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The procedure of the new Tamm-Dancoff method of Heisenberg et a/. is considered in the context of the
nonlinear oscillator. Recurrence equations which result from the operator algebra and equation of motion of
the oscillator's displacement operator are converted into a meaningful characteristic energy eigenvalue problem

via an infinite-dimensional basis transformation of the form SAT, where A is a matrix representing the
recursion equation and where S is not the inverse of T. This procedure, appropriate to the situation where the
recursive matrix A is not orthogonal or Hermitian, is numerically seen to lead to convergent approximation

sequences for energy eigenvalues for several nonlinear oscillators. The matrix elements of SAT are defined by
summable but nonconvergent infinite series. In each order of approximation eigenvalues exist which are locally

independent of the single parameter upon which S and T depend, a fact which implies that this recursive

method belongs to an as yet not defined variational principle. As the approximation order is increased the
eigenvalues are numerically seen to converge to the proper limits for several diA'erent oscillators, the
convergence being independent of the parameter.

I. INTRODUCTION

The equation of motion and quantum conditions
imposed on the displacement operators of a sys-
tem can be used to construct recursion relations
for the operator products. In principle both spec-
tral and scattering information can be obtained by
analyzing the different matrix elements of these
equations. Of concern here is the spectral prob-
lem, which is solved in practice by converting the
recursive set into a meaningful set of character-
istic equations. This nonyerturbative approach was
first developed by Heisenberg et al."for use in
the nonlinear spinor theory —the new Tamm-
Dancoff (NTD) method. From a practical point of
view the technique, sui. tably modified, is also of
interest to other areas of physics, particularly in
solid-state and particle field theories. The pur-
pose of the present paper is to clarify some of the
ground rules that should be considered in using
NTD-type recursive methods.

The anharmonic oscillator serves as a conveni-
ent model through which the methods can be ana-
lyzed. The essence of the eigenvalue problem is
not lost in this simple model, but other unrelated
difficulties are avoided. As first shown by Stumpf,
Wagner, and Wahl' for the quartic oscillator, the
differential equation of motion and Hamiltonian
lead to a recursive set which can be represented
in the matrix form

A(E, e)v =0,

where A(E, ru), &u = (E' E)/. 5, is an in-finite matrix
and the components of the vector v,

~' =(E~q'~E &, f =0, l, . . . ,

are the exact-energy-eigenstate matrix elements

of powers of the oscillator's displacement opera-
tor. ' With the exact ground-state energy eigen-
value as input, a meaningful sequence of approxi-
mations for the ground-state-even-parity-eigen-
state transition frequencies was derived from the
characteristic equation

det(C 'AC)„=0. (3)

The elements of the matrix C were defined by the
coefficients of the Wick transformation relating
ordinary and normal products, while the subscript
jV denotes the N&&N truncation of the matrix pro-
duct.

An infinite number of other choices for C have
also been found through which other characteristic
equations having the form (3) can be defined. ' Dif-
ferent sets of v eigenvector solutions to the har-
monic-oscillator recursion equations can be used
to define C„ the Wick transformation is included in
these as a special case. Use of the set of trans-
formations permits a complete determination of
an oscillator's spectra from low-order approxi-
mations. However, it was necessary that a proper
choice be made for the C matrices' single param-
eter, 6, and that a good value for the ground-state
energy be used in each case. Further inspection
also shows that the resulting transition frequency
and energy eigenvalues can be seen not to be de-
sirable or sufficiently stationary functions of 6 in
low orders of approximation. This result is typi-
cal of all the approximations (3).

A reliable self-contained and self-consistent re-
cursive approximation method should yield eigen-
values that are stationary and well-defined func-
tions of any yarameters involved. It is shown be-
low that these criteria can be met for the calcula-
tion of energy eigenvalues by altering the definition
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of the characteristic equation (3) to one of the form

det(SAT)~=0. (4)

In contrast to the previous procedures, S and T
are not triangular and S is not the inverse of T.
Bather the elements of S are associated with the
covariant eigenvectors of A. , which are related to
the 7' with /&0. The matrix elements of SAT are
infinite nonconvergent series which are, however,
summable with Euler's method. The resultant
matrix is nonsymmetric but nevertheless numer-
ically leads to well-defined and stationary energy
eigenvalues in all orders of approximation.

