional integral infinite be-
cause they are in the denominator. It merely
means that the integration in those directions is
not Gaussian.

Let us first consider the four modes (8.1). The
angular dependence and index dependence can be
read off from the quantum numbers. Written in
full, the mode corresponds to the quantum field
fluctuation (with arbitrarily chosen norm):

A'„'"(v) =27',„„(1+r2)', v=1, . . . , 4. (9.1)

This can be seen to be the space-time derivative
of the classical solution up to a gauge transforma-
tion:

so, together with the regulator, these four modes
yield the factor

(
2 4 2 2

o (2&2)2d 4& 22&2~ 4g 4ds&
g 7T

(9 8)

X. COLLECTIVE COORDINATES: 2. DILATATIONS

From the quantum numbers of the zero eigen-
state (8.2) we deduce its angular and index depen-
dence:

The integral over the collective coordinates z~

will yield the total volume of space-time, if no
massless fermions are present. If there are
massless fermions, then we must include the
sources g, which break the translation invariance.
In that case the z integration is rather like the in-
tegration over the location of an interaction vertex
in a Feynman diagram in coordinate configuration,
as we will see in Sec. XIV.

g 8 2n...(x-&)' f
2 ez" @[1+(x —z)2] )

with

A'(v) = - q, „,x'(I + x 2) ' .

(9.2)

(9 3)

A''"=t), „x'(1+x') '.
This is a pure infinitesimal dilatation of the
classical solution;

x"
g a qu g 1apv

48p gx+p

(10.1)

(10.2)

The gauge transformation is there because our
gauge-fixing term depends on the background
field.

If we want to replace the variable X)A'" in this
particular zero-mode direction by the collective
variables dz", then we must insert the corre-
sponding Jacobian factor'

4 1 & j./2
5)A ' '"- dp — (A—' '")'d 'x

g
(10.3)

The norm of the solution (10.1) is

Thus, going from the integration variable A. '" in
this direction to the collective variable p, we need
a Jacobian factor:

SA'" ] [ —dz' — [A '„'"(v)j'd~x (A a 2u)2d 4x v2 (10.4)

(9.4)

A '„'"(v)A "(A)d'x = 2v25„2, (9.5)

where A'„'"(v) is the solution (9.1). The factor
2/g comes from the factor g/2 in (9.2). This way
the result is independent of the normalization of
A''"(v) of (9.1). The factors m

'~' arise from the
fact that we compare this integral with Gaussian
integrals, and in these Gaussian integrals the
factors Wv that go with each eigenvalue had been
suppressed previously. We could also have
dragged along all factors v v at each of the eigen-
values of the matrices K, and then we would have
noticed that the factors v v going with the corre-
sponding modes of the regulators, which are still
Gaussian, would have been left over. In (9.4) we
just include these factors from the beginning.

The norm of the solution (9.1) is

Thus, from this mode we obtain the factor

4~ 2 1/2
dp = 477 p, og dpg 7T

(10.5)

XI. GLOBAL GAUGE ROTATIONS AND THE GAUGE
CONDITION

Discussion of the legitimacy of the background
gauge-fixing term has been deliberately post-
poned to this section, because we wanted to derive
first the existence of the three anomalous zero
eigenstates (8.3). They have the explicit form

at p=1. Our system is not scale invariant because
of the nontrivial renormalization- group behavior.
The complete p dependence for p41 will be de-
duced from simple dimensional arguments (in-
cluding renormalization group) in Sec. XII.
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(arbitrary normalization)

g'„(f)) =2q,„„q,„~x (1+x') '.
They are a pure gauge artifact

eigenmode yields the factor

br' (b))'~' (11.10)

(11.2)

(11.3)

but g'(f)) is not square-integrable. What is going
on? Note that P'(f)), since they a,re x dependent,
do not generate a closed algebra of gauge rota-
tions. They may not be replaced by a collective
coordinate for global isospin rotations. To ana-
lyze this situation we first go back to a back-
ground- independent gauge- fixing term,

(R) =- (R) = 0, (11.11)

where R is the radius of the box, and the vector
fields

Now we will study different gauges, and for that
we need to change the boundary condition (we know

from Sec. III that that will not affect the finite
eigenvalues, but the zero eigenmodes change) into
a gauge-invariant one: The ghosts bt) and gauge
generators A must satisfy

C;(x) = a & „(A.'„"+A'„'")

= na A'~" (11.4)
A„(R) = 0, —A„(R) = 0,8

(11.12)

