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Exact properties of asymptotically free g$' theory with negative (renormalized) g are deduced by
renormalization-group and other methods. It has been argued that the effective potential 'Q(x) for the model

approaches —cc for y —) 00, so that the model is inconsistent with positivity. It is shown here how this

difficulty may be avoided because of deduced results which imply that actually 'Q(g) = const &( y'. These results

are exact zero-momentum theorems which state that the proper vertex functions (except for the inverse two-

point function) vanish whenever one of their four-momentum arguments vanish. These theorems are deduced

as a consequence of the fact that the exact field equation of the theory is invariant, apart from mass terms
and mass counterterms, to the transformation P(x)~$(x)+const, which only adds a constant (reflection-

symmetry breaking) term to the field equation. This partial symmetry and the associated theorems arise as a

consequence of renormalization —they are not true order by order in perturbation theory. The perturbation
series in g for the vertex functions is therefore not an asymptotic expansion when a momentum vanishes. This
is either a remarkable property of the model or an indication that the model really is unstable after all.

I. INTRODUCTION

The scalar self-interacting gp theory is asymp-
totically free if the renormalized coupling constant

g is negative and sufficiently small in magnitude. '
However, for g& 0 the model has been widely be-
lieved to be inconsistent with positivity, but
Symanzik' remarked that, because of the vanishing
of the bare coupling constant g„ the usual' argu-
ment for inconsistency did not apply. Coleman'
then showed that, as a consequence of the asymp-
totic freedom (AFD), the effective potentials 'U(x)
could be calculated exactly for large values of the
classical field )( and approached -~ for ()( )-~,
thus reinstating in a very convincing way the in-
consistency with positivity. In this paper we will
show how the theory may get around this difficulty
and may yet be consistent. The AFD enables us to
establish certain zero-momentum theorems which
imply the effective vanishing of 'U()() in the exact
theory. ' Although this resolves the positivity
problem, it may lead to other difficulties which
may ultimately invalidate the model anyway.

In terms of the bare charge g„mass m„and
field operator y„ the Lagrangian which describes
the model is

Zs, 5m

if Green's functions are expressed in terms of the
renormalized objects

y = Z, '~'y„g = (Z, '/Z, )g, , m' = m, '+ flm' .

(1.4)

Then (1.1) becomes

& = seske" 0 —sm'0' —~s' g4'
+-', (Z, —1)(8 P&uP —m'P')

+-,'z, flm'y' —~(z, —1)gy', (1.5)

and the renormalized field equation

—( +m')y = -', gzps —&p,

where

(1.6)

z = z,/z„~ -=6m',

is finite in perturbation theory, although the
canonical commutation relation

made precise by using (1.2)." However, the bare
objects g„m„P„are each divergent in perturba-
tion theory. All of the divergences in the theory
can be absorbed in the renormalization of these
objects, as described by the renormalization con-
stants

and the nonvanishing canonical commutation rela-
tion is

[P(&), y(y)]5(&, —y, ) = t Z, '6(& —y) (1.8)

[y,(x), j,(y)]6(x.-y, ) = t6(x-y) . (1.2)

So formally the energy density operator H -genes
becomes large and negative in states with large
( p, ~

if g, & 0. If all the quantities appearing in
(1.1) were well defined, this argument could be

becomes divergent. The renormalized energy
density is now' H -gN, (Q'), which is not necessar-
ily unbounded below for g & 0 because the finite
normal product N, (p') is not positive-definite. The
renormalized perturbation expansion is in fact
perfectly consistent in finite orders.
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The above the or y with g & 0 was the fir s t one
shown to be asymptotically free (AF).' If

~ g~ is
sufficiently small and the renormalized perturba-
tion series is an asymptotic one, the behavior of
the theory in the deep Euclidean limit is therefore
exactly computable, and thus Symanzik' could
show that Z, is finite and g, = 0. The Baym' ar gu-
ment therefore does not apply, even though P, is
not divergent. Using the AFD, Coleman presented
a new improved argument that the energy spec-
trum cannot be bounded below. If g—= 'V 'l(0) is
negative and sufficiently small in magnitude, the
renormalization-group equation satisfied by 'U(y)

could be exactly solved for large
~ g ~

and the result
is inconsistent with Symanzik positivity. a

However, there are further implications of AFD
which indicate that g actually vanishes so that the
above difficulty can be avoided. We will deduce
these implications using techniques we have previ-
ously employed, ' "with Ng, in connection with AF
non-Abelian gauge theories (NAGT's). In AF the-
ories, because the renormalization constants such
as (1.3) can be exactly computed, the renormal-
ized field equations such as (1.6) are exactly
known. It turns out that these exact field equations
often are invariant to larger symmetry groups
than are the classical field equations or the field
equations in finite orders of perturbation theory. ' "
New symmetries can thus be said to arise as a
consequence of renormalization. We will show in
this paper that (1.6) is a case in point. In finite
orders, where Z is divergent, (1.6) has no trace
of invariance under the "g transformation"' "

(1.9)

for r =constant. In the exact theory, on the con-
trary, Z = 0 and ZP' = c-number, and so (1.6) is
symmetric under (1.9) apart from mass terms
(i.e., terms of dimension 1). The Ward-Takahashi
identities appropriate to this partial symmetry are
zero-momentum theorems which imply, among
other things, that ~(y) ~y' and sog=0. These
theorems are not satisfied in finite orders of per-
turbation the or y.

Although our results may resolve the positivity
problem, they imply that the theory has some
rather peculiar properties ~ Because the zero-mo-
mentum theorems are not satisfied in finite orders,
the perturbation series cannot be an asymptotic
one at zero momentum. This is rather surprising
because in all the previously known (two-dimen-
sional) cases, perturbation theory is asymptotic. "
This might indicate that four-dimensional models
are intrinsically more complicated, although it
might simply be a reflection of the fact that the
model really is inconsistent after all. Our point
is that there is at present no solid argument for

this inconsistency.
It is very important to resolve this consistency

problem one way or another. If the model is con-
sistent, it is the only known AF theory with a
known particle interpretation (unless the particle
structure is destroyed because the perturbation
series is also not asymptotic at the mass shell).
It can then be added to the list, presently including
only NAQT's, " of AF theories and may play a role
in the ultimate theory which describes the strong
interactions. It might even resolve the infrared
difficulties of NAGT's and provide for quark and/or
color confinement or spontaneous symmetry
breaking. We will refrain from speculating about
this in the present paper.