II. THE CHARACTERISTIC MATRIX FOR THE ENERGY

Let iz, ) denote the exact energy eigenstates of
the complete Hamiltonian

a= ~' .g '~" .
2m 2n

As an alternative to the previous" derivations
one need only evaluate the matrix element

(z.i[a, [a,q']] iz, ) = (z. -z,)'~.', ,

using the equal-time commutation relation

Q, Q'] =-ihip'

PQ' '=
2~i [P', Q']+

2,.
-(i —1)Q' ',

which follows from (8). One obtains

i(i +n —1)
ba +ah ~ n ~ah

PPl n

2tf(ii 2z. . . 8e (ii, ,g''""""m
~

(2) ' ' (4l'

where

Cuba =0, 5 =0 ~

As a consequence of the parity-symmetric nature
of the Hamiltonian only the even components of 7'
contribute. ThenA(E, O) of (1) has the matrix
elements

e~b =&b-E

and v' is defined by (2). Note that (5) can be used
to eliminate P' in (7).

The complete energy-eigenvalue problem is de-
fined by (8) with

1 ~ (2i)(2i+n —1)
l,g -n+ 1Pl

a„A(z„)=0. (12)

Then if S is a matrix whose nth row is constructed
from the components of 0 „ the nth row of the pro-
duct SA(z) vanishes at E„Ua„only .approximately
satisfies (12) then the characteristic equation

det[SA(Zi„"')] „=O .

might also lead to a convergent sequence of rootsin¹
It is clear that the best procedure should result

from the matrix multiplication SAT, for wheno„
and 7„are both exact eigenvectors the nth row and
column of the matrix product will vanish. This
motivates (4). The procedure followed below will
be to construct the matrices S and T from the
known covariant and contravariant eigenvectors of
the harmonic-oscillator recursion equation.

III. THE HARMOMC KIGKNVECTORS

The eigenvectors 70 of the harmonic energy ma-
trix A(z)» can be determined directly from nor-
malized harmonic-oscillator wave functions via

7'ga =
a Q' dQ ~ (13)

(2i Z, 8a-' (2i,
(2i

'
4f

'

where here the indices have been changed so that
the z' denotes the previous component v".

The approach to be followed below is justified by
the following considerations. Let 7„, n =0, 1, . . . , ~
be a set of vectors for which

A(z„)~„=o,

and let the nth column of the matrix T be defined
by the components of 7„. Then the nth column of
the matrix product A. T must vanish at E„, and in
particular

det[A(Z„) T]„=0,
where the subscript indicates that the determinant
is constructed from only the first N rows and col-
umns of the product matrix. If v.„only approxi. —

mately satisfies (10) one still may expect that (11)
leads to a mell-defined characteristic equation in
the sense that

lim g(% =.E
P'~oo

where E„ is the argument for which (ll) vanishes.+) .

Similarly one can consider covariant eigenvec-
tors z„satisfying
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However, the recursion approach gives more in-
sight into the problem of determining the covariant
eigenvectors os„, for which the analog to (13) is
yet unknown.

Making in (9) the substitutions

(-1)' '(~ —I)!2'u'
0 (2L) i

(22)

In a manner similar to (17), the covariant eigen-
vectors for the nth energy level are determined by
the substitution

X„=m~0 5„„
4PPl {do

gs, =t,'6", E, =h~, (a+2),

one obtains the recursion equation

L'f,' —(2a+I) ~t,
' ' —6 ~t,

' '=0.
4)

(14)
Then (20) implies that&& ~ satisfies the recursion
relation

(I +l)h,"'-(2a+1)h,"'-Ih,' =0,

which leads to the result that

Aa gg y a e

Note that from a field-theoretic point of view the
parameter ~ coincides with the harmonic oscilla-
tor's equal-time pairing function

~ = [Q-(t), @'(~)],

The general covariant eigenvector then has the
components

(—1)' '(I —1)!2'n'
a&, (23)

where Q' (Q ) is the positive- (negative-) frequen-
cy component of Q.