A'(5 x) = 6'" (11.5)

generate an infinitesimal global isospin rotation.
Then there is a zero eigenmode:

= 2e„~q„„x"(1+x') '. (11.6)

The subscript 1 is to remind us that this is a
solution in the gauge C,. Similarly as in the
foregoing two sections, we can replace the inte-
gral over RA'„by an integral over the collective
coordinates dJ) (f)) by inserting the corresponding
Jacobian factor

where n is a free parameter. In this gauge we
know exactly how to handle aQ zero eigenmodes:
There are five for translations and dilatations and
also three for global isospin rotations because
global isospin is still an invariance in this gauge.
To understand the latter we put the system in a
large spherical box with volume V and assume
that all (vector and ghost) fields vanish on the
boundary. Let

where A~~ is the vector component parallel to the
boundary.

Now observe the following. The gauge term C„
Eq. (11.4), does not fix the gauge completely
which can be seen in two ways: (a) Global isospin
rotations are still an invariance; (b) one compo-
nent of the gauge term C, is identically zero:

C;(x)d~x=0. (11.13)

This leaves us the possibility of adding a constant
to C„which is orthogonal to it, with which we
fix the remaining global gauge

C;(x) = a B„A'„'"

z Q b" f b; (b, b)d ' '"(b)d b

(11.14)

with o. , z free parameters and P; (b, y) =D„6'b, as
in (11.6). The integral over group space is now

replaced by a Gaussian integral. The Gaussian
volume is corrected for by the Faddeev-Popov
ghost,

with

(11.8)

which diverges as the volume V of space-time
goes to infinity. The integral over the gauge ro-
tation is just the volume of the group and yields

so that the combined contribution of vector fields
and ghosts is now independent of n and ~: The
zero eigenvalues are replaced by

f ll dd, Bw'
(11.9)

~vector +2 @gal2

(11.16)

where the factor g
' comes from our normalization

of A, in (11.6). Thus, in this gauge, the zero

yghost ~cg

(Remember that the ghost, with the new boundary
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condition, has now an eigenstate (t) = constant. )
Thus, instead of (11.10), this gauge gives

(~gh«)gpvector)-g/ g (91/V) g/ g (11.17)
A.3 =A, ~

@+K' 4X d X (11.24)

ev' (v)"' (11.18)

Here V is the volume of the spherical box.
The background gauge C, = D A' '" has a problem

similar to the gauge C, . Both the ghost (under the
new boundary condition) and the vector field have
one eigenvalue that vanishes like 1/V as V- ~
(not 1/Rg, as the other eigenvalues). Let (t;(b) be
the three ghost eigenstates and g;„(b)= D ((/;(b) be
the vector ones. I,et A., be the ghost eigenvalue

(11.19)

It is easy to see that

f,[q;„(x)]'dox

f [qo(x)]'dex
(11.20)

From (11.1) and (11.3) we see that this is 0(1/V).
It is safer to have a gauge condition that fixes
this gauge degree of freedom as V-~,

C, (x) = nD„/1'„'"(x)

z g P;(b, x) g;„(b,v))A'„'"(S)d'X,

(11.21)

although the result, (11.25), will turn out to remain
the same even if z= 0, a = 1. The ghost I,agran-
glan 1S

Z,g" = (t),*(x) c(D 'Q, (x)

—/( P g;(b, x) P;o(b, v)D„Q'(X)d'v)

In this gauge
2

~+K 'x d x

(11.22)

(11.23)

Conclusion: If the redundant eigenmodes are fixed
by an additional component in the gauge-fixing
term, then a correction factor is needed: Equa-
tion (11.10) divided by (11.17):

where no summation over b is implied. In this
gauge we find the contribution from the lowest
eigenmodes:

(~ghost)g()„vector )-3/2 ~ 3/2
3 4

Using

(11.25)

[(r '(x)]gd'x = V,

[(t) '„(x)]'d 'x = 47/',
(11.26)

3
——27t 2P, g. ].&.28

XII. ASSEMBLING THE VECTOR, SCALAR,
AND SPINOR TERMS

The eight zero-eigenvalue modes for the vector
field give the factors (9.6), (10.5), and (11.28).
Multiplying these gives

2 1T g IU, O
Cf ZCfp (12.1)

for p= 1 (later we will find the p dependence).
The contributions from the nonvanishing eigen-

modes both for the scalar and for the vector
fields are essentially contained in formula (7.6).
As we saw before, the vector fields, combined
with the Faddeev-Popov ghost, together count as
two real, or one complex, scalar with t=1.