The main new results of this paper are the cal-
culation of 5m' by various renormalization-group
(RG) techniques, the methods for deducing the con-
sequences of the renormalization induced partial
g invariance, and the methods for dealing with in-
finite symmetry-breaking terms. Various other
properties of the renormalized P~ model are de-
duced in the course of the analysis.

The next three sections largely review previous
work and are included in order to make the paper
reasonably self-contained. Section II reviews the
concepts of AFD, symmetry {ordinary and that due
to renormalization), and partial symmetry. A

simple partial diagrammatic model which exhibits
a symmetry due to renormalization is recalled in
Sec. III. Properties of the P' model are reviewed
in Sec. IV: the renormalization conditions, the
renormalization group, and the effective potential.
In Sec. V we calculate the renormalization con-
stants (1.3) using various RG methods. The P' re-
normalization constant g and the directional-de-
pendent renormalization term o($)($ ~ 8)'p in the
finite local field equation are also discussed.
These results are used in Sec. VI to deduce that
the theory is partially symmetric to the R trans-
formation (1.9). The properties of the R-shifted
theory are also discussed. The consequences of
the symmetry are deduced in Sec. VIII. These
are the zero-momentum theorems for the vertex
functions and the lack of asymptotic convergence
of the perturbative series. The possible existence
of a zero-mass bound state and the possible use of
normalization conditions at zero momentum are
also discussed here. We conclude in Sec. VIII with
a further discussion of our assumptions and their
consequences and with a comparison with the re-
lated results in NAGT's.

II. PRELIMINARIES
A. Asymptotic freedom

For sufficiently small coupling-constant magni-
tude

~ g ~, a quantum field theory exhibits essen-
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p(g) =& g'+ (2.2)

and one has AFD if B,& 0 for any sign of g. This
is the case for many NAGT's. " For P' theory,

p(g) =b g'+ (2.3)

and so one has AFD for g&0 if b, &0 or for g&0 if
b, & 0. It turns out that b, & 0 and so a negative g is
required for AFD.

AF theories are interesting because they have
computable large-momentum behavior if the per-
turbation expansion is an asymptotic one and if,
as one assumes throughout, the mass-insertion
term in the ballan-Symanzik" equation is negligi-
ble. Qne obtains essentially free field behavior,
with the at most logarithmic deviations governed
by the "anomalous dimension" function

8
r(g) = m lnZ, (2.4)

P p fixed

forg-0. In both NAGT's and P4 theory, one has

r(g)=c g'+ (2.5)

The renormalized perturbation expansion is a
formal power series for the Green's functions.
We must assume that this series determines a
unique theory which we will refer to as the exact
theory determined by the given Lagrangian (and
normalization conditions). The asymptotic nature
of the series is not a sufficient condition for this, "
but is sufficient to give the exact deep Euclidean
behavior if the theory is AF.

B. Symmetry

The classical symmetries of a given Lagrangian
are not always maintained in perturbation theory,
although many are. The symmetries which are
present order by order will remain valid in the
exact theory. These in general include Lorentz
invariance, the usual internal symmetries, the
non-Abelian gauge invariance of NAQT's, and the
symmetry under

4 (x) —-y(x) (2.8)

in P' theory As anoth. er example, consider the

tially free field behavior in either the deep ultra-
violet or deep infrared limit, depending on the
slope of the function

a
p(g) -=m —g (2.1)

g O fixed

at g = 0, where P(0) = 0. The theory is AF (or ultra-
violet free) if p'(0)&0 provided the coupling con-
stant is in the domain of attraction of the origin,
i.e., if it lies between the origin and the next zero,
if it exists, of P(g). For NAGT's,

(nonrenorma'lizable) derivative-coupling model
described by

(2.7)

This model is invariant to (1.9) in the absence of

y mass terms and counterterms. The presence
of symmetries implies relations among Green's
functions if the symmetry is unitarily implemen-
table and implies Ward-Takahashi. (WT) identities
and zero-momentum theorems if the symmetry is
spontaneously br oken.

It is also useful to consider partial symmetries.
These are symmetries which are only broken by
terms in the Lagrangian of dimension less than
4."" Suitable Green's function relations and/or
WT identities will then remain valid. As a simple
example which is well understood and will be of
use to us in the following, consider the Lagrangian

(2.8)

obtained from the symmetric [under (2.6)] P4

theory Lagrangian (1.5) by the addition of the term
Cp of dimension 1, linear in the field p. The re-
normalizations (1.4) which renormalize (1.1) also
suffice to renormalize (2.8).""

Although it is true that symmetries of. perturba-
tion theory remain valid in the exact theory, the
converse is not necessarily true. It is possible
that the exact theory possesses wove symmetry
than does the perturbation theory. ' " To see how
this can come about, consider massless Q' theory
with no mass counterterm. The renormalized field
equation is

(2.9)

where, order by order in perturbation theory, the
renormalization constant Z is divergent:

Z = lim Z(X),

(2.10)
Z(Z) = Q g"Z„(~), Z„(X)—(ln Z')" .

n=o

This divergence cancel" a similar divergence in
p' to make (2.9) finite. Equation (2.9) is thus not
symmetric to (1.9) in perturbation theory. How-
ever, suppose that the sum in (2.10) is such that
2 vanishes and sufficiently fast so that Zy' also
vanishes. Then the exact Eq. (2.9) is invariant to
(1.9), the ft symmetry having arisen as a conse-
quence of renormalization, and the exact vertex
functions F~"~(p„.. . , p„,) will satisfy the conse-
quent WT identities" '~

I'"'(pi, . pi i, o,p. i p. i)=0.

This situation should be contrasted to that in the
model (2.7), where invariance to (1.9) and the
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theorems (2 ~ 11) (for vanishing @ momenta) are
valid order by order in perturbation theory.

