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Diagonal forms of the Dirac Hamiltonian
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A method is described for obtaining a class of unitary transformations that bring the Dirac Hamiltonian for
the free electron into diagonal form which may be decoupled with respect to the positive and negative states
of an appropriate Hermitian operator; the class includes those described recently by Weaver, The Dirac
equation for an electron with an anomalous magnetic moment in a constant magnetic field is also diagonalized,
The use of the even/odd concept to indicate the suitability of a Hamiltonian form for nonrelativlstic/ultra-

relativistic problems is questioned.

I. INTRODUCTION

Recently, various unitary transformations of the
Dirac equation for a spin- —,

' particle, '

Pc(=(n *P+Pm)g=H(, Ht=H

have been discussed by several authors. "A large
class of diagonal Hamiltonians, including the
familiar Foidy-Wouthuysens ' (FW) and Cini-
Touschek" s (CT) Hamiltonians, has been obtained. '
Nondiagonal forms of H have also been construc-
ted,"but in most cases they can be reduced to
diagonal form as in the case of the CT Hamilton-
ian 's7 8

It appears that diagonal forms of II are especially
important in the theory of spin-s particles. "' For
example, diagonal forms of the Hamiltonian permit
the decoupling of a bispinor equation by means of
suitable projection operators to give two equations
involving two- component spinors only. Further-
more, this corresponds to separation of positive
and negative states of some Hermitian operator,
which provides a physical interpretation. FW and
CT transformations, for example, permit the de-
coupling of positive and negative states of energy
and helicity operators, respectively. '

Accordingly, we limit our considerations to
unitary transformations of the Dirac Hamiltonian
(1) leading to diagonal equations. The method
described in the next section is then used to obtain
all the diagonal Hamiltonians discussed in Ref. 2,
and generalizations are also given. We then dis-
cuss connections between even/odd Hamiltonians
(notions introduced by Foldy and Wouthuysen') and
nonrelativistic/ultrarelativistic limits of the Dirac
equation.

d=n, n, nsP

has the properties

[ns, d], =[P, d], =0 (@=1,2, 3),

(5)

If we cast the Dirac equation (1) in the form

pc( = [(n p+ pm)/E]Eg, E =+ (m'+ p ~ p)r i' (7)

then the unitary transformation

5+(n p+ pm)/E
v2 (8)

fulfills the conditions (2)-(4) of the corollary and,
since it commutes with E and p„brings Eq. (7)
into the form

Potu= dE(u 4o= Ut/'. (9)

Equation (9) is representation-independent and is
the basic equation of our formalism.

If we choose the standard representation for the
Dirac matrices n, P or the spinor representation"
~ I Pl

the unitary transformation

U=(A+B)/M = U'

applied to linear combinations of A and B exchanges
A andB:

U(c„A + cs B)Ur = c„B+ caA. (4)
It will prove useful to have, in the Hamiltonian

formalism, an analog of the y, matrix" in the co-
variant form of the Dirac equation. It is readily
seen'that, if n and P anticommute and are nor-
malized and Hermitian, the matrix

II. DESCRIPTION OF THE METHOD

We start with a corollary of the theorem stated
by Cohen'0 and by Johnson and Chang": Given two
Hermitian, anticommuting, normalized operators
A andB,

At=A, Br=B, [A, B],=25»,
0 —i

i 0

(10)
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V„=(5+&)/M, AES (12)

then we realize that the matrix 6 anticommutes
with both standard &, P and spinor &', P' Dirac
matrices. It is obvious that the set S of Hermitian,
normalized operators

&=+ n' (2'F)/(F F)1/2) (11)

where F contains no Dirac matrices and commutes
with F. and po, contains only diagonal operators
which anticommute with 5.

We see that by applying any unitary transforma-
tion

g —(~I,$/)

p/ —p~//(p~/ p~l )1 /2

p', =(p,'+-,'m2)'/2 (&=I,2, 3)

(14t')

All the diagonal Hamiltonians discussed by Weaver'
for spin- —, particles are represented in Eqs. (15);
Eq. (15c) is the Cini- Touschek form of the Dirac
equation. "'

It is possible, of course, to obtain an infinite
number of diagonal Hamiltonian equations using
Eqs. (9), (ll), and (12). For example, choosing
A in Eq. (12) as

to Eq. (9) we convert it into the diagonal form

f O~VAV + 0 VAV/ ~VAV ~A~~' (13)

we get the diagonal form of the Dirac equation

fotj=(&' f"')&t„or ~lp'lt, =(&' p')4j

We note that it is impossible to get a diagonal form
of the Dirac equation (13) with A containing more
than three mutually anticommuting matrices (the
set of block-diagonal 4 & 4 anticommuting matrices
is isomorphic with the Pauli algebra, which con-
tains only three different anticommuting matri-
ces").

