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First we show that the renormalized regularized Lagrangian density satisfies the constraint equation which can

be interpreted as the divergence equation for the local normalization current. The normalization current which

we introduce in this paper generates a constant multiplication factor in front of the field operator and leads to
the appearance of renormalization-group transformations. Using a nonlocal action principle we introduce the

charge operator which can be identified with the quantum generator of renormalization-group transformations.

Further, we consider the divergence of the canonical dilatation current, and we show how to define the

renormalized dilatation charge operator which generates Callan-Symanzik corrections to canonical scaling. We

obtain the result that both generators for the renormalization group and renormalized scale transformations

exist in a cutoff-free limit in the sense of derivation and both are time-independent, i.e., they implement the

symmetries of renormalized theory. Finally, we investigate in our operator framework the breaking of
renormalized scale invariance owing to the presence of mass terms. Both off-shell (Gell-Mann —Low) and on-

shell (conventional) renormalization schemes are discussed. The dependence of the renormalized scale

transformations on a physical mass in different renormalization schemes is exhibited.

I. INTRODUCTION

Let us consider first the class of massless La-
grangian models described by an unrenormalized
scale-invariant Lagrangian density. ' The renor-
malization of such theories implies

(a) the modification of scaling properties leading
to the presence of noncanonical anomalies in
"naive" dilatational Ward identities and

(b) the necessary appearance of a masslike
parameter y describing the off-shell normaliza-
tion momenta of the vertex functions. '

The modified scaling properties of renormalized
Qreen's functions are governed by the Callan-Sy-
manzik (CS) equation' and their s dependence is
described by the Gell-Mann-Low (GML) renor-
malization-group (RG) equation. ' It appears that
in the massless case the CS and RG equations are
related simply by a dimensional transformation.

Usually the scaling properties as well as the re-
normalization- group transf ormations are discussed
in the language of time-ordered Qreen's func-
tions. The most compact and elegant derivation of
CS and RG equations was given in the framework
of the Zimmermann extension of the Bogoliubov-
Parasiuk-Hepp (BPH} renormalization method. '
However, in the BPHZ renormalization scheme
the local renormalized operators are defined only
through finite-part prescriptions, determining the
renormalized Qell-Mann-Low expansion for the
Green's functions. Because these finite-part pre-
scriptions are not represented by the modification
of the Lagrangian, i.e. , by adding counterterms,
it is not possible in a regularization free renor-
malization scheme to snatch explicitly what is hap-
pening to the field operator in the course of the re

normalization procedure.
The purpose of this paper is to study the renor-

malization-group equations and scaling anomalies
in the operator framework of renormalized quan-
tum field theory (QFT). In order to be able to use
the machinery of the Lagrangian formulation of
QFT we shall assume that the renormalized
theory is obtained as a cut off-free limit of a fi-
nite regularized renormalized Lagrangian theory.
The condition for the proper choice of regularized
renormalized Lagrangian density 2„(x;g,~; A} is
the existence of the finite renormalized field oper-
ator

lim C ~(x;g, v) = C s(x; g, g),

where 4~ is the solution of regularized renormal-
ized field equations. ' One of the advantages of
such a formulation is the possibility of using for
any finite A the operator form of the quantum ac-
tion principle'

so~(x;(nj) .„I, )

(1.2)

where C~(x;faj) describes the solution of regu-
larized QFT described by the Lagrangian density
Zs(x;(o'j;A), and {oj=(a., ~ n„) denotes the set
of parameters (masses, coupling constants, etc.).

The present paper is divided into two parts. In
Secs. II-IV we shall consider the massless re-
normalized theory, generated by a scale-invariant
unrenormalized Lagrangian density. In such a
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(b) renormalized scale transformations'

G„(p„.. . , p„;g', «}

=I"~""(I'g)G.(pl«p. fl'g(l'g} «)

where Z and g are defined as"
8

X —, InZ"2(~;g) =y(g), Z(I;g) = I (1.5a)

8
&» g(~;g) = P(g) g(l'g) =g (I.sb)

and are called effective wave renormalization and
effective coupling constants, respectively. Let us
recall that in the operator formalism a one-to-one
correspondence is expected between the symmetry
groups and the presence of time-independent quan-
tum generators (the quantum Noether theorem").
In Secs. III and IV we are able to introduce ihe
quantum generators for both symmetry groups
(1.3) and (1.4), i.e., we are able to describe the
action of the renormalieation-grouP and renor-
malieed scale transformations as the maPPing of
the algebra of renormalieed field operators.

The second part of our paper (Secs. V and VI)
contains a discussion of the massive renormalized
theory. It appears that both renormalization-
group transformations and renormalized scale
transformations are modified. The renormali-
zation group remains to define a symmetry, but
the renormalized scale transformations are bro-
ken.

Our procedure in this paper is first, to derive
the formulas for the generators in regularized
renormalized theory (finite A), and then to dis-
cuss the limit A -~. It appears that the commu-
tators generating infinitesimal renormalization-
group transformations as well as infinitessimal re-
normalized scale transformations do exist in the
limit A -~. %'e obtain therefore the result that
the generators of both symmetry groups do exist
as a limit A-~ of corresponding cutoff-dependent
generators in the sense of derivation, "and by
performing multiple commutation one can define
finite transformations of renormalized field oper-
ators.

The plan of this paper is as follows: First, in

model one can define two one-parameter Abelian
symmetry groups, leaving the renormalized
Green's functions invariant:

(a) renormalization- group transformations

G„(pg~ ~ ~ ~ pn eg~ «}

= ~""(~;g)G.(P„.",P. ;g(~; g), &~),

Sec. II we show that the properly renormalized
Lagrangian satisfies for any finite cutoff A the
operator equation"

8 8
y~l«(g)&"N„= « —+ l3~)„(g) s &„(g,«;&),

(1 6)

where the local current N~ generates the multipli-
cation of the field by a constant"

[N (t), 4,(x, t)]= ie,(x, t), (1.7)

and p & f p& g
are Gell- Mann- Low coefficient

functions in the presence of the cutoff A." Qwing
to relation (1.7) we shall call N~ a normalization
current, and relation (1.6), the renormalization-
group constraint (RGC) equation. Indeed, in Sec.
III by using the nonlocal Schwinger-Peierls action
principle we demonstrate that Eq. (1.6) can be
treated as the conservation law for the time-in-
dependent renormalization-group charge operator
A, which generates the renormalization-group
transformations. In Sec. IV we consider the re-
normalized scale transformations. First, we
calculate explicitly the divergence of the canonical
dilatation current S~, generating for fixed value
A the canonical scale transformations