In reality, a mass counterterm is necessary in
(2.9) and so we might as well have a mass term
also and consider (1.6). Then, with Z=O and Zp'
no worse than a c number, (1.6) will be invariant
to (1.9) apart from mass terms. It will be seen
in Sec. VII that (2.11) remains valid for n & 2 in the
exact theory, just as happens in the model (2.7) in
perturbation theory when mass terms are included
there.

III. SIMPLE MODEL

&(p';)')= f d 0(')' ) '6('&+}) )
'—'((('+))'} '),

(3 3)

which is finite except for P = 0, where it is infra-
red divergent:

(3.4)

The model we take for the complete unrenormal-
ized four-point vertex function is that obtained by
summing the iterations of (3.1):

I'A(P' zo) =k"0+80'HA(&') +~ 0'l&A(P') j' +"
In this section we will illustrate how Z=O can

occur by summation of an infinite set of Feynman
diagrams in P' theory Th. e chosen diagrams will
not contain self-energy parts and will not satisfy
crossing symmetry, and so the model is not to be
taken seriously. The model, and its generaliza-
tion to NAGT's, was already discussed in Ref. 11,
but we repeat it here in a slightly different way
which is more relevant to what will follow. Z=O
will be seen to occur for either sign of g, but ne-
glected diagrams invalidate this conclusion in gen-
eral. We will see in Sec. V that Z=O is valid when
alE diagrams are summed for g &0. Nothing is
known about Z when all diagrams are summed for
g&Q.

The simplest nontrivial unrenormalized cutoff
four-point vertex function is g,'H~(P'), where
HA(P') is the s =P' channel bubble diagram (see
Fig. 1)

(3.5)

This is illustrated in Fig. 2. The corresponding
renormalized amplitude is

I'(P';Z, }")=a+r'H(P'; V')+ "
1-aH(P'; V') (3.6)

&+HA(P') I'(P'; g, }}') (3 6)

In the model this is the only nontrivial amplitude,
and so there is no mass or wave-function renor-
malization:

5m' =0, Z, =1. (3.7)

The vertex-function renormalization constant Z, '
is given by the value of the partially renormalized
amplitude

The crossed diagrams which also contribute in
order g,' will be ignored. The function (3.1) is
logarithmically divergent when the cutoff is re-
moved,

Z} ' =1+aHA(V') In(A'/u'),

and we have

T(p';g, i},') = lim TJ((p'; g, (A)) (3.9)

H~(P') ~ In(A'/P'), (3.2)
with g, (A) =g Z, (A). Thus

and so can be renormalized by a single subtrac-
tion. This subtraction cannot be made at P =0,
where (3.1) is infrared divergent, and so must be
made at a different momentum l, with l'= p.

' an
arbitrary number. The renormalized amplitude is

Z, = Iim[I+gHA(l}, ')] '=0.
Q-+ oo

(3.10)

The exact field equation (2.9) in the model is con-
sequently A -invariant and the implied zero-mo-
mentum theorem"

I'(0;a, }')=o (3.11)

is correspondingly satisfied, because of (3.4), in
the exact theory. This is in contrast to what hap-

FIG. 1. Feynman diagram for the four-point scattering
amplitude in order g~. The sol.id l.ines between vertices
are the free propagators 1/4 2. The crossed diagrams
are neglected.

)=++0)+~+"~

FIG. 2. Model for the exact four-point scattering
amplitude. The vertices are the coupling constant g and
the propagators are the free ones.
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pens in finite orders of perturbation theory where
Z, and T(0;g, p,') are both divergent.

I (m') = 0, r'(I') = f, r&'~(P„) =g, (4.1)

where we have written the simplest vertex func-
tion as

and p represents the triplet P3 of momenta satis-
fying P, P, = —,'m'(45;& —1). Equation (4.1) implies
that the propagator

G(P') =G "(P)= -[I'(P')] ' (4.2)

has a pole atP'=m' with residue i.
With the conditions (4.1), the vertex functions

are unique functions of the momenta, g, and m in
each order. The renormalization constants (1.3)
are then given by

IV. THE p" MODEL

The y4 theory is described by the renormalized
Lagrangian (1.5)." In the renormalized perturba-
tion expansions for the model, one obtains in each
order finite expressions for the Green's functions
6 " (P, P„,) =6" (P—„) and one-particle-irre-
ducible (1PI) vertex functions I'~"~(P„) (these van-
ish for n odd) in terms of the physical charge g
and mass m defined by the renormalization condi-
tions

P(g) =b,g'+b, g'+ b =3/32m' (4.9)

y(g) =c,g'+c, g'+ ~ ~ ~, c,=l/2"3m' (4.10)

is the anomalous dimension of the renormalized
field P. If the I"s also involve I insertions of the
finite composite operator N(P'), the term +l(2y
—q)1 „ is added to (4.8), where"

n(g) =~og+~ig'+''' ho=kbo (4.11)

is the anomalous dimension of (Ir}'. The solutions
to (4.8) satisfy

I'~,",~ (AP; m', g) = )I.
' "I'I,"~(P; m', g(A )}[A(g, A)]",

(4.12)

where g(A) is the effective charge defined by

8
&»g(&,g) =p(g(& g», g(l, g) =g (4.13)

~dc'
A(g, A) =exp —,y(g(A')}

A,
' (4.14)

a a
m +P(g) ——ny(g) I'~,",~(P; m', g) = 0 (4.8)

Bm Bg

for P g g = set of exceptional momenta" = set of
(Euclidean) momentaan (even) partial sum of which
vanish. Here

Z, -'=1+ =(P ),
Z, = 1+ -', gZ, II '(m'),

(4.3)

(4.4)

We have written XP„=(AP„.. . , AP„,).
If g &0 and the power series (4.9) is an asymp-

totic one, (4.13) can be solved to give'

bm' = ——,
'

g —' Il(m'),
3

(4.5)

where the partially renormalized proper vertex
part . (P, ) is the amputated Fourier transform of

(0 I r[y'(~) y(x)4 (y) y(z)] I 0), (4 8)

and the partially renormalized proper self-energy
part II(P') is the amputated Fourier transform of

(0 I r[y'(x) y(y)] I0& (4.7)

This function is illustrated in Fig. 3. The unre-
normalized final loop integrations in (4.3)-(4.5)
are cut off as in (3.1) so that Z, and Z, are loga-
rithmically divergent and 5m is quadradically di-
vergent for A-~.