Let there be ¹(t)scalar multiplets for each
isospin t, where each complex scalar multiplet
counts as one, and each real scalar multiplet
counts as one-half. Then from (7.6) we obtain
the total contribution from vector and scalar
nonzero modes:

we find

~ =4m'/V.

Thus, together with the correction factor (11.18),
we find the correct contribution for the three
eigenmodes (9.3), together with that of their
regulator:

(12.2)

C(t) = —', t(t+ 1) (2t+ 1) (12.3)
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2t+y

a(t)=C(t) &2)t —'-ln2+ —g s(2t+1 —s) (s —t — ) lns st(t+1) —',- (12.4)

The numerical values for C(t) and n(t) are listed in Table I. Combining (12.1), (12.2), and the classical
action (2.8) gives the total amplitude in the absence of fermions:

Bm'2' s'2', sxtt — s)n(aNt} —,—'-gN'(t)C(t) —a(l) PN (t)a'(t)I .
t - t

(12.5)

Note that the coefficient multiplying lnp, , coincides
with the usual Callan-Symanzik P coefficient for
g (pg in such a. way that (12.5) becomes independent
of the subtraction point p, o if we choose g (pg to
obey the Gell-Mann- I ow equation. We now also
insert the p dependence if p e 1 by straightforward
dimensional analysis.

The interpretation of (12.5) is best given in
the language of path integrals: If

~
0) is the vacu-

um, and ~0) is the gauge-rotated vacuum, then
(12.5) is the total contribution to (0

~
0) from all

paths in Euclidean space thathave apseudoparticle
located at ~ within d4~, having a scale between p
and p+dp. The fermions can be introduced in two
mays:

(i) If they have a mass m «1/p then only the
lowest eigenvalue will depend critically on nz.

(ii) If they are rigorously massless then the
lowest eigenvalue depends critically on the ex-
ternal source 8.
In this paper we limit ourselves only to fermions
with isospin t= ,. In case (i) the —contribution of
the lowest modes will simply be

where Euclidean pseudoparticles form a plasma-
like statistical ensemble. v For that, one also needs
to extend from SU(2) to SU(3). We will not do that
in this paper.

In Sec. XIV we consider case (ii). In that case m
must be replaced by the eigenvalue of the lowest
mode a,s it is perturbed by the source insertion.

XIII. DIMENSIONAL RENORMALIZATION

The regulators used in Secs. VII—XII are what
we call fixed mass Pauli-Villars regulators and
they only make sense in the background-field
formalism. They are given by the Lagrangians
(4.7)-(4.9). In this section we wish to switch to
another regulator scheme which is much more
widely used in gauge theories: the dimensional
method. ' Let us emphasize again that if one
switches to another regulator, then that affects
the definition of g(p) and that influences our cal-
culation by an overall constant. We know that
in the dimensional procedure the limit of large
cutoff is replaced by a limit n-4, where n is the
number of space-time dimensions, roughly in the
following way:

(12.6) 1
ln A- + finite.

4 —n
(13.1)

The nonvanishing eigenmodes are again obtained
from (7.6), which represents the eigenvalues of

Now we wish to compute detÃ& and me take
into account that the Dirac field has four com-
ponents. Thus the fermion nonvanishing eigen-
modes will give

In (12.5) and (12.7) the regulator mass gc plays the
role of the cutoff A. Clearly then, the finite part
in (13.1) will be relevant. In this section we de-
rive that finite part, in ordinary perturbation

exp —C(2) Inp, 2N+~o((-,')
3 (12.7)

TABLE I. Numerical values of the coefficients C(t)
and n(t) as they occur in the text.

Together with (12.6) we find the total fermion factor
that multiplies (12.5),

p" m" exp[- —2N~ln(p, ,p) + 2N~ o((&)], (12.8)

where we again inserted the factors p as they
follow from dimensional arguments. Note that the
well-known Callan-Symanzik P coefficient for
g ( pg again matches the term in front of ing, .