[S~(t), C (X, t}]=—i(x,s"+1)4 (X, t). (1 6)

Using again the Schwinger-Peierls action princi-
ple we introduce the generator of renormalized
scale transformations. " In the limit A-~ such
a generator can be identified in the sense of a
derivation with the time-independent generator
of dimensional transformations in the renormali-
zed theory. " Further, we consider the Lagran-
gian models with the mass term. In Sec. V we
study the off-shell (GMI.) renormalization proce-
dure. The operator formulation of renormaliza-
tion-group transformations can be constructed in
complete analogy with the considerations in Secs.
II and III. In the discussion of renormalized scale
invariance, it is shown that the presence of mass
leads to modification of the group law (due to the
so-called "hard terms") and to symmetry break-
ing (due to the remaining soft "mass vertex in-
sertion"). In Sec. VI the on-shell normalization
is discussed, which leads to still another form qf
renormalized scale transformations, broken by
the presence of nonvanishing physical mass.

The considerations in Sec. II-VI are formal, at
least in three respects:

(a) The discussion in Secs. II-IV is based on the
assumption of the existence of the limit (1.1) for a
massless theory, which should be defined in such
a way that the IB divergences related to the so-
called exceptional momenta, do not occur. '
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(b) It should not be forgotten that there are im-
mense mathematical difficulties related to the de-
scription of a transformation in QFT which con-
nects two theories with different renormalized
parameters (masses, coupling constants, etc.}."

(c) We discuss only one choice of counterterms
leading to finite field equations. ' For the com-
posite operators occurring in our considerations
to be made finite in the limit A- ~, one would have
to consider other multiplicative and additive renor-
malizations, corresponding to different normal-
product prescriptions. "
In order to illustrate the derivation of the RGC
equation on the most exploited example in the
literature, we discuss in Appendix A the renor-
malized regularized formulation of massless
go/' theory. " In Appendix B we derive and dis-
cuss briefly the nonlocal Schwinger-Peierls ac-
tion principle, which we use extensively in Secs.
III-7I. In Appendix C we discuss for complete-
ness the operator form of the renormalization-
group and renormalized scale transformations for
the so-called soft renormalization schemes. ""

related to the Gell-Mann-Low coefficient func--.
tions occurring in (1.6} (see Refs. 4 and 10)

P~y~(g)=~ s
Bg

gp=g(){A /k p g)

K
~A=Z 1/2(A2/ k2 ~ g)

p gp(A2/k2. g)

=0. (2.5)

We shall show that relation (2.5) takes the form of
the RGC equation (1.6). Let us observe first that

Bg BgB
K Z 1/2 reg @ +8 reg

f

y~)„(g) =-, ~ —lnZ,
K gp=gp{A2/ "2 g)

1 ~ 1 Q= —,g —lnZ + —, P«(g) —lnZ .3 A k gg

From (2.2) one obtains immediately the following
operator equation:

II. RENORMAI. IZATION-GROUP CONSTRAINT EQUATION

We shall consider the conventional renormaliza-
tion of the scale-invariant Lagrangian field theory
defined formally by the unrenormalized Lagrangian
density Z„[P;g ]o. Such a Lagrangian theory is
renormalizable in the sense of Dyson's power-
counting rule. In order to obtain a renormalized
regularized theory one must perform the follow-
ing two steps:

(i) Introduce regularization and the mass coun-
terterm

2„,[P,g,] -Z„g(f&;g, ;A].

We assume further that one can apply to the regu-
larized Lagrangian the canonical formalism. " We
introduce the cutoff parameter A in such a way
that it has a dimension of mass.

(ii) Perform multiplicative renormalization

A2
,

A2
reg[4'~el'oiA]=~, eg Zo ~ig' PJ ~go ~ ~g' iA

K K

=&„[@~,g, ~;A] (2.2)

Bg reg
A, u

A, g

If one differentiates the relation

fA' A'
go=A'oj 2 ~g o ~go

one gets

0 8'o+ gop ( )
9

A/k

Substituting the field equation

azreg —
Q leg

A A p.

and the relations

reg

&p
(2.6b)

(2 'I)

(2.8}

(2.9)

A' - t'A' A'
Zo p go Zo)p g 2 ~go

(2.3)

in such a way that relation (1.1) and the Gell-
Mann-Low normalization conditions' are valid.

In formula (2.2) there are introduced the renor-
malized charge g and the wave renormalization
constant Z„

Bg

8@A 8 4A
(2.10)

reg -Z 1/2 8Bg

@A p, @A p.

and using relations (2.4), (2.6), (2.8), and (2.10),
one obtains the result that the relation (1.6) is in-
deed valid if we choose

(2.11)
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where

gR RBg
ac, , ' (2.12a.)

Peierls nonlocal action principle' (see also Ap-
pendix B), one obtains

—4g(Xr g) K) =1 ' d y 8(X() —y())
Because IIOR describes the canonical momentum,
i.e. , we have for any A ax C' (x'g, K), —g/1(y'g, K' A)

[II,"(x,t; A), 4~(x; t)] = —i5'(x —x'), (2.12b)

we conclude that N~ describes the normalization
current.

Remark I. In formula (2.1) the mass counter-
term is obtained as a value of the proper self-
energy diagram at p' =0 (the value of physical
mass). Calculating the mass counterterm in per-
turbation theory one obtains

8—C~(x;g, K) =i ]"d'y 8(x, —y, )

8x 4)1(xrgr K)) —ga( y'r g, Kr A)

(3 4)

6m, ' = A'm(g, ),
where

m(g, )=g c,(g,')'
k=1

(2.13)

X O)1(x;gr K) . (3.5)

Using (3.3)-(3.5) and (1.7) one gets

8(z', z,(r;z, )]r= - (rE, .(Z)+ (),.(Z) —, + ' —,„

III. THE GENERATOR OF RENORMALIZATION-GROUP

TRANSFORM ATIONS

Let us integrate relation (1.6) over the four-
dimensional volume between the time hyperplanes

and t = t, . One gets

y., (g)[&'(t,) —&'(t,))
t2

d'y, K —,, + P, /. (g) —, &,(y)

(3.1)

Relation (3.1) can be written in an equivalent form
as

z'(t, ) =z'(t, ) =z',
where

A = y~/„(g)N (t)

(3.2a)

t 9d'y K + p«„(g)—C„(y) . (3.2b)
BK ~g

Let us observe that, owing to the Schwinger-

and the factorization of A' follows from scale in-
variance. We see therefore that the mass coun-
terterm is included in the replacement (2.1).