In each order, the I"s satisfy ballan-Symanzik"
equations and, in the deep Euclidean limit, ap-
proach the vertex functions I'„of an appropriately
normalized zero-mass theory. " The I'„are ob-
tained by summing in each order the leading power
behaviors of the I 's with all the nonleading loga-
rithmic corrections. The I „satisfy the renor-
malization-gr oup (RG) equations"

(I )

gs

(c)

7r(p ) Tr 77 (P )

FIG. 3. The partially renormalized proper self-energy
part (a) and its decomposition into the partially discon-
nected piece (b) and connected piece (c). The blobs in
(a), (b), and (c) are fu1.1y renorma1, ized and the lines be-
tween vertices in (a) and (c) are the full propagators G.
The explicit loop integrations are regularized but not
renormalized. The value of this function at p =m
proportional to the mass renormalization additive coun-
ter term &m =6, = 4& + 4&, where 4& comes from the dia-
grams (b) and 6& comes from the diagrams (c).

g(A. ) „„—(b,lnh. ') ' —(b, ln 1 nA.
'

/b, 'I 'nA. ')

+O(l/In'A. ) (4.15)

as an exact asymptotic statement. Equation (4.12)
thus gives the exact behavior of I (A.P) for h. —~
for P g h if the perturbation expansion is an
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asymptotic one and, as we assume throughout, the
mass-insertion term in the CS equation remains
negligible in the exact theory. The model thus has
a computable large-momentum behavior.

Coleman's' argument that the energy in the above
theory cannot be bounded below is based on proper-
ties of the effective potential

where

A(g) =-A'(g, ~)

(5.3)

(5.4)

n

&(x;m, g)=-P —,r'"'(0 0;m, g).n! (4.16)
in terms of (4.14). Thus Z, is finite and positive
for sufficiently small i gi:

The asymptotic part of the dimensionless function
'O(lt/m, g) —= (&/Blt)'g(y; m, g) satisfies the RG equa-
tion4

Z, =A(g)(1. (5.5)

The Kalldn-Lehmann spectral function p(a) is thus
positive for large a and is integrable:

8 8
y
—+P——4y u„(lt/m, g) =0,
~X

(4.17) p(a) =2c,(Ab, 'a) '[in(a/m')] '+O((lna) 'lnlna) .

(5.6)

where P =P/(1+y) and y=y/(1+y). To solve (4.17),
one uses the normalization condition

'o(l, g) =g, (4.18)

where g is not g= 1' 'l(P ) or even r~'l(000) but in-
volves an infinite sum of l" " 's. Then, if g™&0and
is sufficiently small in magnitude, one has exactly

(e I p ) ( i ) (4 i )exp —4 f, y (g (e '
))

(4.19)

where g(A.;g) is the effective charge (4.13) defined
by P(g) andg. This result contradicts Symanzik
positivity, ' and thus strongly suggests that the
model cannot be stable.

Our purpose in the remainder of this paper is to
show that this conclusion may not be valid because
of other properties of the model which follow from
the AFD. To this end, we turn our attention next
to the calculation of the renormalization constants
which appear in the renormalized field equation.

This means that the bare field operator go= Z, 'i'p
has finite (cutoff-independent) matrix elements,
and that the renormalized field equal-time com-
mutator (1.8) is finite.

Next (4.1), (4.12)with n =4, and (4.15) give

g Z, (X;g) = lim r'"(XP; m', g) =g(A)A'(g), (5.7)

and so the bare coupling constant is

g, (x) =gz, /Z, '=g(A. ) = 0. (5.8)

'dx'
Z;(X;g) ~ exp, y;(g(x'))

0

with

(5.9)

8
y;(g) = A —inz;(A. ;g), (5.10)

We have previously mentioned the significance of
the vanishing of g0.

The same results (5.5) and (5.7) can be deduced
more rigorously from the Ng-Young" RG equations
for the Z, . For the P' model, these equations im-
ply

V. RENORMALIZATION CONSTANTS

A. Multiplicative

so that

r.(g) =r(g) =c.g'+ " (5.11)

P'G(P'), .
and

(5.1)

r"l(~z), = gz, . (5.2)

For n =2, (4.1), (4.2), (4.12), and (4.15) give'

In AF field theories such as the one under con-
sideration, the computability of the large-momen-
tum behavior enables one to exactly compute the
behavior of the multiplicative renormalization con-
stants Z;(a) for large cutoff A. =A/m. 25 This large-
cutoff behavior is all that is relevant, e.g. , in the
field equation (1.6). The simplest way to proceed
is to use the formal asymptotic definitions

»(g) =2y(g)+ p(g)/g =b.g+" (5.12)

y' = gu(y') +D(o), (5.13)

Substitution of (5.11) and (5.12) into (5.9) gives
(5.5) and (5.7), respectively.

Yet a third way to deduce (5.5) and (5.V) is di-
rectly from the expressions (4.3) and (4.4) in
terms of cutoff (with A =Am) vertex functions.
Equations (4.3) and (4.12) for n = 2 and n = 6 give
(5.7), and (4.4) and (4.12) for n =2 and n =4 give
(5.5).

We can similarly exactly calculate the behavior
of the P' renormalization constant g defined by
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where

D(x) -=&oI ~[&(x)y(0)]Io)

d Pe' "G P'
3

(5.14)

so that the divergences in (5.15) are explicit. An-
other way to exhibit this behavior is via the local
limit of the point-separated field product:

P(x) P(0) ~ (lnx'm')' 'N(P'(0))+D(x) . (5.18)

B. Additive

Equation (5.13) can be written more precisely by
introducing a cutoff A.:

y„' = g(~)N(y')+D, (0),

where

(5.15)

4

D (0) = — d p G(p)[X'm'/(A. 'm' -p')]'-A'm'
2'

(5.16)

The final renormalization constant we would like
to calculate is the additive one, ~ = 5m' =m' —m, '.
Equation (4.5) immediately gives

(5.19)

with

d'p G(p')z, (2w)4

The normal product N(P') is of course cutoff-inde-
pendent. Equation (4.11) now gives

= 2g ~'D(0)
3

(5.20)

g(z) ~ (inn')"o 'o=(lnx')' ', (5.17) and

d'p d'qG" (P)G'"(e)&"(P+a -&)1'"(P,e, &)z (2w)'
(5.21)

This is illustrated in Fig. 3. The ~, piece is pres-
ent because we have not normal-ordered the I a-
grangian. Its behavior for large cutoff A' = A,'m' is
already known from (5.5), (5.7), (4.15), and (5.16):

and consider the quadratically divergent part

f (&;g) =~'(f,g+f.g'+'")
off. We easily deduce the RG equation

(5.27)

A, (A) -A'/lnA' . (5.22) 9 9
1 —X —+P(g) —f„(X;g)=0, (5.28)

To exactly compute &2(A) for large cutoff, a fur-
ther assumption must be abstracted from perturba-
tion theory. We know of three procedures.