This equation, which is simila. r to the Cini- Tous-
chek form Eq. (15c), is the four-component form
of the neutrino equation with p replaced by p'.

B. Electron in constant magnetic field

III. DIAGONAL BERAC HAMILTONIANS

A. Free electron

Let us note that, , choosing

in Eq. (12), we obtain from Eq. (13)

&o&F = pE&rw

where

.(6+p)[6+(-c' ' p+ p~i)/&]0,

(14a)

(15a)

(16a)

The method described above can also be applied
to an electron (charge -e) with an anomalous mag-
netic moment z in a constant homogeneous mag-
netic field 5. In this case the Dirac equation is

Pop = [o' ' v+ Pm+ (ge/2212)PZ .5](i, (17)

where f= p+eA, B = V' ~ A, A is a time-independent
vector potential, and

o.,' (/2=1, 2, 3)

[P=p/(p P)'"],
[c1/ p y ~/ p + o1/ (p 2+ 2212)1/2]/E

we get the transformed diagonal equations

(14b)

(14c)

(14d)

(14e)

(15b)PO&O=V12«2 02=1 2»)
P.4„=(~' f)ES.„or (~' p)tcT=~lpllcT,

(15c)

where & is the sign of the energy a,nd

which is exactly the FW form of the Dirac equa-
tion, although the unitary transformation leading
to Eq. (15a) is different from the standard one. ' '

Furthermore, substituting for A the operators Zr' = 6(6+ p)/M. (19)

This changes p into 6 but leaves Z and o1 un-

changed; the additional 5 factor preserves the
sign of &. The Dirac equation is now po(&' =H'g',
where

H'=n m+6m+(11e/2m)&Z 'B, (2O)

and can be rewritten in a form analogous to Eq.
(7) as

p q/ [Hl/(H/2)1/2](H/2)1/2. „i.l (21)

H"=m'+7j 7T+e(1+x)Z B

Since we wish to work with the standard repre-
sentation matrices, it is convenient to first per-
form the unitary transformation

PcT=-'(~+&' f)[~+(/2 p+ pm)/F-]0,

PO&O=[ 1P1+~2P2+~2(P2 +I )

f 0 =[&' f" (P'+~')'"+~'u]t

(16c)

(15d)

(15e)

+(~e/2m)2(Z B)'+(ire/m)67/. ' BX 2. (22)

Note that, since /5n = —2'PZ, H" and hence (H")'/'
are diagonal. In addition, P commutes with H'
and hence (H")'/' but anticommutes with H', so
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that the unitary transformation

p+ Ip/(Hl2)1 /2

brings the Dirac equation into the diagonal form

p(Ifl2)1/2q» (24)

where H" is given by Eq. (22).
This result is to be compared with the results of

Tsai" and Weaver. " If A and B vanish the free-
electron case Eq. (15a) is recovered, while setting
v=0 gives the Case form of the Dirac equation for
an electron without an anomalous magnetic mo-
ment. "

Equation (17) may be diagonalized in a different
way by first rea, rranging it as

[po —mp —(ev/2m)pZ 'B]g=n '1/g (25)

and then operating on it from the left with -y„
where"

diagonalized the cova. riant form of the Dirac equa-
tion for an electron in any arbitrary electromag-
netic field using a unitary transformation defined
in the above sense. Their cova, riant approach
brings the Dirac equation into m-linear form and
is different from our Hamiltonian method, which
leads to po-linear diagonal equations. "
IV. EVEN (ODD) HAMILTONIANS AND NONRELATIVISTIC
(ULTRARELATIVISTIC) LIMITS OF THE DIRAC EQUATION

It is often assumed that even or odd Hamiltonians
represent nonrelativistic or ultrarelativistic limits
of the Dirac equation, respectively. " Accordingly,
even or odd forms of the Dirac Hamiltonian have
been constructed. ' It appears, however, that such
a classification is not always suitable.