Rema'. k Z. Relation (1.6) or (2.5) can be treated
as an operator condition for the equivalence of
renormalized theories with different off-shell GML
parametrizations. In Appendix A we shall impose
the HQC equation on the renormalized regularized
Lagrangian of massless AQ' theory It .will be
shown how in the presence of finite cutoff A the
information contained in the HGC equation allows
us to restore the conventional formulas relating
renormalized and unrenormalized Lagrangians.

We see that the operator R~ generates an infi-
nitesimal transformation of the renormalization
group. Qne can introduce the finite renormaliza-
tion-group transformations via multiple commu-
tator s

v,{~)c,(x;g, K)v, '(~)

z&

z( „' ~ '( r; z)z =(r; z ( „(r;z), —),
(3.6)

where (we denote u=A /K)

X —InZ„'/z(Z;g) =y„/, (g„), Z„(X;g)~, , =18

(3.7)

a
~

gy g.(&'g)=P /1(g. ) g„('~'g)~1= =g

(3.8)

The parameters Z~/„(X;g) and g~/„(X;g) denote
the effective wave renormalization constant and
effective coupling constant in the presence of fi-
nite cutoff A. Applying the transformation (4.6)
twice we obtain

z„"(r,r;z,)o („';z„(r,,r;z„)„,
AlX2

Z/1/z (~lr g)Z/1/ 11 (~ zzr g/1/z( 11g))

X 4 (x;g /„(g;g /„(g;g))). (3.9)
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We get the following multiplication law of finite
transformations of the renormalization group in
the presence of finite cutoff A:

g((( 1~ 29 g) gg/)(y( 2l g((( 1% g)) t (3.loa)

y(g) = lim y~i„(g), p(g) = lim p~i„(g) (3.11)

are well defined, "the limit

limR~ =R
A~~ (3.12)

exists in the sense of a derivation, " i.e. , we have

8 8
[B,@( gx, )j((= —i y(g)+ p(g) —+z —C(x;g, y),

(3.13)

and via multiple commutators one can define the
renormalization group transformations for the
renormalized field operator

Z„(X,X,;g) =Z„), (X,;g„(X,;g)}z„(X,;g) . (3.10b)

Let us consider now the cutoff-free limit A-~
defining the renormalized theory. It is easy to
check that the regularization which leads to finite
field equations usually does not provide a finite
cutoff-free limit for the renormalized Lagrangian
or for the generator R~, defined by (3.2b). How-
ever, observing that the GML functions for the
regularization giving (1.1) do have finite limits,
l.e. ,

and a'," is a retarded solution of the equation

8"a"'(x) = 6'(x). (3.19)

It is easy to see that choosing the noncovaxiant
solut.'on of (3.19),

a',"(x, t) =(0, 8(t)6'(x)), (3.20)

one obta. ins the generator (3.2) of the renormaliza, —

tion group as a charge operator related to the cur-
rent (3.18)

R~= dxRo x, t . (3.21)

(ii) global form

)'(X)=( C(x;g, ~)=Z"'(z;g)O (|:;g(x;g),—).
(3.23)

We see therefore that the current (3.18) can be
called a xenoxmalization-group current.

It can be shown that the value of R defined by
means of the formula (3.21) does not depend on the
choice of the nonlocal four-vector a,"', satisfying
Eq. (3.19).

Si'clark 2. An interesting conjecture is the
statement that R is a c number, which in general
can be set equal to zero. In such a case instead
of the renormalization-group transformations
(3.13) and (3.14) one obtains the renormalization
grouP identities:

(i) differential form

9 8fT=0~ )t—+P(g)—+y(g) e(x;g, ((:) =0, (3.22)

where g and Z satisfy Eqs. (1.5) and the following
multiplication law:

In such a case one can say that the parameter w

is a purely redundant variable.

g(&, &.;g) =g(&„g(~;g)),
z(x, ~„.g) = z(x, ;g(&„.g)) z(x, ;g).

It is easy to see that under the assumption

v(~) io) =io)

(3.15)

(3.16)

the transformation (3.14) implements the invari-
ance (1.3) of the renormalized Green's functions.

Itemark 1. The BGC equation (1.6) can also be
written as

(P'(x; A) =U(l)(f&(x; A)U '(l)

= l(t) (lx; A). (4.1)

IV. ANOMALIES IN THE TRACE OF ENERGY-MOMENTUM

TENSOR AND SCALE TRANSFORMATIONS FOR

RENORMALIZED FIELD OPERATOR

Let us first write the formula for the canonical
scale transformations of the unrenormalized reg-
ularized field operator

a ft,'(x) =O,

where

fl„'(x) =i)f„'(x)

(3.17)
Because the cutoff parameter A occurring in the
regularized Lagrangian has the dimension of
mass, the regularized unrenormalized Lagrangian
transforms under (4.1) as follows:

U(1)Z...[y,g, ; A]U-'(1) =1'Z„,[y', g, ;A/1].
d4xa„"' x-x' I(.—+ ~i„g —Z~ x'

(4.2)

(3.18)
The canonical dilatation current, generating the

canonical transformation (4.1), is given via the
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Noether theorem by the usual formula

SA xvTreg
VP (4.3)

where T,"„'denotes the regularized improved en-
ergy-momentum tensor, defined as"

same values of g and A and the same normaliza-
tion condition. In order to include the shift of K in-
to the definition of renormalized scale transforma-
tions, we introduce the following formula for the
generator of renormalized scale transformations:

Treg greg (g 8K~A 8 ~A) (4.4a)

(4.4b)

the four-vector N, is the normalization current
given by the formula (2.11) (see Ref. 29), and

s', (t) = s'(t) + d XK
OO BK

Using (3.4) one gets

[S~a(t), 4. ~(x t;g, v)]

(4.11)