(i) Assume, as is true in each order of perturba-
tion theory, that the leading divergence in (5.21)
is the same as for 4 =0. The A dependence in the
cutoff

whose solution is

f (X;g) = X2f (1',g(X)).

Thus, if (5.27) is an asymptotic expansion,

f(X;g) ~ A2[f, g(X)+f2g2(X)+ ] (5.30)

A4(A2 p2) l(A2 2)-1 (5.23)

6 (A) ~ A'/ln'A'. (5.24)

introduced in (5.21) can then be shifted to the ver-
tex functions, and (4.12), (4.15), and (5.7) give n,, -m'12g(X) -m2X2/1nX2,

~ -m'X'g '(~) -m'X'/ln'X',

(5.31)

(5.32)

(ii) Use

dmK-'(x) =™;
tgm gp, & fixed

(5.25)

to deduce an RG equation for mp and assume that
the effective mass-insertion term is negligible in
the exact theory. We write

Z3 = tgQP Cl (5.33)

exactly as (5.22) and (5.24).
(iii) Use Lehmann's22 procedure and assume that

P can be commuted at equal times on both sides
of the field equation (1.6). We first use (1.8) to
deduce the familiar constraint

mp', =1+f(X;g) (5.26)
on the spectral representation
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&0~ [y( ), e(y)~ l0&=

(5.34)

in (1.6) and is not present in the pseudoscalar-
meson theory considered by Lehmann. " It exactly
eaneels the ~, piece of 6, and we are left with the
sum rule

where

( +a)b(x, a)=0 (5.35)

g2

a, (A)=m* —z, f daap)a).
0

Using (5.6), we obtain

(5.38)

~(x; a) 6(x, ) =f 6(x).

We next commute g(y) with (1.6) and then take

y, —. xo to obtain

(5.36)

6 =m' —Z, da ap(a) + 2 gZD(0). (5.37)

The third term in (5.37) arises from the Q' term

2go A2
(5.39)

consistent with the previous two resu), ts (5.24) and
(5.32).

Let us consider the above calculation in more
detail. The precise form of (1.6) is the finite local
field equation"

—( +m')y(x) =»m J.-', gZ(&)e(x+ &)e(x)y(x- &)- ~((')e(x)+a((')(( a)'e(x)], (5.40)

which rigorously describes the theory. The limit
(-0 must be taken in a spacelike direction, and
we shall take the simplest limit with $, =0 and
average over the spatial directions of ( to main-
tain manifest rotational invariance. " To proceed,
we must assume that the equal-time limit pp
and the $-0 limit commute. " Because of the
presence of the directional-dependent final term
in (5.40), which in the kth order of perturbation
theory behaves like

(5.41)

when we commute the right side of (5.40) with Q(y)
and take y, -x, inside the (-0 limit, we obtain a
contribution of the form

(Inz')'7"2 5(x —y). (5.42)

This is not inconsistent because a similar term
actually arises from the left side when it is pro-
perly evaluated. Ke gave the method for doing this
long ago." The general result is

In perturbation theory,

ap(a) - (lna)",

and so only K, and K, are nonvanishing:

Z(x) -Z, 6(x) + lf,p'26(x),

Ko -A'(InA')", K, - (InA')'

(5.46)

(5.47)

and this exactly matches (5.42).
In the exact theory, the behaviors (5.46) add up

to (5.6) and so only Ko in (5.44) is nonvanishing:

Z(x) - lt, 6(x),

A2/In2+2
(5.48)

VI. PARTIAL R INVARIANCE

K„ for example, vanishes like (In'A. ') '. Corre-
spondingly, the exact expression for ],] a((') van-
ishes for $-0, and so the directional-dependent
term is not present in the exact field equation.
However, it will not be necessary for us to use
this result.

E(x) =- daap(a)b, (x;a) ~ Q K„V'"6(x),
0 Xo"0

r«O

(5.43)
where

The results of Sec. V explicitly specify the finite
local field equation (5.40) which describes the mod-
el. For notational simplicity, we shall write
(5.40) formally a,s (1.6) with

with

K„=lim K„„,
n

(5.44)
Z =Z ((=0)=Z, /Z, = lim g(X)A'/g= 0,

~= ~(~ =0) = 5m'=Iim 5m'(~),

(6.1)

(6.2)

9K = daap(a) —g '~".
rn 9Q

(5.45)
and where the direction-dependent term -aalu has
been suppressed. Note that (6.1) does not imply
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that (5.40) is trivial —the vanishing of Z is com-
pensated by the divergence of the local field prod-
uct P'(g). Equation (5.40) is finite in each order
of perturbation theory, and we assume that it re-
mains valid in the exact theory.

