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Time-delay equation governing electron motion
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A previously proposed differential-difference equation governing the motion of the classical radiating electron
is considered further. A set of three assumptions is offered, under which the proposed equation yields

asymptotically stable acceleration.

I. INTRODUCTION
(1.2)

Presently, the Lorentz and Lorentz-Dirac equa-
tions are considered by some as probably giving
the correct classical description of the motion of
a nonrelativistic or relativistic radiating electron.
This is so despite the fact thai, firstly, the vari-
ous derivations of these equations are not rigorous
(depending on questionable expansions about singu-
lar points, or on assumptions concerning the in-
terior of the electron, or on ad hoc phenomeno-
logical assumptions concerning the electron hol-
istically), and that, secondly, the equations are
plagued by runaway solutions (eliminable by
positing suitable boundary conditions) and the
phenomenon of preacceleration.

These difficulties seem to be related to the
(presently unmeasurable) quantity T, = 2e'/3mc'
entering the equations. The possibility then sug-
gests itself that, perhaps, one can alter (albeit
phenomenologically) the Lorentz equation by
quantities of the order of To with the hope of lea-
ving the actually observable consequences intact
while removing the problem of runaway solutions
and preacceleration diff iculties.

In this spirit, in a previous paper by this author,
a differential-difference (or time-delay) equation
was tentatively postulated as governing the motion
of a classical electron in arbitrary nonrelativistic
motion. It was suggested that this equation replace
the well-known Lorentz equation of the classical
electron. , since the former equation has only re-
tarded solutions and does not have runaway solu-
tions under zero external force —two features that
plague the Lorentz equation, as mentioned.

The proposed equation has the form

for 0 & t &A. (or f, & t & f, +X), and where it is also
assumed that F'"'(t) =0 for all f &0 (or t «,).

Although the differential-difference equation un-
der discussion does not suffer some of the defects
of the Lorentz equation, an important aspect of the
equation which was not investigated at the time is
whether or not this equation has solutions for
which the acceleration goes to zero for very large
times (asymptotic stability).

It is the purpose of the present work to investi-
gate this problem to some extent. It will result
that, if (i) A. is limited to not exceed v„(ii) F'"'(f)
= 0 for f & some time T„and (iii) a certain, rather
mild —but not altogether physical —condition holds
for F'"'(f), then the equation does have asymptotic
stability. However, in the present work we only
discuss very briefly the degree to which the as-
sumptions allow or preclude physica/ly r ealizable
external forces. These assumptions will appear
at various places in the following discussion where
their significance will be apparent.

In the next sections, we discuss these matters
via the Laplace transform approach, which we
take essentially from Bellman and Cooke. ' Many
of the statements to be used here are found in one
place or another in this text (though sometimes in
altered form), and as such will. be utilized without
proof.

Finally, for simplicity, we only explicitly make
one-dimensional considerations in the following
discussion; however, all the results can be di-
rectly generalized to the three-dimensional case.

II. SERIES FORM FOR ACCELERATION

where 7, =2e'/3~c', the dot signifies a time de-
rivative, and A. is an unspecified positive delay (ex-
pected to be of the order of T,). Further, to en-
sure that the equation is uniquely solvable the
boundary assumption was made that

In this section, we apply Laplace transform
theory to the equation of interest to find under
what conditions the solutions to the equation can
be expressed as a series of simple exponentials in
the time. We will learn that a single assumption
is sufficient for this purpose.

We consider then the one-dimensional time-de-
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lay equation,

with boundary condition

u(t) =-f(t) for 0 +t &X,

(2.la)

(2.11 )

-Xs ~

70

70+ A.e '& =0,
which yield the relation

(2.5)

(2.6)

where the prime denotes differentiation with re-
spect to time, u denotes the single component of
the acceleration, f denotes -(1/m)F'"', and

7, =2e'/Smc' as before.
Multiplying Eq. (2.1a) through by e ", integra-

ting over t, and then taking Laplace transforms,
it can be shown' that one obtains the relation

sf
u(t) = --. e",h(s) '[P,(s)+q(s)j ds for t& A. ,

T,(1 + A.s; ) = 0, (2.7)

giving s; = —~ . However, when this result is in-
serted into Eq. (2.6), it gives the result T,/A= —e, ,
which cannot be, as both A. and 70 are positive.

%e now consider under what circumstances the
limited integration in Eq. (2.2a) can be extended to
the full Bromwhich (closed) contour, so that u(t)
can be expressed as a series (sum of residues).

(2.2a)

where

f (t, )e "idt,

(2.2b)

Q(S) = f(t )e '"dt, , (2.2c)

jE(S) = TOS —8 (2.2d)

Zeros of h(s)

Here we briefly consider some essential pro-
perties of the zeros of h(s). The zeros of h(s)
are given by solutions to the equation

and where I&,& signifies integration over any infin-
ite vertical line (symmetric about the real axis) in
the complex s plane which is to the right of all
zeros of the function, h(s).