Assuming that the field equations are satisfied,
one gets the divergence condition

Bgs A Treg tt A regBg
BA

Zp

(4.5)

8'p

(4.6)

which follows directly from relation (2,2). Ob-
serving that formulas (4.4a) and (4.4b) remain the
same under the change of the renormalization of
the field operator, we get the following formula
for the trace of the regularized renormalized im-
proved energy-momentum tensor T „:

B~S =T~~ = — K—A g
BK BA

(4.7)

where

describing the trace of a regularized energy-mo-
mentum tensor. Formula (4.5) expresses canoni-
cal scale symmetry breaking by the regularization
procedure. "

In order to study the scale invariance of the re-
normalized theory one should use the identity

B
= —i x'8, +1 —~ —4~(x, t;g, x).

ds~a(t), 82'(x, t)
(4.13)

In order to study the limit A - , one can introduce
the generator of renormalized dimensional trans-
formations

t
D', (t) =S',(t) + d'x W (4.14)

where it follows from (4.13) that

dD~a(t) —0,

D:(t,) =D:(t.) =D:,
(4.15)

and the dimensional transformation of the renor-
malized theory is realized as the following quantum
symmetr y mapping:

[DR 4'~(x g &)l

(4.12)

The generator Sa(t) depends on time in accordance
with the formula

S'=x"T' .Vg (4.8)
B B

= —i x'8 +1 —y A ——4—(xgx)
BA

The formal canonical dilatation charge operator is
defined as (4.16)

S (t) = d'xS, (x, t) (4.9)

and satisfies relation (1.8).
In order to define the renormalized scale trans-

formations, let us recall that for fixed cutoff A the
theory is determined by the value of the renormal-
ized coupling constant g and the choice of the nor-
malization point p'= —K', and only if we perform
both changes

84(x;g, z)lim A
BA

(4.17)

Substituting from (4.16) the relation (4.12) and
using (4.17) one obtains

If we make a rather plausible assumption that the
A dependence of the renormalized field operator
4 ~ does not contain unusual oscillations for large
A, we can supplement (1.3) with the condition

p p =p/l, Ic Ic = K/1 (4.10)
lim [D~a —S~a(t), 4~(x, t; g K) j= 0. (4.18)

can the normalization conditions be preserved. We
shall assume that the renormalized scale trans-
formations relate two, "the same, "renormalized
regularized theories, i.e. , those described by the

One can therefore say that the renormalized scale
transformations in a cutoff-free limit coincide
with the dimensional transformations, and that
the time dependent generator -Sa(t) in the limit
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& (()@(x;g, ~)& (()='le(tx;g, —). (4.19)

Using the renormalization-group invariance one
obtains the second form of the renormalized scale
transformations. Let us introduce the generator
which adds to (4.12) the infinitesimal renormaliza-
tion-grouI: transf ormation:

s„'(t) = s', (t)+a'. (4.20)

Using (4.20) as a generator one gets the following
infinitesimal change of the field operator:

[s (t)e(x,„t)],= -((x„s'+1+v,„(g}+(),„(g)—
Bg

xC~(x, t). (4.21)

In the limit A - ~ we obtain

9[S,C„(x)j= -i x,e'+1+ y(g)+ p(g) —e„(x),

t(), - ~ converges in the sense of derivation to the

catpff free-generator of dimensional mapping B. e-
cause the dimensional tranformations always (ow-
ing to simple dimensionality counting) leave the
theory invariant in such a way, one can conclude
that the renormalized theory is also invariant un-
der the renormalized scale transformations (4.12).

The global renormalized scale transformations
can be written as follows:

the Thirring model3' have been introduced by
Kupsch, Ruhl, and Yunn32 in the discussion of
finite conformal transformations. They describe
the renormalized scale transformation as a prod-
uct of a, canonical scale transformation and a
transformation changing the normalization point. "
This decomposition corresponds on the level of
infinitesimal transformations to relation (4.12),
where the generator of renormalized scale trans-
formations is a sum of the canonical one and the
generator describing the scale transformations
of K.

In the case of the Thirring model the function P
is identically equal to zero, and in formula (4.23)
we should set g(X;g) ~g. Because, , from the dis-
cussion of conformal Ward identities, it follows'4
that the anomalies of the conformal current are
described also by the same two coefficient func-
tions y and P, we expect that it will not be so dif-
ficult to generalize the formulas obtained in Ref.
32 for finite conformal transformations if P=O
to the case when P WO.

Remark Z. One can also obtain the renormalized
scale transformations by using the notion of sym-
metry rearrangement, introduced by Umezawa
and co-workers. " It appears that the canonical
scale transformations of asymptotic fields due to
the renormalization procedure are rearranged
into the renorrnalized scale transformations
(4.19) or (4.23) (see Ref. 36).

Renxrrk 3. If the conjecture that R =0 is valid
(see Sec. III, remark 2) one gets from (4.20) that

(4.22) S'„(t)= S',(t) or U, (t) = U, (t). (4.25)

where the time independence of S~ follows from
(4.18). The global form of the transformation
(4.22) appears as follows:

In such a case formulas (4.19) and (4.23) repre-
sent two forms of a, unique formula describing the
renormalized scale transf ormations.

U„(t)e(x;g, a)Us '(l) = Z't'(A. ;g) C(lx;g(l;g), s).

(4.23)

V. RENORMALIZATION GROUP AND RENORMALIZED

SCALE TRANSFORMATIONS FOR MASSIVE THEORY:
OFF-SBELL NORMALIZATION

The Abelian group multiplication law is ensured
by the relations (3.15).

We see from formulas (4.22) and (4.23) that the
second form of the renormalized scale transfor-
mations exhibits more explicitly the Callan-Sy-
manzik corrections to the canonical scaling laws.
If the renormalized scale symmetry is not spon-
taneously broken, i.e.,

U.(&) I0&= I», (4.24)

formula (4.23) implies the invariance (1.4) of the
renormali. zed Green's functions.