We introduce now into (1.6) the field

y„(x) = y(x)+r, (6.3)

rZQ,
and a term proportional to

rZ &f&'

(6.5)

(6.6)

In view of (5.7) and (4.15), (6.4) and (6.5) vanish
because the renormalized field is finite:

Z=Z /=0. (6.7)

where r is a constant. " The ZP' term becomes
the sum of Zg„', a term proportional to

(6.4)

a term proportional to

from the methods used in Hefs. 9-11.
The structure of the theory described by (6.9)

has been thoroughly studied in the litera-
ture. "'"""It zs the simplest one of symmetry
breaking (P- —Q) by a, linear term (CQ) in the
Lagrangian. The C = O theory corresponding to
(1.6) is obtained from the unrenormalized theory
by renormalizing the bare quantities go, Q„mo
by absorbing the divergences in the renormaliza-
tion constants Z„Z„and 5m'. Because each
connected diagram of the C 40 theory is given,
apart from an overall factor, by a, diagram of the
C =0 theory evaluated with a certain number of
vanishing external momenta, all divergences in
the C WO theory can a,iso be removed by renor-
malization of g„ps I and m, and the implied re-
normalization of C, = —v I'o(0) = Z, '~'C determined

O)-=Z, & v. There-
normalized theory is then expressed in terms of
the two parameters (g, m) plus the third parameter
C, or more conveniently v = (P), and one has

To evaluate (6.6), we use also (5.15) and (5.17),
which give

VE'"'(g m v)= Q —E'""'(g m)
)=0

(6.12)

Z y' = Iim Z(~) [g(X)N(y') +D,(0)]

= 0+ 2n.,/g, (6 6)

because the normal product N(Q') is a finite oper-
ator. The result (5.20) has also been used. We
thus see that the new field (6.3) satisfies the field
equation

—( +m )Q„=-'gZQ„—n, (f)„+C„, (6.9)

C„=r(n. , m'). — (6.10)

The presence of the direction-dependent term in
(5.40) of course does not change this conclusion. "

The field equation (5.40) is thus seen to be par-
tially invariant to the R transformation (1.9). The
form

which differs from the field equation (1.6) satisfied
by &f& only by the constant term

+r(n. , m'), — (6.13)

where E'"'(g, m, v) is a connected Feynman ampli-
tude in the C w0 theory with n external lines and
E'"'~'(g, m) is the connected Feynman amplitude
in the C=O theory with n+j external lines, n as in
E'"' and the remaining j amputated and evaluated
at zero momenta. This is iJi.lustrated in Fig. 4.

If As, and hence (6.10), is finite, the perturba-
tion expansion obtained by iteration of (6.9) is
finite, as described above. If, on the other hand,
(6.10) is infinite, as is suggested by the calcula-
tions of Sec. VB, then the Green's function ob-
tained by iteration of (6.9) will not be finite in
finite orders, although (6.3), of course, is still a
finite exact solution of (6.9). For example, the
vacuum expectation value of (6.9} gives

—m'r = —,'gZ[3rD(0)+r'] —[—,'gZD(0}+ &,]r

—( +m')p =-,'gZ[p' —3&D(0)]- n. , (f) (6.11)

of (1.6) is invariant apart from the mass terms
m'Q and 4,P. The consequences of this partial
symmetry will be deduced in the following sec-
tion, after the structure of (6.9) is discussed be-
low. The procedure followed up to now is similar
to that we have previously used to a.rgue that gauge
theories with AFD are invariant under the analog
of (1.9),' "but is more rigorous because here we
know the exact field equation (5.40) wherea, s only
a gauge invariantly regularized version is known
in the gauge field case. Because we here obtain
only partial B symmetry, we must now deviate

FIG. 4. Representation of a general. Feynman amplitude
E~~ (g} in the gruff)4+CD theory in terms of Feynman am-
plitudes I'~'~ in the symmetric g fII)4 theory with j extra
zero-momentum amputated external lines for j = 0. 1,
Z, . . . . Here v = (0~$(0) in the unsymmetric theory.
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in which the 6, piece of 6 is seen to cancel the
divergence in {@„')and the n, , piece is seen to can-
cel the divergence in C„. [Note that Z=0 makes
(6.13) linear in r, unlike in finite orders of per-
turbation theory where (6.13) is a nonlinear equa-
tion for r.'~] It is actually sufficient for our pur-
poses to consider the theory defined by (6.9) with
C„unspec&fied but chosen so that (P) =v in each
order. This theory is finite order by order and
sums to the exact theory given by (6.9) and (6.10)
since both theories are given by {6.12) in terms
of the C = 0 theory.

From either point of view, the field equation
(6.9) and (6.10) is finite and local. The fact that
it has arisen from the symmetric field equation
(1.6) by mean. of the R transformation (6.3) will

be shown in the following section to have strong
implications for the structure of the symmetric
theory.

VIi. CONSEQUENCES

We assume that (6.9), with Z, 6, and

Z3=i d x5xo x, 0

the same as in the C =0 theory (1.6), ha, s a, unique
solution which approaches the C =0 solution for
C„-0. We have two expressions for the exact
Green's functions t",'"' for this solution in terms
of the Green's function G'"' of the C =0 theory:
that given by (6.3) (p„„—= —p, — —p„),

(7.1)

and that given by (6.12)." The requirement that
these II"„'"' be the same gives as consistency con-
ditions zero-momentum theorems satisfied by the
C =0 theory which we now deduce.

The one-point function is just the vacuum expec-
tation value of the field, and (6.3) gives

G" &&(p0 0) =0 for j&0.

Decomposing G"'~' into a sum of products of
G"&(p)'s and 1 +""s (see Fig. 6) then gives

(V. 5)

implies v =~ [which also follows from the vacuum
expectation value (V.2) of (6.3)] and

(7.2) F(2+3&&&(PQ. . .Q)
—

Q P )Q (7.6)

For the two-point Green's function, (6.3) gives

(7.3)

and (6.12) gives

where the. e are 24 zeros in the argument of
I'~"~'. These are our first set of zero-momentum
theorems and actually the only ones we will need
for the effective potential. However, it is simple
to deduce the complete set of theorems.

We proceed to consider the three-point Green's
function. Equation (6.3) gives (symbolically)

(7.4)

where there are j zeros in G" ~&(p0 0). This is
illustrated in Fig. 5. Equality of (7.3) and (7.4)

The second form for G„"' gives disconnected con-
tributions, which either match the above expres-
sion or vanish as a consequence of (7.6) [(7.6) can,
of course, also be deduced in this way], plus con-
nected contributions which must vanish in order to

Gr conn GM
~ ~ e

(') ( ) ~ + ~ ~
G 'GMGMG'

FIG. 5. The two-point Green's function in the unsym-
metric theory expressed as in Fig. 4. A line which dis-
appears into the vacuum at a blob represents the field
vacuum expectation value v. The final form is the de-
composition into connected and disconnected contributions.
There are no vacuum-to-vacuum contributions.