Equations (12.5) and (12.8) could be used as a
starting point for a strong-interaction color theory

10

2R ——ln 2 —— = 0.145 873

8R+ sl 2 —L6

20K + 4 ln 3 ——ln 2 - 36 = 0.853 182

= 0.443 307

R= g (ln27I +y) + 2 j 2 =0.248 754477033 784
~lns

27I'
g S
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theory. It corresponds to a finite counterterm in
the Lagrangian. It is easy to compute this finite
counterterm when, again, one makes use of the
background fields. There are some diagrams to be
computed and the rest is algebra. This algebra is
identical to the algebra devised in Ref. 9. Sym-
metry arguments restrict the possible form. of the
finite counterterm in just two independent terms,
X' and Y„„Y„„,in the language of Ref. 9. The
first of these is obtained by comparing the in-
tegral

in the two limits. This time we get

1 '

2

(4)T ' 4 —n
—y —2 ln p,,+ In47) —;+ 0 (4 —n)

Thus

(13.6)

1
(2)T)"

1
(k'+ p, ,')' (13.2)

1 1 1 5
lnp, - —2 y+ & ln4vr ——.

4 —n 12 (13.7)

1
in@,,— —& y+p ln4r.

4 —n
(13.4)

The coefficient in front of Y „Y „ is obtained in
the same way by comparing the integral

1 (k')'
(2~)" (I'+ V ')' (13.5)

in the limits p,,- ~ and n-4. For definiteness,
we specify the theory at n 44 dimensions: All
trivial factors (2)T)' must also be replaced by
(2v)", which leads to the factor (2w) "in (13.2).

The integral (13.2) is in this limit

] 1

(4)) ' „4—n
—y- 2 ln go+ In4m+0(4 —n)+ 0

JXp

(13.3)

where y is again Euler's constant. So here

So we get different answers in the two different
cases and we must find out which of the coef-
ficients 1npo come from which of the terms, either
the X' or the Y„„Y„-„term. That turns out to be
easy. The Y„„Y„„terms only come from the co-
variant derivatives in (4.7)-(4.9), whereas all
other interactions, including the one proportional
to o„„G„„in (4.8), occur in the X' terms. Thus,
the substitution (13.7) must be made for the scalar
fields and for those contributions of the vector
and spinor fields that come from their kinetic
terms. Those are exactly the contributions that
make up the Inp, in (7.6). The substitution (13.4)
must be made for the remaining lnp. , terms, which
are exactly all lnpp contributions that came from
the zero eigenmodes (12.1).

In conclusion, (12.5) is to be replaced by

8@22""g'p'd"dp xp — '
~ 1 p

' '-'-'- N t C t A- N't At
t t

(13.8)

with

A = —n (1)+ '—' ( In4n' —y) + —,', = 6.998 435 (13.9)

If we define the subtracted coupling constant as
in Ref. 10,

A(t) = n(f)+ —' (In4)) —y —'-) C(f) .
z,(~) = u' "(z'(~)+„'4

+ ". (13.13)

Numerically,

A (0) = 0, A( —,') = 0.239 246, A(l) = 0.816 799,

with a, depending only on g„but not on n or p, then
we can make the following replacements in (13.8)
and (13.11):

A(g) = 1.786 912 .
Similarly for the fermion factor

p" m" exp ——,N~ lnp+ —N~Bsr~ 2 1

L 4 —n

(13.10)

(13.11)

g,(n)-g (p,),
1

lnp+ - ln( p p,) .4-n
(13.14)

with

B=—2n(p)+ —,
' (In4v —y+,—', )

= 0.498 412. (13.12)

Here the superscript D stands for the dimensional
procedure which defines g~. We see that the ex-
pression in terms of gg(p) differs slightly from the
one in terms of g((u,).
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XIV. THE FERMION SOURCE AND THE GREEN'S
FUNCTION

We now consider the fermion zero eigenmode
(9.4), and assume that the fermion mass (12.6)
vanishes. In that case the source 8„ in (2.1)
must be taken into account, since the lowest
eigenvalue will now mainly be determined by this
source. We determine the lowest eigenvalues
E(i), i =1, . . . ,N~ of the operator

~g+g ~st + ~st (14.1)

by perturbation theory, taking 4 as the smaQ
perturbation. The method is the standard one
(the author thanks S. Coleman for an enlightening
discussion on this point). The unperturbed,
degenerate eigenmodes are (taking for simplicity
p= 1)

in coordinate configuration over the vertex vari-
able.

Equation (14.V) should really be considered as
our final result for the space-time dependence of
the fermion Green's function. But it would be
enlightening if we could represent it in terms of
an effective Lagrangian.