Relixk 2. The renormalized scale transfor-
mations of the renormalized field operators in

Our method, based on a, discussion of invari-
ance properties of the renormalized regularized
Lagrangian density, can also be applied to the
massive theory. In this section we shall discuss
the Qell-Mann-Low off-shell normalization
scheme. For the massless theory the off-shell
normalization is a necessity; however if, the
physical mass m 4 0 one can choose also the mass m
as the normalizationpoint. In Sec. Vlwe shalldis-
cuss the conventional on-shell normalization; be-
sides, we shall consider briefly in Appendix C the
so-called soft renormalization schemes. 2™

In the presence of a mass term relations (2.1)
and (2.2) are replaced by
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Z.,[y;g„m,') -Z...[y„g„m,'; A],

A' m A' m (A' A' m'
&reg[(p~i got mo ~A] =We(( ~s ~ ~ o t g c'J(i go ~~~~g ~m Ml oig o ~ ~ o ig

(5 1)

=Z,[C„.g, ~, m'; A], (5.2)

where the mass counterterm has the form

5m =m, m =mlMI „g.(m" ' ] (5.8a)

If the counterterms in (5.1) and the renormaliza-
tion constants in (5.2) have been chosen properly,
the limits

We see that provided g~ 2
= llm yp/q gq (5.8b)

(5.8b)

we obtain if m -0 the formula (2.13) for the mass-
less theory.

(i) Renormalization grou-p transforrnations.
Equation (2.5), in the presence of the unrenor-
malized mass m„ takes the form

(5.8c)

will exist.
In order to write the global transformation for-

mula, one should introduce the solutions of the
following two equations:

(5.4)
] m ~m2

A,—JnZ Xg, ~ =y g; (5.9)

and leads again to the HGC equation describing
in the operator framework the renormalization-
group invariance. Introducing the GML coefficient
functions

2

Z Xg

(5.10)
m 8g

P~l~ gi
(~2( 2 '(8 )

(5.5a)
g ~&g~

m 1 8 SZ
/ g ~

—
2

K—lnZ3 + y~~ g p lnZ
BK Bg

(5.5b)

We obtain

V (X)4(x;g, I(', m)V„'(X)

we obtain after obvious generalization of the dis-
cussion in Sec. II the operator relation

r., g", . s'ti. =p. &. g; ~

Defining

m2((*(I)=y~q. ((, ; ~ Jv(t)'
8 8-

d'y Pgg, l g; o 9
+I('—~s(y),~g.

(5.7)

one gets that the operator (5.7) in the limit A —~
generates the renormalization-group transforma;
tions

[R(m), C(x;g, ((, m)]

&ig~ p @'l x&g ~sg~ p ~~im I ~

(5.11)

gtt S(0) T(0) tt ~ nraZ
0&m 0

(5.12)

where T„"„'describes the "naive" unrenormalized
energy-momentum tensor in its modified form. '4

Introducing the regularization (5.1) one gets in
place of (4.5)

We see that in the presence of physical mass m
the renormalization-group transformation remains
a symmetry.

(ii) Anomalies of the trace of the energy mcenen-
tum tensor and the renos~zfized scale transfor
mansions. The "naive" canonical dilatation current
S~ ' satisfies the formal divergence relation

I' m2 8 8
'r gq + P gq

—+ K—4(xqgq Icq m)

(5.8a)

grege

8 9
m0 +A

0am0
0

(5.iS)
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and, further, using the relation which follows
from (5.2)

(
8 8 ( 8 8

WE -+A —@ = ~ +K —+A —cCoem BA ""~ Sm &K BA0 gp

(5.14)

WE 8= —A —g

(5.18)
we obtain

8 8
= — WE

-- +K —+ A —„.
8'WE 8 K BA

Introducing

WE Bg

gp=gp(+ /K g M 1K sg)

WE
2

Z y~/„g; —, =2m lnZ,
8sf

WE 82

+ 2+p /
g' ——1QZA/K & K2 Bg 3 &

(5.15)

Av WE y 82 I2

K Bl) K

(5.19)

—log, =y /„g; —, + ~y»„g; —,

the divergence of the canonical dilatation current in
renormalized regularized theory can be written
as

2
1 2 ~

~ 2 2g —ms' —A —2A/K & K2 3 A Bg R&

(5.20)

BPE0Vl
g =g (A/K m/K 'g)

=Kg/K gq —
2 WE

(5.16b)

(5.16c)

Bg'" = —'4' '(x)
BWE

'
0

(5.21)

where we used formulas (5.16)-(5.18) and the fol-
lowing obvious relation:

8 WE m' B~
Z~ = + al'~(„g; —, 9"N, —bP J („gs

—
2

BWE K BWE

Bm02 8„,
+WE

BWE BWE0
(5.17)

If we define

one can write, using relation (5.2), the following
formula for the mass derivative:

m' 'd, eke(x)
~ 00

(5.22)

and satisfies the following ET commutation rela-
tions:

The formal charge operator generating the renor-
malized scale transformations takes the form

Wl
S (t; m)=S (t)+y g„(S;—,N*(t)

[Ss(fs m), 4sp(x, t; g, K, m)] = —z x S + 1 y y~g „g;—2 +
p ~( „g;—2

—C) ~(x, t;(O', K, m) . (5.23)

The conservation law for the generator S~~ (for finite A) has the following form:

(5.24)

If we subtract properly the divergences occurring
in the composite operators, in the limit A- ~ we
obtain the following:

(a) If condition (4. 17) is valid the term ABLE/SA
in (5.24) can be dropped, "and the product Z, C ~'
should be replaced by the multiplicatively renor-
malized square of the fieM operator. "

(b) Introducing the limits

y g~ —2

(5.25)
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and the equations

X—]nZ' ' X;g,~ =y g; (5.2ea)

Z &g, —2 =1

one obtains the relation

[S„(t;m),C,(x, t;g, x, m)j

8 Vl= —i XB +1 —K——b y ( g—
m A/It & K2

Pl 8—2 2„.(g; —,— |2(x, t: ,g,xm), (2.22)
K Bg

g ~jg& —
2

(5.26b) which is the generalization of relation (4.].2) if
m 10. Indeed, at least in perturbation theory, we
obtain that

one obtains the global scale transformations in the
presence of the mass parameter:

Us(l) 42(x;g, K, m) U" '(l)

= tZ'" I;g, , e I x;g &;g, —, , I-, m]l. (5 27)

This formula describes the generalization of the
transformation law (4.22) in the presence of physi-
cal mass m WO. Introducing [compare with (4.20)]

S (t;m) =S~(t;m) —R~(m), (5.28)

.m' .m'
lim t2 p~~„g; —, =lim 6 y~&„g; —, =0,
m~o K m~o K

(5.30)

and formula (5.29) in the limit m- 0 coincides with
(4.22).