FIG. 6. Decomposition of &~2" defined by Figs. 4 and
5 into a sum of products of 0's and 1~ +"~'s for k =j,
J-2, . . .
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have agreement with the above expression. We
obtain in this way new zero-momentum theorems
for the vertex functions,

sion

r(2&(p') = ——', gZ, II(p') —Z, a- Z, (p' —m')

r(4+2&&&(pd 0. . .Q)
—

Q k) Q (7.7)
(7.11)

where there are 24+ 1 zeros in the argument of
Continuing in this manner, we eventually

obtain the strongest theorems

for the renormalized I'" in terms of (4.7). We
have

(7.12)
I (n&(p . . .p 0) —

Q

We have in particular that

r("&(o "0)=o

(7.8)

(7.9)

(see Fig. 3), and (7.7) for k =0 gives II,(0) =0 if the
p-0 limit commutes with the cutoff removal limit
A- ~ implied in (7.11). Then

so that (4.16) becomes

~(x) =-')('r"'(0), (7.10)

and the inconsistent behavior (4.19) is avoided be-
cause (4.18) vanishes. Because of the theorems
(7.9), we cannot normalize at P= 0. Equation
(4.19) is the correct behavior only if g&0. If g=o,
then (7.10) gives the appropriate solution to (4.17).
The theory is thus seen to provide its own redemp-
tion from the fate of instability.

To see what is happening, it is useful to consider
again a deviative-coupling model such as (2.7).
Each coupling of (t& involves an external momentum
factor and so the theorems (7.5)—(7.9) can be
maintained in each order of (nonrenormalizable)
perturbation theory (for vanishing (P momenta).
This corresponds to the fact that the R invariance
((&&- (t&+ r, g- (&&) is only broken by mass terms
Here one, of course, cannot define G by rg~&(P,
—p, o) =0, but one is forced to normalize away
from vanishing momentum even though all the
particles in the theory are massive.

Let us now explore some of the further conse-
quences of (7.5)-(7.9). We note first that since
these theorems are not satisfied order by order,
the perturbation expansions for the l 's cannot be
asymptotic expansions when some momenta vanish.
Because the theory is not infrared free, this is
not alarming, but since we assumed the contrary
at various stages in our arguments, we must note
that such strong assumptions are not necessary
to deduce (7.5)-(7.10). We need only assume that
the expansions for the I"'s are asymptotic for
P g h', where 8' is the set of momenta at least
one oi' which vanishes ($c8'). (We can actually
get by if the expansions are only asymptotic for
e.g.

I
p'

l

+ m' or even p - .) Then Z„Z„g=g„
P, y, and g ean still be calculated as above, but
not necessarily b „and (7.10) follows as above if
the field equation (1.6), known to be finite, is a
valid exact equation, and the contradiction with
positivity is avoided.

Another possible implication of our theorems
can be obtained from consideration of the expres-

r"&(O) = - Z, (S,—m'), (7.13)

which is divergent if 6, is. The same result is
given by the relation" C„=—(&r(0) if it is valid in
the exact theory. Then we would have'0(&() =+~,
which is strange, but not necessarily inconsistent.
Of course either (7.13) or (5.24) could be wrong,
and so there seems to be no need for immediate
concern.

If the perturbation expansion only determines the
Green's functions for momenta larger than the
mass-shell values, the conditions (4.1) may fail
to be valid for the exact theory obtained by con-
tinuation from the larger momenta, even though
they hold in each order. Then the particle struc-
ture of the theory would be uncertain. Independent-
ly of the presence of a mass nz particle, the theo-
rems (7.5)—(7.9) actually suggest the presence of
a massless bound state in the exact theory. Then

and

I'(0) =0 (7.14)

(7.15)

and the failure of perturbation theory at p =0 could
be understood. If this were the case, then 8' could
be the set of exceptional momenta for the exact
theory.

In perturbation theory, where nothing is special
about vanishing momenta, one can use such mo-
menta as renormalization points at which normal-
ization conditions can be specified. Because of
our theorems, normalizing at vanishing momenta
is probably not consistent for the exact theory.
This may be understandable as a consequence of
the presence of a massless bound state, or just
as a consequence of the partial R invariance. [Re-
call our discussion above of the derivative-coupling
model (2.7).] Clearly the condition I'"'(p, q, o) =g
cannot be used if the interacting theory is consis-
tent unless the condition fails to be valid in the
exact theory. The condition (7.14), on the con-
trary, is perhaps usable as a normalization con-
dition. If it remained valid in the exact theory,
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(7.15) would result, and also (5.21) and (7.7) would
then give 62=0, so that the perturbative expan-
sion for 62 would not be asymptotic, thus invali-
dating the calculations of Sec. VB. Furthermore,
if the usual RG relations between theories nor-
malized at different points remain valid in the ex-
act theory, this would imply that the old 6, (4.5)
is at least finite.

Because of the uncertainties just described
(some further discussion will be given in Sec.
VIII), we cannot claim to fully understand the the-
ory at this point. However, we hope to have shown
that the previous difficulty with the effective po-
tential is overcome by the theory in a natural way.

VIII. DISCUSSION

Unstable or not, much has been learned about
gQ' theory with g& 0 in recent years. The bare
Lagrangian (1.1) appears to have no ground state,
but the fact the it was ill defined in perturbation
theory, where order by order no inconsistency
arose, meant that the fate of the renormalized
theory was uncertain. The situation remained un-
clear until the modern era, which began with
Symanzik's discovery of AFD. The AFD enabled
Symanzik to sum the perturbation series to con-
clude that the exact bare coupling constant van-
ished, thus rendering irrelevant the formal argu-
ment for inconsistency. The same AFD subse-
quently enabled Coleman to conclude that&(~)
= —~ if g=-'0N'(0) is negative, and thus establish a
new and convincing argument for inconsistency.
We have here explored further the implications of
AFD and argued that in fact g = 0 so that 'U()t) ~ )t',
and the theory is perhaps not yet dead. It seems
to want to stay alive.