Direct iteration of the recursion equation leads
to the ground-state eigenvector

(2!)'
o 2lf ( 2 l 1/2

a result which is consistent with (13). The eigen-
vector for the gth energy level is found through
the substitution

Comparison of (23) with (16) and (20) with (15)
leads to an interesting result. Evaluated in the
limit z = -l +e, the I"-function identity

2"-"r(~)r(z+-,') =w "r(2z)
implies that

-X/2
s' =-, r(-I +-,')

l2

which suggests in comparison with (16) that
1

t, = —,g&, t .g l

s = ——t- Lo1I 1 -s
a l a (24)

One obtains the recursion equation

(I +l)g„, , =(2a+1)g, , +I g,

The initial condition

(18)

go, a =~ ~ (19)

6~ s,'"+
~

~(2a+1)s,"' I' s,' =0, (20-)
t'2I+4 „, 6!+21

where

ensures via (17) that to is unity.
From (12) one finds that the covariant eigenvec-

tors 0, are determined by the recursion equation

Indeed one can easily verify that (24) takes (20)
into (15). Thus the covariant eigenvectors are in-
timately connected with the matrix elements of
Q ', as defined by the recursion equations. One
can say that the recursion equations give meaning
to (13) for negative l, and that these components
of v' are needed in the def inition of the charac ter-
istic equation.

Insight into the explicit form of g, , is obtained
by viewing (18) for large I as the differential equa-
tion

d
~

dE gg, a =~Ai, a ~

2m~0
0 =~ e a= ———

a a (21)
which implies that

gl, a Const X $

It will be useful later to distinguish + from 6 '.
Since only the components

A. „., E~ 1, j~0
are needed to uniquely specify both the covariant
and contravariant eigenvector sets, one finds from
direct iteration the ground-state eigenvector

This result coupled to the invariance of (18) under
the transformation

gl, a + g-( $+ I),a

suggests that g, , is a polynomial of degree a
which is either symmetric or antisymmetric in the
variable (2l +1).
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g, = Q G(a+1, s)(2l +1)s

2
P. 2 (-1)"E(k, n)gu t ga, .

(26)

Making use of the symmetry of g, „direct evalua-
tion of the recursion equation for f =0, 1, . . . , a/2
if a is even or l = 0, 1, . . . , (a + 1)/2 if a is odd de-
fines with (19) the simultaneous linear equations
from which the coefficients G(r, s) can be deter-
mined. Table 1 lists the coefficients G(r, s) for
x, s = 1, . . . , V. The reader can verify by inspection
that the g, , also satisfy the recursion equation

where from (9), (lV), and (23),

E(k, -1) =2k, E(k, 0) =1,

N
P =-2

4Z ~ 2 A.„x"Po=-———, P„=—"—a' ", n& 1.
yg

' " nm

E(k, n) = (2k+n +1) (2k+2q +1),
(27)

g, , = (2l + 1)gi, , + (a —1)'g. . .
in the index g, which is useful in determining
higher order G(r, s).