We see therefore that the "hard" part of the mass
derivative m(S/Sm) Z„has contributed to the mod-
ification of the renormalized scale transformations
in the presence of the mass parameter, and the
"soft'" Part is treated as the term which breaks
the renormalized scale invariance. "

VI. RENORMALIZED SCALE TRANSFORMATIONS FOR THE MASSIVE THEORY: ON-SHELL NORMALIZATION

One obtains the on-shell normalization by re placing (5.2) in the following way:

= Zs[O~;g, m', A] . (6.1)

In such a formalism one cannot perform the re-
normalization-group transformations. In order
to discuss the renormalized scale transformations
let us observe that from (6.1}we get the relation

one gets from (6.1)

+ —,'g„„'(g)m'z, c,', (e.6)

~p + ~ reg = +
~o

(6.2)

where

(),„'(g)=(2+m )M(—,;g). (6.7)

and we get for the divergence of the canonical di-
latation current in the renormalized regularized
theory the following formula:

If we define the generator

s,'(t; m) =s'(t)+ y„„(g)&'(t)

Bm BA
(e.8) —P ~( „(g) d'x SZs(x)

Bg
(6.8)

Introducing

A2„.(g) =-m —, g —;g.),
j. 8

y~&„(g) = —
~2 Inz, +-,P»„(g)—InZ, ,

(6.4)

then the following "nonconservation law" is satis-
fied:

,'x„„'(g)m'Z, Jg'xg„*(x,t)—
(6.5}

d'xA —Z, (x, t) .R (6.9)
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In the limit A -~ we obtain the following infinitesi-
mal renormalized scale transformations:

[S (t;m), e(x, t;g, m)]

8i-x, ~'+ 1+y(g) + p(g)—C (x, t;g, m),

(b) Soft renormalization schemes. There are
several versions, "' but all are characterized by
the property that the so-called soft mass parame-
ter m, enters only in the mass 6 term as a
multiplicative factor, i.e. , we have

(6.10)

m, ' = m, 'z~ t„'(g),
and the RGC equation has the form

(6.15)

where

P(g) =limP~&„(g), y(g) =limy~&„(g). (6.11)
p» ao g» ao

From the formula, for dSz~/dt it follows that in the
cutoff-free limit the renormalized scale transfor-
mations are broken by the renormalized mass in-
sertion term [described in the limit A- ~ by the
renormalized field square operator J. The
global form of the renormalized scale transforma-
tions obtained from (6.10) appears as

U(l)C (x;g, m)U '(l) =lZ' '(X;g) C(lx;g(X;g), m),

(6.12)

R ~ Ry~)„(g)e"bt, =P ~,„(g) s + a~, „(g)m,ag ~ " 'em,

+K
8K

{6.16)

where

».i.((()=(»—„»()„.—, ) )~ i.(z), (6.17)

and y»„(g),P»„(g) are defined by formula (2.4)
for the massless theory.

More detailed discussion of the renormalization-
grouy transformations and renormalized scale
transformations for the field operators in the soft
renormalization framework is presented in Ap-
pendix C.

&—g(&;g)=P(g), g(1;g)=g
{6.13)

VII. SYMMETRY MAPPINGS: REMARKS ABOUT
RIGOROUS FORMULATION AND PROBLEM

OF DIVERGENCES
X—inZ'~'(X;g) = y(g), Z(1;g) = 1.

In the case of on-mass-shell normalization we
have only one form (6.12) of the renormalized
scale tr ans formations.

Remark 2. It should be stressed that the coef-
ficient functions (6.11) are not equal to the ones
introduced in Sec. III for the massless theory.
The coefficients (3.11) can be obtained as the
limits

m'
limy g;, =y(g),
m-0

)im)) (»'; —,) =)) (»),

(6.14)

and one gets formally the functions (6.10) from the
functions P(g, m'/tc') and y(g;m'/v') by setting
z'= -m'. Because in the general case p(g;0)
wp(g;-1) and y(g;0) wy(g;-1), the coefficient
functions (6.11) and (3.11) do not coincide.

Remark g. In addition to the two previously dis-
cussed renormalization schemes, other ways of
normalizing the massive renormalized theory may
also be used:

(a) Intermediate normalization, at p = 0 (used in
the BPHZ renormalization scheme). The discus-
sion in our framework of such a parametrization
would follow the considerations of this section.

We shall refer to symmetry maPpings as trans-
formations svhich leave the Green's functions in
variant but relate duo theories upwith different val
ues of the numerical Parameters" (masses, cou-
pling constants, etc. ). Examples of such symme-
try mayyings were considered in this payer, i.e. ,

(a) renormalization-group transformations (for
finite A and A -~, arbitrary masses),

(b) renormalized scale transformations [for
A-~ and m=0 (see Ref. 41)],

(c) dimensional transformations (for finite A

and A -~, arbitrary mass).

As follows from our discussion, the symmetry
mappings are generated in QFT by formal charge
operators which are nonlocal in time. One can
say that in the case of symmetry mapping we re-
place the broken local symmetry, generated by a
local nonconserved current, by a symmetry may-
ping, generated by a conserved current which is
nonlocal in time. Indeed, as the simplest soluble
models show, 4' the derivative of the field operator
with respect to the yarameters cannot be ex-
pressed by the canonical variables at a given
time. In this payer we use the nonlocal Schwinger-
Peierls principle which defines such a derivative
as an explicitly given operation which is nonlocal
in time.
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The description of the change of the parameters
in QFT leads directly to the problem of inequiva-
lent representations. " Even if we consider the
theory with cutoff (ultraviolet divergences re-
moved, finite A), the numerical changes of the
parameters do not represent sufficiently smooth
perturbations, and in order to stay in the same
Fock space, one has to introduce local changes
of the parameters. Already in the simplest case
of a mass shift in free-field theory one can ob-
serve that the global change m -m+5m cannot be
represented by unitary mappings in the Fock
space generated by the free field with mass m.
In order to obtain unitary implementability one
has to consider local changes of the mass param-
eter

m -m+6m[(x), (7.1)

where, for example, g(x) c:D(R').4' We see that
the change m -m+5m can be obtained only if we
perform an infinite number of steps, each one of
which can be implemented unitarily. 44 In such a
simple case we have the following two possibilit-
ies".