We found that the effective Lagrangian can best
first be written in the form

2"'= C
'

(g,~) (~g, ),
s=l

(14.8)

where & is some fixed Dirac spinor with isospin
Ow'ing to Fermi statistics, the various terms

of the determinant in (14.7) will arise with the ap-
propriate minus signs so that we may limit
ourselves to. sources p„ that are diagonal in s
and t:

g(f)=C(1+&') "'u ~. , (14.2) g„=„(x)6„. (14.9)
@=1,2, s, t =1, . . . ,Nf.

The coefficients u contain besides the isospin
index n a Dirac index. They satisfy

Here 4 may still contain Dirac matrices.
In the presence of this source, the amplitude

from the effective interaction (14.8) would be

or

t'u =S'u + T' u~=o1 1 fMg C 'L+[ [- ~S~(x)g(x)S~(- x)~],
s

(14.10)

(q,„,y„y„+4ir, )u = 0 (14.3)
where the minus sign comes from the Fermi statis-
tics and the S~(x) are the Dirac propagators for
massless fermions in coordinate configuration,

+5u = —u. (14.4)

The coefficient C is determined by normalizing g,

yX
Sz(x) =

2„~(x~)2
(14.11)

C '=u*u d~x(1+x') '

= n'/2 if u*u = 1 . (14.5)

Comparing this with (14.7), at large x', we find
that we must require (leaving aside temporarily
the other contributions to the overall constant)

&. =&0( )~3iI ~4(f)&

2
d~x(1+ x') 'u+8„(x)u (14.6)

II E(i) =detH

then E(i) are the N~ eigenvalues of H. We wish
to compute

(yx~ )(&o yx) =x'u u

C= (8v')~',
(14.12)

Q u u„= —,
'

(1 —y,), (14.13)

so we must require the ~ to be such that

where we may sum over the isospin index n but
not over the Dirac components. Now from (14.3)
one can derive

2
det d'x(1+ x') 'u*g„(x)u
st

= —,(1+y, ) . (14.14)

(14.7)

For large x', this amplitude has exactly the
space-time structure of an N~-point Green's func-
tion, where each source point is connected to the
origin by two fermion lines. The integral over
the collective coordinate z [which is at the origin
in Eq. (14.7)] will correspond to the integration

Thus, the ~ are some parity reflection of u .
There is clearly no gauge-invariant solution to

(14.14), so our effective Lagrangian (14.8) is ap-
parently not gauge invariant. But note that we
only wish to reproduce the amplitude (14.V) for
gauge-invariant currents 4„. Thus, any gauge
rotation of (14.8) does the same job. We get a
gauge-invariant "' if we average over the whole



3448 G. 't HOOFT 14

group of gauge rotations:
E

z"'=c II (g, )( g, )
s=l

(14.15)

(~ ~~)=-,' 6 ~(1+@,),
and, for instance,

(14.16)

s=l

&& 0;~(1+r )0'~(;2(1+r, )P,"
(14.17)

The Lagrangian (14.15) only acts on the left-
handed spinors. The parity- reflected Euclidean
pseudoparticles will give a similar contribution

where the brackets ( ) denote the average for all
gauge rotations of &. We can then derive

acting on the right-handed spinors only. So in
total we get 2"' of (14.15) plus its Hermitian con-
jugate.

Note that we obtain products of fermion fields,
such as (14.17), that violate only chiral U(1) in-
variance. They have the chiral- symmetry prop-
erties of the determinant of an N ~N" matrix in
flavor space and are therefore still invariant under
chiral SU(N~) && SU(N~). The symmetry violation is
associated with an arbitrary phase factor e"" in
front of the effective Lagrangians. If other mass
terms or interaction terms occur in the Lagrangian
that also violate chiral U(1), then they may have
a phase factor different from these. We then find
that our effective Lagrangian may violate I' in-
variance, whereas C invariance is maintained.
Thus we find that not only U(1) invariance but
also PC invariance can be violated by our effect.

XV. CONVERGENCE OF THE p INTEGRATION

The entire expression that we now have for the effective Lagrangian is

g~~~(g)d4g —2&4+~+ /6+&& g Sd~g p
~+3N dp exp ] — + ln(pp) 22 1 g N~(t)c(t)

[a& (p)]'

+ A —g N'(t)A(t) —N~B
& II (p, cu) (vg, ) +H, c. ,
) s=l

(15.1)

2 = —D 4*D„4—V(4) . (15.2)