I.et us first consider the unitary transformation
Eq. (19) applied to Eq. (1) using tbe standard rep-
resentation. We get the transformed equation

o
y2 = —2yoy1y2y2 =

of
Since —y,n =Z, this gives

(26)

(27)

P yl —Hl gt 1f/I
—I/I g

where

H=' p+' 'm

(33)

(34)

C=- y, p, +y, p[m+(e~/2m)Z H],

and this may be rewritten a,s

[c/(c2)'/'](c')'/'y= z ~g

with

C'=p, '- [m+ (ex/2m)Z H]'.

The opera, tor

p+ C/(C2)1/2
8 =-- —g-1

(2S)

(29)

(30)

(31)

is similar to that in Eq. (3). It commutes with
p and when used in a similarity transformation

puts Eq. (29) in the final (diagonal) form

P(c')"'(54) = z 1/(3'4) (32)

with C' given by Eq. (30). This equation is readily
reduced to the Cini-Touschek form Eq. (15c) for
the case of a free electron.

The transformation using S in Eq. (31) may be
interpreted as unitary if we restrict it to the space
of the eigenstates 1t/ of Eq. (17) because in this case
tbe operator on the left-band side of Eq. (29) acts
on g as the Hermitian operator Z 11. Hence, 8
acts on (/ as a unitary operator.

Johnson and Chang" have given a similar defini-
tion for a transformation defined only on the eigen-
states g of the Dirac equation y Pg=mg. They

is an odd Hamiltonian. Because of the presence of
four Dirac matrices in H', Eq. (33) cannot be de-
coupled into two spinor equations by any projection
operator (only multiples of the unit matrix com-
mute with a Hamilton'. an containing four anticom-
muting 4 x 4 matrices"). The Hamiltonian H',
apart from being odd, does not resemble the ultra-
relativistic Hamiltonian of Cini and Touschek"'
and does not appear suitable for the analysis of
the high-momentum limit of the Dirac equation.
Thus, odd Hamiltonians do not necessarily imply
the ultrarelativistic limit of the Dirac equation.
On the other hand, even forms of the Hamiltonian
do not necessarily correspond to the nonrelativistic
limit of the Dirac Hamiltonian.

The ultrarelativistic form of Cini and Tous-
chek, '7' for example, may be cast into either
antidiagonal (odd)" or diagonal (even)' form. " In
these cases we can use the projection operators
—2'(1+y, ) or —,'(1+y', ), respectively, to decouple the
CT form." The resulting uncoupled equations
are identical and correspond to the separation of
positive- and negative-helicity states" irrespec-
tive of the odd or even structure of the trans-
formed Hamiltonian.

Thus, we realize that care is requiredinclassify-
ing transformed Hamiltonians a.s nonrelativistic/
ultrarelativistic using even/off notions (see the
discussion of the transformed Hamiltonians in
Ref. 2).
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V, nISeUSSION

We have obtained in a uniform way a class of
diagonal Hamiltonians that are unitarily equivalent
to the Dirac Hamiltonian (1). We note, however,
that the Hamiltonians of Foldy and Wouthuysen
[Eq. (15a)] and Cini and Touschek [Eq. (15c)] have
been obtained by applying unitary transformations
different from the original ones. ' ' The nonu-
niqueness of the unitary transformation leading to
transformed Dirac equations was discussed by
Pursey. " The relations between different unitary
operators leading to the same transformed Hamil-
tonian were analyzed by de Pries"; a unitary op-
erator can always be found that explicitly relates
the different unitary transformations.

We realize that for the free electron the diagonal
Hamiltonians (15) with the operator A from the
set S of Eq. (11) have the form

pg=AE(, AE =
~

~,
a'=a. (35)

io -a)

Thus, by applying projection operators P, =-,(l + p)
to Eq. (35) we can decouple it with respect to posi-
tive and negative states of the Hermitian operator
AZ. For the FW and CT cases [Eqs. (15a), (15c)]
the operators corresponding to AE are energy and
helicity operators, respectively. ' 't' Similar re-
marks apply to the Hamiltonian (24) for an electron
with an anomalous magnetic moment in a constant
magnetic field.

Finally, we point out that even (odd) Hamiltonians
do not have a one- to- one correspondence to non-
relativistic (ultrarelativistic) Hamiltonians and
that perhaps some other criteria should be formu-
lated.
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