IV. DEFINITION OF THE CHARACTERISTIC EQUATION

In the following the eigenvectors' components
(23) and (17) define the elements of the rows and
columns of. 8 and T, respectively. Since these
harmonic eigenvectors have an infinite number of
nonvanishing components the elements of the char-
acteristic matrix are defined by inf inite series.
Letting x denote the product (ob, ), the result of the
matrix multiplication (4) can be expressed in the
form

The coefficients of x in the infi. nite series in

(26) a,re polynomials in k and thus diverge if x is
unity. However, the matrix element (26) can be
defined by evaluating sums of the form

S(p) .= lim Q (-1) (2k+1)~x'. (28)
@~y k~p

Thus it is convenient to express all coefficient
factors of (oa) involving k in (26) as polynomials
in (2k+1). Writing

E(k, n) = g f(n, q)(2k+1)' ',

where the coefficients f (n, q) for the oscillators
studied below are given in Table II, and expanding
g„„asa function of (2k+1) using the binomial
expansion, one obtains

(MT), =g P„A(n, f, m),

where

2
m+]. l+ y ' (-lb

A(n, f, )m= -~
t g g g f(n, q)G(m+1, s)G(l+1, u) g

l

(2n)'S(s+u+q —& —2).
=1 u= 1 q=1 t=a f —if

The sums S(P) in (28) for small values of P are
given in Table III. They are obtained by expressing
S(P) in terms of the geometric series

l

The diagonal elements of (SAT) are proportional
to the diagonal elements of the Hayleigh-Ritz ma-
trix, that is,

S(0,x) =
1+x '

as in Appendix A.

(SAT)„= -- —%' l(a -&)lZ, ),

where the lE, ) here are the harmonic-oscillator

TABLE I. The expansion coefficients G(r, s) of the
eigenvector polynomials gg g f. TABLE II. The expansion coefficients f(&, g) of the

function E(A, &) appearing in the characteristic matrix
SAT, Eq. (29).

1
0
1
0
9
0

225

0

0
5
0

89
0

0
0
1
0

14
0

439

0
0
0
1
0

30
0

0
0
0
0

0

-1 1 0
1 0 0
1 1 0

4 1
192 224 92

0 0
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energy eigenstates corresponding to m. However,
the matrix SA. T i.s not equivalent to the Bayleigh-
Ritz matrix in the sense of a finite-dimensional
similarity transformation. For nonlinear oscilla-
tors these results are independent of the oscilla-
tor potential. For example, one finds for the Ham-
i.ltonian

p2 Q2 yQ4
Q=—+ fPlQ) —+

2m " 2 4

the 4x 4 truncated characteristic matrix

TABLE III. The generaLized geometric series sums
S(Pj appearing in the matrix elements of M&, Eq. {27).

~{2P+&)

0.5
0.5
2.5

—30.5
692.5

—25 260.5

CREa a'h ', 3X—CO
m 4m' ' 2mo

2x a'fj'
~ + +

me& 4m"

n-'h'

mdt 2m

-4EO. 3e'8' &. 5~=+
& 2 + +6(do

m 2m' ma

—l6A.
+ 2 4&om~ m

40k, 20.'k'
+8~

mQ sc

8Eo. 5''ji', 78k.

m mQ

72k, 3~ g
me rpg2 0

56m

-160K. 6~'@
mQ m

-16&n 140''r', 300m

Attention is called to the nonsymmetric nature of
(SA, 'I') and to the fact that det(SA. T)„apparently
cannot be factored into the product of two deter-
minants giving separately the even- and odd-parity
eigenvalues. This is in sharp contrast to the re-
sults of the Hayleigh-Hitz method. ' The matrix
A(n, l, nc) of (30) is tabulated in Appendix B.

V. NUMERICAL RESULTS AND COMPARISONS

A comparison of. results for the quartic oscilla-
tor

p2 q48=-—+—
2 4

for which A., = 6 „2, m = 1 will clearly illustrate some
of the differences between the LNTD method pre-
viously employed' and that used here, which will
hereafter be referred to as the operator recursion
mechanics (GRM) method. However, it should be
pointed out that the C matrix used in the LNTD
method in energy-eigenvalue calculations differs
from that used here. With LNTD method, in
order to make an invertible matrix, all but one of
the column vectors of each of the C matrices em-
ployed were obtained from the harmonic eigen-
vectors of (8) with e~, e0. Actually, 'there are
several different ways in which energy eigenvalues
can be obtained from (8) using (3), but with regard
to a variatj. on in the C matrix parameter these
methods all have the same characteristic features.
Thus the comparison is made here even though C
and r are not the same matrix.