(a) One can introduce a large space of states
X, containing reducible representations of canon-
ical commutation relations (CCR) and all irre-
ducible sectors which are needed in order to pass
continuously from the global value of the mass
parameter m to the value m+6m.

(b) One can consider only the mappings of the
field operators. In such an algebraic approach
the change of a mass parameter for free fields is
an automorphism of the field algebra which is not
unitaxily imp/ementable. More explicitly, one
can express the creation and annihilation opera-
tors of the field with mass m+5m as a linear
form in terms of creation and annihilation opera-
torsof thefieldwithmassm. "However, evenwhen
the unitary transformation performing the global
mass shift does not exist, the relation between
the operators is finite and well defined.

In principle both possibilities (a) and (b) are
correct, but the second possibility seems to be
more promising in the complicated case of non-
linear interactions. In particular, the transforma-
tion changing the normalization of the field [see
(1.7)] is perfectly well defined in an algebraic
framework, but if we wish to represent such a
change as a transformation on the space of states,
we will be forced to introduce mutually orthogonal
Fock spaces for every value of the normalization
constant. Similarly, the existence of the quantum
generators in the sense of a derivation" suggests
that one should not ask how the space of states
transforms under symmetry mappings (it will

always be a wild change), but how the transforma, —

tion of the field operators appears, expressed in
terms of multiple commutators.

For the regularized theory one should introduce
the local changes of the parameters, i.e. , re-
place the numerical parameters o, by external
space-time-dependent fields o,.(x). Formula (1.2)
takes the form

6e, [x;(n]]
g)

=~ d4z 8 xo —yo

[ ~ ]] 62s[z
& fe] & A]

(7.2)

where Z„[z;(n];A] is the functional of external
fields o, (x), converging to the usual Lagrangian
density &„(z;n,.; A) if n, (y) -n;." Having formula,
(7.2) one can describe the shift n,.-n, +$(y).6o, as
generated by

6Zn[x„.(n];A]= d'z I d'y f(y) " ' ' 6o. ,
62„[z;(o.j;A]

0 6o;,.

(7.3)

If we assume that 62s[z]/5n, .(y) is local, i.e. ,
proportional to 6'(z —y), the function g(y) intro-
duces a space-time cutoff as well as regularizes
the product of the 0 function and the commutator
on the right-hand side of (6.5)."

However, formula (7.2) is not easily tractable
for explicit calculations with nonlinear interaction
terms. In particular, it is not known how the
counterterms in the regularized Lagrangian den-
sity 2z[z;(n];A] [see (7.2)] depend on the deriva-
tives of the external fields a. ,(x).

Finally, a few words about the limit J] -~. For
finite A, the theory is canonical and difficulties
with symmetry mappings correspond to the prob-
lem of the dependence of the irreducible
representations of CCR on the dynamics. How-

ever, in the limit A -~, owing to the presence of
infinite renormalization constants, the field alge-
bra ceases to be a canonical one. In such a case
the role of basic algebraic objects can be attached
to the asymptotic fields" and to the S matrix,
mapping unitarily "in" onto "out" fields. The
Borchers classes of interpolating fields giving
the same value of the 8 matrix now play the role
of different representations of CCR. It should be
added that the Schwinger-Peierls nonlocal action
principle in its standard form (1.2) or (7.2) should be
applied to the dynamical changes which do not
modify the ingoing asymptotic fields determining
the four-dimensional algebra of asymptotic fields. "
Because fixing the normalization conditions for
asymptotic fields means giving up the normaliza-
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tion conditions for the interpolating field, we see
that the discussion of symmetry maypings via the
Schwinger-Peierls action principle leads to the
consideration of a noncanonical algebra of renor-
malized field operators. Only in such an algebra
without a normalization condition does the limit
& -~ have a very good chance to exist, and also
it does make sense to consider the renormalized
field operators yarametrized by continuous values
of coupling constants.
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APPENDIX A: RGC EQUATIONS FOR

MASSLESS 44 THEORY

Let us write the required renormalized Lagran-
gian for the massless g,p4 theory,

Z„(eA;g, a;A)

-=&el.eA g zs zi A~

we obtain

g„=yA)„(g)z, a"ea„e

—aA(, (g) g(e')A —~a A'4y. '(g) e' (A6)

g 3g gPcg C,
Bg 2 ~g

' z (e4) z (e'), —,'A' e'.

9
P&~.(g) = ~ „g, —

y~)„(g) =2~—lnz,

The conventional Callan-Symanzik coefficient func-
tions are obtained if we observe that the renormal-
ized coupling constant g also depends on &. These
functions are defined by the following full deriva-
tives with respect to the v parameter:

e ~(e')A
4(e4) A (A2)

and is local in time. The paraemter ~ describes
the normalization point for the propagator

P'dg (P') l)~=-K2=1

= —Z —g 9"48 CA
A

A A

(Al)

where (e4)~ denotes the regularization of the local
power 4' by means of a kernel which is symmetric,
l.e. )

&~)„(g)= ~d—lnz,

& lnZ,= 5~ y.(g) + P~y. (g)

Icy'„(g) = K m—2

8m
=&&~.'(g)+P&~.(g) aBg

If we use the relation

a'ea„e = a'(ea„e)

and substitute the field equation

Z, EI4 = -gZ, —A'm'C
- 5(e'),

(A8)

(A9)

(Alo)

and provides the definition of the renormalized
coupling constant

I A () x ~ ~ ) l4;4 =( /s) K(45 .-i.) (A4)

The wave renormalization constants Z, and Z, can
be determined by the asymptotic behavior of
G~g) (P') and I'~(P„. . . , P,). Introducting the three
functions

8
ypg„(g) = g K —Inz3,

9
5A~„(g) = a —lnZ, ,

we obtain for the regularizations satisfying Eq.
(A2) the following equation:

8 9
~ —+ p„„(g)—, s„-y„„(g)z,a'(ea, e)

=(«y~i. (g) -ga.~.(g) —p~i. (g)lzi(e')~

——,'A'[)4'~&„'(g) —2y«„(g)m']e'. (All)

Because in the ))e4 model formula (2.11) gives

F7A)„(g) = a —m',

(A5) x.'(x) =z e(x)a, e(x),

we obtain

(A12)
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8 8
O'N~(x) = ((, —+P~~„(g)

provided that

&~ ~.(g) = 4g y~( g) -g 6n~. (g),

ll~(„'(g) =2y~(„(g)m'.