Formally, no classical solution exists now, be-
cause the Higgs Lagrangian tends to add to the
total action of the pseudoparticle a contribution
proportional to I', but this can always be re-

with

((u (u~)=-,' 5 ~(1+y,), etc. ,

and the numbers A, A(t), B, C(t) as defined before.
The p dependence has been changed because the

effective Lagrangian (14.8) is not dimensionless.
We see that this integral converges as p-0

(except when there are very many scalars). But
there is an infrared divergence as p- ~. In an
unbroken color gauge theory for strong inter-
actions this is just one of the various infrared dis-
asters of the theory to which we have no answer.
But in a weak-interaction theory it is expected
that the Higgs field provides for the cutoff. Let
there be a Higgs field with isospin q and vacuum
expectation value I'. Let its contribution to the
original Lagrangian be

duced by scaling to smaller distances, until the
action reaches the usual value 8n'/g' when the
field configuration is singular.

On the other hand, it is clear that the quantum
corrections, as can be seen in (15.1), act in the
opposite way. There must be a region of values
for p where the quantum effects compete with the
effects due to the Higgs fields.

Tohandle this situation rigorously we alter
slightly the philosophy of Sec. II. In Euclidean
space it is not compulsory to consider only those
classical fields for which the action is stationary.
We will now look at approximate solutions of the
classical equations, so that the total action is only
a slowly varying function of one collective param-
eter, p.

We simply postulate the gauge field A to have the
same configuration as before, with certain value
for p, and now choose the Higgs field configuration
in such a way that the total action is extreme. Only
those inf initesimal var iations that are pure scale
transformations do not leave the action totally invari-
ant, but nevertheless the parameter p gets the full
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p«1 M~, (15.3)

which implies that the Higgs particle may be con-
sidered as approximately massless. Let us scale
toward

treatment as a collective variable.
As will be verified explicitly, the dominant

values for p will be those where the quantum effects
and the Higgs contribution are equally important.
Since the quantum effects are small we expect
that there

Harvard for their hospitality, encouragement,
and discussions during the completion of this
work.

APPENDIX: PROPERTIES OF THE q SYMBOLS

The group SQ(4) is locally equivalent to SO(3)
x SO(3). The antisymmetric tensors 4 „„in SO(4)
having six components form a 3+ 3 representation
of SO(3) && SO(3). The self-dua. l tensors

(A1)

D 4=0,
@2(y' ao) = F2

(15.4)

The solution to that is a zero- eigenvalue mode of
the familiar operator (2.22):

The equation for this field will be approximately

A. „=g,„„A,,
a=1, 2, 3, p, , v=1, . . . , 4

(A2)

transform as 3-vectors of one SO(3) group. We
now define the q symbols, in a way very similar
to the Dirac y matrices:

j,=0, l=j, =q,
(15.5)

is a covarisnt mapping of SO(3) vectors on self-
dual SQ(4) tensors. A convenient representation
is

The contribution to the classical action is

S = —D„C*D„C—V 4 d x.

The first term is (observing that x„A. '„'=0)

~„C~D„C d x= — 4~~„C d x
V' S

(15.6)
la4v ~a v )

1au4 av &

n.«= o.
Let us also define

(A4)
= —4m'qE'. (15.7)

expS" = exp[- 4w'qF'p' —0 (XF'p') ] . (15.8)

We see that the second term in the exponent may
be neglected at first approximation.

Thus (15.8) multiplies the integrand in (15.1)
and the p integration is now completely conver-
gent. The integration over p yields a factor

'(4~'qF')'-'"""'-'-1 ( 'N'+ C 2)-—(15.9)

where

C = '
—,',—', p N'(t) (Ct) —3N~.

t
(15.10)

The second term in (15.6) is of order XF4, where
X is a small. coupling constant. If we scale back
to arbitrary p, then the Higgs field factor in the
total expression is

l 1
1apv ~~wveg 1ang ~ 1auv ~~uvaf, g 1ang &

1agv 1a vp

na, v nb. v 4&a»

lap. v 1apx 3~VX, &

1a+v 1apv

n...n.kX
= &,k&.)

—~, ) ~.k+ &„kX

k& 1avv+ kv 1a&p + kv 1avA, + 1avk~)tpvo

1apv lb@,X ~ab~vX+ ~abc 1c VA, )

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

(A12)

~abc 1bgv 1ck& ~uk1avX ~gX 1avk ~vk 1apA, + ~VX 1ayk &

The symbols 71,„„will then do the same with vec-
tors of the other SO(3) group and tensors B„„that
are minus their own dual.

We have the following identities;
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&

1akv. 1bk& 1ak& 1bkv '
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