The first two approximations to the ground-state
energy resulting from the LNTD method define the
algebraic equations

I

Z&'& = 9/4&'
LNTD

(2) 825 216 4 5
LNTD

In the first approximation the ground-state energy
is not stationary for any value of z. The second
approximation contains one stationary point for
v hich (sF-/s o.) =0.

(3l)

However, for + & 3.63 the second-order energy
eigenvalues become complex.

In contrast, the first two approximations to the
ground-state energy resulting from the recursion
mechanics method developed here define the
eigenvalue s

g(&) -++
RM 8

g(2); +
9 1 n'

4 4~' 2 8 ~4

The first approximation has one stationary point,

Z{'& =0.4293, ~=2.29,

and the second approximation has three stationary
points, approximately given by

Z&"'~ =O.415,
E&"~=O.438

Z{"~=O.418,

1.28

(y, =2.10

Figure 1 plots the eigenvalues obtained in the
LNTD and OBM methods in the above orders as a
function of ~, the reciprocal pairing parameter.
Note that in the second-order OHM approximation
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FIG. 1. Comparison of the LNTD (solid line) and operator-recursion-mechanics (dashed line) ground-state energy
eigenvalue results for the quartic oscillator H =p2/2+ Q4/4 as a function of the reciprocal pairing parameter n, E'(~)

and ERM are illustrated for orders %=1, 2. The arrow indicates the correct energy.(e) LNTD

E(~@) is real and positive for all values of n, and
that all three energy stationary eigenvalues are a
considerable improvement over the second-order
result (31), in comparison with the "exact" nu-
merical expression for the ground-state energy
of 0.420 806.

Figure 2 gives the trend of convergence as one
goes to higher orders in the ORM method. The
abrupt tail on the two highest-order curves occurs
when EI(I jumps discontinuously to another correct
eigenvalue, off-scale. Only in the operator-re-
cursion-mechanics method is EI(I always real.
The fact that there may be more than one station-
ary value for the energy in a given order of ap-
proximation is typical in higher orders for both
the LNTD and ORM methods. For this reason in

doing an energy-eigenvalue calculation one has the
problem of deciding which stationary values rep-
resent the best approximation to the true energy
eigenvalue.

In a determination of the eigenvalues of a finite-
dimensional matrix the results are completely in-
dependent of the choice of basis and of any param-
eter upon which the basis depends. Thus in our
present calculation one may consider that the ac-
curacy of the approximation is indicated by the
degree of stationarity of the eigenvalue. The lat-
ter is indicated by the size of the second deriva-
tive of the eigenvalue with respect to the basis

parameter evaluated at the stationary point. In the
region of the ith stationary point

1 a'EE=E + —-— (o -o, )'.
2 8'--

Letting y; =
~
s'E/2~'~ '~', a possible best approxi-

mation to an eigenvalue resulting from a given
order of approximation can be defined by the
weighted average

E(&) — P(&)
y

. y

Note that the y, can be changed by a scale factor
without changing E("). Table IV illustrates the con-
vergence of the "best" approximations to the quar-
tic ground-state energy resulting from the ORM
method.

The convergence of the ORM method results for
several different nonlinear oscillators is illus-
trated in Table V for several energy levels. The
convergence of the energy eigenvalues for the last
two oscillators listed is in good agreement with
that of the Rayleigh-Ritz method, ' while that for
the first is an improvement over the results of the
LNTD convergence.