Implementation of Bromwhich contour

In order to see that the full Bromwhich contour
can be used for describing u(t ), we note that, over
any large circular path in the complex s plane, we
have that

~
h(s) '

( is of the o~der of magnitude ( s
~

(at most), if the path is so selected that it passes
only near (and not through) any zeros of h(s). '

Further, we can be assured of being able to se-
lect such paths (i.e. , a countably infinite set of
nested curves with ever-increasing ~st, inter-
secting no zeros of h) since the zeros of the ana-
lytic function h(s) cannot have a condensation point.

Thus, in Fig. 2 we indicate a typica, l Bromwhich
contour, for large ~s ~, which is so selected that
no zeros of h(s) lie on it. Now concerning inte-
grations over the paths indicated in Fig. 2 we have~

s =
70

(2.3)

In general, this equation allows roots with positive
and negative (and zero) real parts. An important
root which has a positive real part is s, =(x„0),
where x, is the unique solution of the equation

x =—e™-Xx
0

0

%e see that no root can have a real part which is
greater tha. n x„since as x increases beyond x„e
decreases below e "0. %e also see that if
s =x+iy =(x, y) is a root, so then is (x, -y), so the
zeros are symmetrically located about the real
axis, as shown in Fig. 1.

Finally, we note that all the roots of h(s) = 0 must
be simple —since, if some root s; were not, we
would have, at least, both h(s, ) = 0 and h'(s, ) = 0.
Thus, we would have the relations FIG. 1. Curve of zeros of h(s}.
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iY and we will show that

Ci

-BCA)

B

dd).'

A

Now

(t x)-sl

lIl,(r lof()()t J lhl
Idsl for t&)(. (2.18)

Further, from the preceding considerations, we
have that

( e(t k) -s(
l

(t- k3s
lldsl - - ldsl for t&A.

lhl

(2.14)

and that the latter integral can be directly shown
to vanish as l s l- ~. Thus, the next contribution
to the integral in Eq. (2.11) is the term

FIG. 2. Typical Bromwhich contour. I,(t; T) =- (t- ti-Ms
f(t, ) „, ds dt,

h sj

symbolically,

(2.8a)

(2.8b)

I, t-t„'Tdt
0

and we then have that

)im I,(t;T)= f( ) liim ) dpi

T ~' 0 ~ 4Q

=0 for t) 2X.

(2.25)

(2.16)
T~~ y-f T (c) The last contribution to the integral in Eq. (2.11)

can be handled in the same way. We have

lim =2m'iP residues .
p ~oo

We will now show that

(2.8c) i.(i;t)=f ni, )' e' ' "h(s) 'ds dt .

(2.17)

lim =0 (2.9)

for the integrals relevant to our problem, and
therefore, that

= 2ri residues~ ~

(c)
(2.10)

»m " ~""q(') d. =o, (2.11)

for the integrands involved in our problem.
For this, we return to the expression for u(t) as

given in Eq. (2.2a). Explicitly, we now wish to
show that

Assumption (A). In order to utilize the same de-
vice here as with I„ it is now assumed that f (t)
is s~eh that f(t) =0, for all t&some time T,. Then

l, (t; T) f'f(i,)= 1e" 'i'h(s) 'ds dt

(2.18)

and, therefore, as in the preceding case,

lim I,(t; T) =0 for t&T, +X . (2.19)

Thus, with assumption (A) we have that Eq. (2.11)
is verified, so that, by Eqs. (2.10) and (2.11a) we
have that, finally,

where P,(s) and q(s) are given in Eqs. (2.2b) and
(2.2c).

Considering the expression for Po(s), the first
contribution to the above integral is

Jto( i)+ q( i) sit Ih'(s;)

(2.20)

vof()(.)I,(t; T)—= — T,f())e 'e"h(s) 'ds,

(2.12)

where the sum is over all zeros of h(s). Thus,
u(t) has been expressed as a series, as was the
intent in this section.
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III. STABILITY OF u(t)

Here we consider sufficient conditions such that
u(t)-0 as t-~. From Eq. (2.20) for u(t), we see
that u(t) will be asymptotically stable if only roots
with negative real parts enter the series. We
shall guarantee this by first ensuring thai there
can only be one root with positive real part, and
then by requiring that its coefficient in the series
expansion for u(t) vanishes. The former require-
ment will also be seen to prevent any roots from
having vanishing real part.