(A13)

(AI4a)

(A14b)

We see that the change of state vectors at time t
induced by the change of the action operator (B2)
is given by an infinitesimal nonlocal unitary trans-
formation

U I & 6~nonl(t )

and the changes of operators O(t) are given by the
formula

Using formula (A8) one can write relation (A14a) 6o(t) =t [o(t) 6s" "'(t)] . (B't)

x—(Z, Z, 'g) =0,

(A16)

Similarly relation (A14b) leads to the relation

i.e., one can define the unrenormalized coupling
constant g, independent of K as follows:

+0 1 3 g'

Ef the change of 5'» is due to the variation 5a of
the parameter a in g one can write

6y nonl(t )— , , sZ, (x')
(B8)

and the dependence of O(t) on o, satisfies the gen-
eralized Heisenberg equation

x—(Z 'm') =0
SK

(A17a)
—t [O (t ) Dnonl(t )] (B9)

or
where the nonlocal operator playing the role of the
generator has the form

Z, 'm'=M(g„), (A17b)

6m 2--'A'Z -'m'--'A'M(g ) (A18)

and one gets the definition of the unrenormalized
mass counterterm (2.13)

Dnonl (t ) d4, &Z(x')d4x'

8Z &' t
d t'8(t t') d'x'—

It should be stressed that relations (A16) and (A18)
came out from purely algebraic considerations
with the renormalized regularized Lagrangian
(Al) expressed only in terms of renormalized pa-
rameters. egt,'x' t&

Dnonl(t )—
dt

(B11)

(B10)

The operator (9(t) can be treated as an inverse of
time differentiation, i.e., we have

APPENDIX 8: NONI. OCAL QUANTUM ACTION PRINCIPLE

AND NONCONSERVED CURRENTS

Schwinger's quantum action principle can be
written as (see e.g. Ref. 8)

or

S (( D no nl (X)—
en

where

(B12)

6&o.„t, io.„t) =t&n„ t, i 6W„i~„t,), (Bl)
g)non( (t ) — d 3xDnonl (x t) (B13)

d x(x) .

Writing

6(o.„t, in„ t, ) =6((n„ t, i) io.„t, )

+(~„t, i(6i~„t,) ),
we obtain (Bl) for any variation of W» if

6i~„t, ) =-t6Z"'"'(t, ) iu„ t, ),
where

(B2)

(B4)

(B5)

where g"' is the retarded Green's function for the
free massless field. Using (B14) we obtain

Dnonl( ) d4 eAeet'( e) (X )
G

(B16)

and D&'"' has three vanishing space components.
Relation (B12) can be also solved by a covariant

inve rse of the four-dimensional gradient ope rator,

s"a"'(x) = 6'(x),

where a"'{x,x, ) =0 for x, &0. A good ch»ce fo r
a"'(x) is

1
a„"'(x)=s„a'"(x)=

2
x„5'(x'),



3426 J. LUKIERSKI

and

D"'"'(t) = d'x d'x'a'"(x- x', t —t')
8(M

(B17)

which has a limit as A -~ and can be written in
integrated form as

V(X)C(x;g, &, m, )V-'(Z)

Formula (B9) with D"'"'(t) given by (B17) describes
a covariant version of the nonlocal Schwinger-
Peierls action principle.

=z'~*(x;x)x(x;x(x;x), —,m, (x.;x)),

(C4)

APPENDIX C: RENORMALIZATION-GROUP AND

RENORMALIZED SCALE TRANSFORMATIONS

IN SOFT RENORMALIZATION SCHEMES
8

X—lnm, (Z;g) =o((g) (C 5)

If follows from formulas (5.17) and (6.6) that in
the two renormalization schemes discussed in
Secs. V and VI the change of the physical mass
implies the appearance in the trace of the energy-
momentum tensor of "soft" as well as "hard*'
terms. ' However, one can treat the nonvanishing
mass term as a perturbation performed on the
massless theory. In such a way one introduces the
soft mass parameter m, , and the modification of
the regularized renormalized Lagrangian (2.2)
appears as

z, (c„g,~;A)-z„'(e, ; g, ~;~)

and

a(g) = lim o A(„(g) .

We see that the soft mass parameter plays the
role of a pc-dependent coupling constant, and it is
changed under the transformations of the renor-
malization group. In the limit m, -0 we obtain
from (C2) and (C4) the formulas for the massless
theory discussed in Sec. III.

(b) Renormalized scale transformations. The
divergence of the renormalized regularized dilata-
tion current is given by the formula

= Zs(C&', g, )(; J).)

'm. '~At. '(g@PA-' . (C 1)
8ugA T P

P

The function gA~„'(g) can be determined from the
additional normalization condition, describing the
dependence of the inverse propagator on the mass
parameter. "

(a) Renormalization-group transformations. In
order to obtain the ROC equation (6.16) one should
use formulas (5.4) and (Cl). The time-independent
generator of the renormalization-group transfor-
mations

R' = y, &„(g)tt'(t)

d y J3Ag, (g)—+a.A), (g)m, +g—,
«OO

K 8g A K

(C 2)

leads to the formula

8tR, CA(x, g, e, m, )]=-i yA~„(g)+PA&„(g)—8g

8 8 8
II,
"—+ m +A—g '
8 I(." 8m 8A (C 6)

One can introduce the following formula for the
global renormalized scale transformations:

U, (()x,(x;x. x. m. )U„- (()= /x, ((x x, -'-, -"'
7

(C7)

V„(l)e(x., g, )(, m, )V„'(l)

=lZ'~'(X;g)C(lx, g(x;g), ((, e '~' (lm;g)) .
(C 8)

In the limit A- ~ the transformations (C7) coincide
with the dimensional transformations and describe
the symmetry of the theory. Using (C2) one can
also write in the limit A- ~ another form of the
renormalized scale transformations

8 8
+o.~(, (g)m, +)(;—

8

x C ~(x; g, )(;, m, ), (C3)

Formulas (C7) and (C8) generalize in the presence
of the nonvanishing soft mass parameter m, two
forms (4.19) and (4.23) of the renormalized scale
transformations for the massless theory.
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