VI. DISCUSSION

Use of distinct basis transformations for the

covariant and contravariant components of the v-



3368 C. A. UZES

LO

CD

%CD
1LI

bJ

LLIP7

G.CD"
I—
V3

I

C3
Z04

C3
IK

CD

b 00 1 -00 Z'-00 3'.00 4'. OO S'.0O 6'.00 7'. 00 8'.00
HARMONIC. RECIPROCAL PAIRING I ARFINETER ~

8'-00 10-00

FIG. 2. Convergence in theoperator-recursion-mechanics method of the quartic osciDator's ground-state energy
eigenvalues as a function of the reciprocal pairing parameter o.'. The functions EI~J are illustrated for orders N = 1,2,
3, 6, 10. The arrow indicates the correct energy.

function recursion matrices for anharmonic oscil-
lators has been seen to lead to a marked improve-
ment over the previous LNTD energy-eigenvalue
approximations, wherein the characteristic equa-
tions are based upon similarity tranformations.
Here every order of approximation yields energy
eigenvalues which are real functions of the pairing
parameter defining the transformations, and con-
tains at least one stationary eigenvalue. As one
goes to higher order progress ively better app roxi-
mations are obtained. This in particular is in

contrast to the LNTD procedure used previously.
Although a good result was obtained in first order
through a proper choice of the pairing parameter,
that consistent with an approximate solution to the
canonical commutator sum rule, until a sufficient-
ly high order was reached, poorer approximations
than the first resulted from higher orders.

Results the same as those obtained here follow
if (8) is regarded as an eigenvalue equation for the
transition frequencies. This will be discussed in a
sequel to this report, where a complete self-con-
sistent and self-contained approximation procedure
for the complete spectra of nonlinear oscillators
will be developed. Heretofore, a very accurate
value for an energy eigenvalue was required before
good low-order results for transition frequencies
could be obtained. One should keep in mind that a

TABLE IV, Convergence of the weight ground-state
energy eigenvalues belonging to the &th order of approx-
imation. @is the difference between the weighted aver-
age and the "exact" value of Ea obtained from numeri-
cal integration of the Schrodinger equation, 0.420806.

2
3

6
8

10

0.429 27
0.4236
0.4188
0.4196
0.420 058
0.420 786
0.420 803

0.0085
0.0028

-0.002
—0.0012
-0.000 75

0.000 02
-0.000 003

practical difference between the present method
and those of the Rayleigh-Ritz and variational types
is that with the present method both transition
frequencies and energy eigenvalues can be calcu-
lated from the same basic set of equations, making
a complete low-order determination of a system's
spectra possible.

One has also gained something conceptually new
from the current approach. First, a meaningful
characteristic equation was defined via an infinite
matrix multiplication where the matrix elements,
infinite nonconvergent series, were determined
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TABLE V. Sample convergence of energy eigenvalues of the ORM method for several nonlinear oscillators. The

starred "exact" eigenvalues are those obtained from Ref. 6 in 28th order using the Hayleigh-Ritz method. The other
exact eigenvalues were obtained from numerical integration of the Schrodinger equation and are believed correct to
the figures given.

B= -'p'+-'Q4

m =1.0

Eo

p2 y @2+Q4

m =0.5
&= 3.33

E4

p2+ @2+0 1@8
m =0.5
~=4.6

1
2

3

5
6
7
8

9
10
12

0.420 28
0.437 38
0.419436
0.420 049
0.421 291
0.420 737
0.420 765
0.420 834
0.420 797
0.420 804
0.420 804

1.5683
1.527 67
1.506 27
1.50940
1.508 40
1.507 49
1.508 04
1.507 91
1.507 87
1.507 90

6.0764
4.7477
4.641 10
4.639 06
4.621 20
4.623 48
4.621 23
4.621 53

1.4033
1.4131
1.390 73
1.39147
1.392 76
1.392 325
1.392 315
1.392 368
1.392 350
1.392 350
1.392 351 4

9.2627
8.6646
8.662 24
8.664 185
8.654 257
8.654 414
8.655 545
8.654 934
8.655 082

23.3546
18.8396
18.1518
18.0842
18.0623
18.065 16
18.057 71

1.3908
1.168 32
1.183 318
1.184 865
1.168 301
1.165 305
1.169 398
1.169 95
1.168 647
1.168 755
1.168 978