We conclude from our analysis that there is at
present no argument that the model is inconsistent.
Let us therefore assume that the model is consis-
tent and summarize its properties. What we know
about it depends on the assumptions we are willing
to make. We first state the strongest reasonable
assumptions which are not known to be inconsis-

'tent, and recall the consequences of these assump-
tions. We will afterwards discuss to what extent
they can be weakened without losing much of the
predictive power of the model.

Assumption 1. The perturbation expansions for
the I"(P)'s [normalized by (4.1)] are asymptotic
power series ing for P &S'. (Also, ~g~ is suf-
ficiently small and the mass insertion term, neg-
ligible in each order, remains negligible in the
exact theory. )

Consequences The I'(XP).are exactly comput-
able for X- ~, Pf h'. The renormalization con-
stants Z„Z„g, and 4, and the RG functions g

=g„P, y, and q, which are all determined by I"s
at large momenta, are also computable. However,
42 is not necessarily computable.

Assumption 2. The field equation (5.40), finite,
local, and valid in each order, remains valid in
the exact theory. (It follows from assumption 1
that it is finite and local in the exact theory. )
[Also, the shifted field equation (6.9) has a unique
solution which converges to the solution of (5.40)
for ~-0.]

Consequences. The zero-momentum theorems
O=0 are satisfied for n &2 so that'U()t)

=-,'I'(0))t'. The perturbation series is therefore
not asymptotically convergent for Pr=8'. If 1(0)
= —h„and if 6, = —~, then 'V(y) =+ ~.

AssumPti on 3. The renormalization conditions
(4.1) remains valid for the exact theory.

Consequences. The theory has a particle inter-
pretation.

Assumption 4. I'"'(p) can also be normalized
at p=0, and the resulting theory is connected in
the usual way to the above one normalized at p'
=m2.

Consequences: The effective potential is identi-
cally zero. &2 probably also vanishes and then its
perturbation expansion is not asymptotically con-
vergent. Then the ~2 in the above theory is finite.
Qne can also choose I'~2&(0) =m', and then'()t) is
the free field function 2m2X2.

If the above assumptions are all correct, the
model is the one in four dimensions about which
the most is exactly known. The vertex functions
are known in three places: P - , P2-m2, and
p-0. However, the desired theorems (7.6) are
derivable from much weaker assumptions. If as-
sumption 3 is wrong, only the particle interpreta-
tion is lost and the situation would be like that of
the AF NAGT's. Independent of this, the conse-
quences of assumption 2 suggest the presence of
a zero-mass composite excitation in the exact
theory, as we discussed in Sec. VII, so that
'U(y) —= 0. This vanishing is also a consequence of
assumption 4, and if that assumption is wrong,
one would at worse haveU(y) =+~.

Assumption 1 can also be considerably weakened
with no adverse affects. For example, the per-
turbative expansions of the I'(P)'s could only be
asymptotic for all p,.'&m'. This could come about
because for p,-'(m' the Feynman diagrams tend
to add up constructively; e.g. , in two dimensions,
the perturbation series is divergent for p,.'&m'. "
Another possibility is that one has an asymptotic
expansion in g only for the p,.-~. More precisely,
one could have

with
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r, (XP)/r, (~P) —0, (8.2)

and with I', (P) having an asymptotic expansion but
not I;(P). We cannot have I'„(P) = 1" (P) if

r(v) —r (u)
for I' c 8', but if this is given up, then the expan-
sions for the I' (P) could be asymptotic or even
convergent for Pf S. The effective exceptional
momenta set [the P's for which 1'(XP) + 1" (XP)]
for the exact theory would then be 8'. In any case,
we would still have I'(XP) computable for X- ~ and
retain V- y'.

Still another possibility is that only the massless
Q' theory (which must be normalized in part away
from P=0) is consistent. Because of the zero-
momentum theorems, this is not unreasonable.
In this case, the 1'(0)-L,-~ difficulty could be
avoided and the set 5' would be more significant.
However, the particle interpretation would be un-
clear.

If assumption 1 were wrong in any form, we
would loose our result '0- y', but (4.19) could also
not be deduced, and so there would still be no in-
dication that the model is unstable. The model
would unfortunately then not be interesting because
its exact computability would be lost.

If assumptions 1 and 2 are essentially correct
and the theory is consistent, the failure of per-
turbation theory to provide an asymptotic expan-
sion P+8' is very interesting and suggests that
four-dimensional quantum field theories are sub-
stantially more complicated than are the con-
structed two-dimensional ones."

Our analysis here is similar to our previous
treatment of AF NAGT's. ' " In all such theories,
one has Z = Z, /Z, = 0, just as we have deduced here
[Eq. (5.7)]. Also, the analog of the result Z&fP =c
number deduced here [Eg. (6.8)] is true in many
AF NAGT's in the form ZA'„A„'=|." number. " In
these theories, if the assumption that the R trans-

formation" (or Abelian gauge transformation'o)
commutes with the gauge-invariant regularization
removal is correct, then one has strict R invari-
ance and the consequent zero-momentum theorems
for all n. Then the effective vector-meson poten-
tail'U(A) vanishes identically, but the gauge depen-
dence of 'Q makes this of unclear significance.
Similarly, the implication of I'„(0)= 0 is unclear,
unlike the case of quantum electrodynamics, where
the perturbative R invariance implies the existence
of the massless physical photon. " The treatment
given in this paper of the consequences of partial
R invariance actually serves to strengthen the
conclusion of Refs. 9-11. The zero-momentum
theorems for n &2 are now seen to hold even in
the presence of mass counterterms which are
absent if a gauge-invariant regularization is used
but not necessarily" if the more relevant point-
separating regularization is used.

One can now consider many combined AF theo-
ries involving non-Abelian vector mesons and
scalar mesons. The partial R invariance theorems
will be valid, and perhaps such hoped for proper-
ties as confinement or spontaneous symmetry
breaking can be shown to occur. But even if the
AF &f&' theory plays no role in na. ture, it will re-
main as an interesting and most simple field theo-
ry. If it is consistent, it is the field theory about
which most is known, and, if it is eventually
shown not to be consistent, it will at least be the
only nontrivial four-dimensional model which is
known to be inconsistent, and even that is inter-
esting.
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