Consider then the possibility of a zero of h(s),
other than s, = (x„0), with positive real part.
Then, for s = x+iy, for some x&0 and y t 0, we
must have, by Eqs. (2.3), that

& e&x(y~

—lYI
l

I

/

lyl=- —s ""»»lyl
TQ

(3 1)
e-XX

1YlI'o

It follows from this equation and the imaginary
part of Eq. (2.3) that cos&y&0, but that sin&lyl&0.
Therefore, Xly l

must be in the fourth quadrant.
Now, in order for a solution to Eq. (3.1) to
exist, the 45 line, ( ly l, must intersect the sine
curve, g=-(1/~, )e "sink. jyl. Now sink. lyl
is convex (upward) in the neighborhood of the
origin, and in this region the magnitude of the
right-hand side of Eq. (3.1) has the form,
(&/T, )e lyl. Thus, if A/T, ~1, its slope will be
less than 45' (since x& 0 and A. & 0) in the neigh-
borhood of the origin, and Eq. (3.1) will have no
solution (other than so). The situation is depicted
in Figs. 3 and 4. Therefore, we make the next
as sumption.

FIG. 4. Solution case for X/v&& l.

AssumPtion (B). We have

and we then have only one root with positive real
part to contend with.

Before considering the coefficient of this root in

the expression (2.20), we presently dispose of the
possibility that any root has vanishing real part.
If such a root existed, its imaginary part would be
described by Eq. (2.3), which yields then

1 1
0 =—cos Xy and y = ——sink.y.

7
Q TQ

(3.2)

IYl

fYI

FIG. 3. Nonsolution case for y/q& —l.

Thus, &y = n m/2, with n oddfol, lows from the
first equation and, therefore, nm/2A, = y 1/T fol-
lows from the second equation above, where the
minus sign goes with n=1, 5, 9, 13, . . . , and the plus
sign goes with n = 3, 7, 11, 15, . . . . Now X/v,
=en~/2, so, if n =1, then A/~, = —v/2, which can-
not be as both A. and ~Q are positive. Again, if
n =3, then X/ 3Tw/2 1, &which violates assump-
tion (8), etc. Thus, all zeros of h(s) have definite
signs for their real parts.

Returning now to the series, Eq. (2.20), we see
that if the coefficient depending on the single root
with positive real part vanishes, then u(t)-0 as
t-~. Thus, we make the following final assump-
tlone

AssumPtion (C). The coefficient of e'o' in the ex-
pansion (2.20) vanishes. This means that P, (s„)
+q(s, ) = 0, or that f(t) is such that the relation
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TOf (t)e 'o'dt = 7'Of (A.)e

(3.3)

is satisfied —for given A, and v.,—where the de-
fining Eqs. (2.2) have been used for P, and q, and

we are reminded that, by assumption (A), f(t) =0
for t&some time T,.

Assumption (C) seems to this author, to be
rather artificial, as it allows the possibility that,
of two possible forces f,(t) and f,(t), the more
rapidly (asymptotically) decaying one (in time)
might not be the one satisfying Eq. (3.3) and thus
yielding asymptotic stability for the acceleration.
However, in favor of the assumption, we note that
(if T, is very large) most f (t) aPPxoximately
satisfy Eq. (3.3). This can be seen by assuming
that f is constant over the interval (0, A), by as-
suming that f (t) (for t& A) changes slowly enough
that f (t) =f (A.) can be removed from the integral
on the left-hand side of the equation, and finally
by using Eq. (2.3).

IV. SOLUTIONS FOR u(t)

Here we consider very briefly the possibility of
certain forces yielding solutions to the series,
Eq. (2.20)—for the acceleration u(t).

An interesting case to consider would be the
solution for the force, f(t) = constant, for all t & 0.
However, this force violates assumption (A) and
so is excluded.

A related (but not very interesting) case is where
f(t)=0, for all t&0. Here the three assumptions
can all hold. Indeed, in this case (as for the case

where f =constant, p, (s;) +q(s;) =0 for alt roots s„
as is seen by putting the condition f (t) =0 into Eq.
(S.S). So we obtain u(t) =0 for all t &0, since here,
we can take T, =o.

A more interesting case to consider is where
f(t) =AC(t —t,), where A is a constant. However,
when this expression for f is inserted into p, (s)
+q(s) one finds that

p, (s) +q (s) ~ e "0 (or e "o'"'), (4.4)

depending on whether t, ~ or t0& A., respectively.
Thus, in this case, assumption (C) is violated,
and this force also is excluded from consideration.

To what extent one can findghysically realiz-
able forces that satisfy all three assumptions is a
very interesting question which, however, will
not be pursued further in this work.

V. SUMMARY

It has been demonstrated that three assumptions
are sufficient to ensure that the proposed differ-
ential-difference equation yield an acceleration
which is asymptotically stable. The first two
assumptions are somewhat physical, but the third
one seems artificia, l by comparison. The last as-
sumption actually requires a rather sensitive re-
striction on the external force as a function of
time, and is found to be inconsistent with a 5-
function type of force. Of course, physical forces
are almost always given in nature directly as a
function of location rather than time, and so the
question remains as to what extent the proposed
equation —together with the three assumptions—
will allow meaningful solutions for physical situa-
tions.
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