8.32
7.901
7.7604
7.6038
7.6295
7.5915
7.640 95
7.633 88
7.641 38

20.052
18.462
17.827
17.842
17.884
17.733
17.785

Exact 0.420 806 1.507 90 4.621 22 1.392 352* 8.655 049* 18.057 56* 1.168 971* 7.6399* 17.76*

essentially by computing Pade-type sums. It
seems likely that infinite matrix multiplication
can frequently be carried out with this method,
either approximately or exactly as was done here.
In addition, one expects that, owing to the station-
ary nature of the eigenvalues obtained, the opera-
tor recursion mechanics method, based on good
"eigenvector" basis transformations, must be
derivable from a variational principle. One ex-
pects that this must proceed somewhat along the
lines that Li, Klein, and Krejs' used to show that
the iteration method, "based upon canonical com-
mutation relation sum rules, is derivable from a
variational pr inc iple.

Field theoretically the mass-eigenvalue calcula-
tion in the Heisenberg theory" is somewhat anal-
ogous to the NTD procedure (ll), the mass in the
two-point function corresponding to the parameter

As with the LNTD anharmonic oscillator the
calculated mass eigenvalues are not stationary
functions of the two-point-function mass, which is
identified in the earlier theory with the mass of
the nucleon. But there, this approximation does
not follow from the canonical commutation relation
sum rule. There is as yet no field-theoretic ana-
log to the present method, having two distinct
basis transformations.

In solid-state theory the analog of the present
method has been successfully applied to a one-
dimensional band calculation, and the procedure
seems to be a viable one for both energy and
transition-frequency calculations. ' The analogy
of the v functions there is the charge densities of
the system or, more specifically, their Fourier
coefficients.

ACKNOWLEDGMENT

The author is indebted to Donald Petcher for his
assistance with the numerical calculations.

APPENDIX A: GENERALIZED GEOMETRIC SERIES

The inf inite sums

S(p) = lim Q (—1) (2k+1)~x'
X~& 0

are evaluated in the following way. Letting x =y',
one can write

S(P, y') =lim g (—1)"(2k+1)~y~.
&~1 0

Then it is easily verified that these sums satisfy
the recursive differential equation

S(p+1, y') = [yS(p, y')].

The ansatz

S(P, y')= Q )-))"a)p, n)y'") ()+y')"'
0

leads to the recursion equation

a(p +1,n) = (2n+1)a(p, n)

+ (2p —2n + 3)a(p, n —1).

The sums S(p) are then obtained from

S(P) = 2„„g(-1)"a(P, n).
n=0
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APPENDIX B: THE (SAT) MATRIX ELEMENTSA{n, l,m)

The matrix elements A(n, l, m) for n =w 1 are

A(+1, l, m) =(-2)' '[-2(2l +1)6, z 4(l +1)6, ,+16, „„].
For n= 2 the 9 x T truncation of [A(2, l, m)] is

-1.5 -8 -20 -48 -128 -320 -768

2.0 15 40 56 96 256 640

-1 -16 -78 -160 -160 -192 -512

0 6 72 300 544 448 384

[A(2, l, m)] = 0 -24 -256 -984 -1664 -1216

0 0 0 80 800 2928 4736

0 0 0 0 -240 -23Q4 -8160

0 0 0 0 0 672 6272

0 0 0 0 0

and for n = 4 the lpx 6 truncation of [A(4, l, m)] is

—. 1792

52.5 -696.Q —4 728.0 -23 136 -93 888 -336 000

[A(4, l, m)] =

72.Q 945.0 4 904 25 680 96 192 336 768

-78.0 -1278.0 -8 610.0 -35 808 -113472 -342 912

48.Q 1140.0 10656.00 54 180 176 448 442 752

-12.0 —576.0 —8 592.0 -62 976 —269 640 -751488

0 120.0 3 840.0 46 560 297 600 1 144 080

—720.0 -19200 -206 880 -1211 904

3 360 80 640 805 056

—13 440 -301056

0 38 304
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