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The coupled Einstein-Yang-Mills (or Einstein-Maxwell in the case of an Abelian internal symmetry) theory is
shown to be the unique gauge theory of T4 (3 6, where T4 is the 4-dimensional translation group and 6 is an
internal-symmetry group. In the case of P413 6 where P, is the 4-dimensional Poincare group one obtains
Einstein-Cartan theory coupled with the internal gauge fields. A.s in the Abelian case internal Yang-Mills
fields do not create any extra torsion, owing to the gauge invariance of the internal symmetry. The arguments
are given in terms of the conventional gauge formalism, without using the bundle language.

Recently it was shown' that the gauge theory of
the 4-dimensional translation group T4 becomes
precisely Einstein's theory of gravitation. Also,
in an accompanying paper, ' the Einstein-Cartan'
theory of gravitation was derived as the gauge
theory of the 4-dimensional Poincare group P, .
The theory in each case is shown to be unique'"
if one decides to choose the Lagrangian to be the
lowest-order possible combination, linear or
quadratic, in gauge-field strengths (in this paper
the uniqueness should always be understood with
this criterion). Then, combining an internal sym-
metry G with the space-time symmetry T, or
P4, one can easily construct the gauge theories
of T~ G and P~ G. As shown in the following
one obtains the coupled Einstein-Yang Mills (or
Einstein-Maxwell in the case of an Abelian internal
symmetry) theory for the T, C3G gauge group and
the Einstein-C, artan-Yang-Mills (or Einstein-
Cartan-Maxwell) theory for P, Ig G. This way of
combining the gravitation with an internal gauge
theory is more economical and has fewer degrees
of freedom than the higher-dimensional unification
proposed earlier by Cho and Freund, "in that
here we do not have the additional scalar fields4"
of the "internal" gravitation.

In the previous papers"' we have used the bundle
language to obtain the desired results, and ac-
cordingly the arguments were quite mathematical,
but in this paper we will use the conventional
gauge formalism to make the physics more
transparent. However, it remains crucial
to interpret the space- time symmetries T,
and P, as the symmetries among the source
fields and of local orthonormal frames at each
physical space-time point, but not of a global
Minkowskian coordinate transformation, in order
to obtain the desired result, In other words, the
generators of T~ are ~cot identified as the deriva-
tives in a coordinate basis, as has been some-

times suggested. ' Rather, the generators of T,
annihilate the fields, ' and the fieMs remain in-
variant at each physical space-time point under
T~ since under a translation of a coordinate

one has

Vy= y'(x') —y(x) = O

as the translational invariance. Notice that the
translational invariance described here serves as
a good global symmetry independent of the space-
time curvature, whereas there does not exist a
translational invariance as a, global coordinate
translation, in general, in a. curved space.

For P, the interpretation goes the same way, '
and we have

not only under the Lorentz subgroup but alsa under
the tehole Poineaye group P~, where f,, = —f, ,
(i, j= 0, l, 2, 3) are the representations of the gen-
erators of the Lorentz subgroup for p and 8"
= —8" are the six infinitesimal parameters.

With this interpretation of the space-time sym-
metries as the symmetries among the source fields
and of local orthonormal frames at ea, ch physical
space-time point we will now construct in the
conventional gauge formalism the unique gauge
theories of the space-time symmetries combined
with an internal-symmetry group G. Only the
mainstream of the argument will be given since
the whole argument is a straightforward general-
ization of the previous works. "

To begin with it is very convenient to introduce a
local orthonormal basis at each space-time point.
I et us start with a flat space-time and let
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e,. {i=-0, 1,2, 3) be a ".ocal orthonormal basis at
each point, .i.e. , four orthonormal vector fields,
with the commutation relations

[e, , e,.] = 7,,"e, .
In a commuting coordinate basis e, (p, = 0, 1,2, 3)

e,. can be decomposed in terms of e„and vice
versa~

are the gauge potentials of the internal symmetry
in this basis, and e is a dimensionless constant
which will serve as the coupling constant for the
gauge group G.

Qbserve that

[D;,DJ] = [»»;+ eA';$„9, + eA,'f~]

e, =h,"e„, e, =-h,'e, , where

where h,". and h' are the vierbein fields and the
inverse vierbein fieMs so that

k~h~ = ~"-
@ "i

From Eqs. (1) and (2) one easily finds

where 9,. and 8, are the directional derivatives of
the basis e„. and e„, respectively. Then the action
integral, say, for a set of scalar multiplets g'
(a= 1,2, . . . , n) of an internal symmetry G can
formally be written as

I= gg' &; &y, —gm 'dV

(~'rl 8;Q 8&ip —zm Q'Q )v' gd x, - (4)

where dV is the volume element made out of four
orthonormal vectors e, , and

v g= det(h', )-,

»I,.»= diag(+, —,—,-) .
Notice that all the above expressions are just a
matter of a formality and we have not assumed
that our space-time is curved; one can have local
orthonormal frames in a flat space-time as well
as in a curved one. Wee will create a curvature by
requiring local T„ invariance, but we start from a
flat space-time and so far our k,"- remain trivial.

Let us consider in this basis the gauge theory of
an internal-symmetry group G first, whose gen-
erators $, (a=1, 2, . . . , n) have the following com-
mutation relations:

Thus the gauge field strengths are identified as the
commutation coefficients for the group generators
of tuo covariant denvatives.

The gauge-invariant Lagrangian for d' is written
as usual:

g g g(&~ikD yaD ya Lm2yaya &~ik~jly aF n)

(10)

Again all these expressions are fo mal in a flat
space-time, but of course they hold true in a
curved space-time with nontrivial h.,". as well.

Now, for the T, gauge group, let $, (p, =0, 1,2, 3)
be four commuting generators of T4,

[t, g, ] =0,
and let B,'. be the cora esponding gauge potentials.
The covariant derivative D,. in this case will be
given by

D,. =»», +8",

The reason» we do not introduce a coupling constant
for T, in Eil. (12) will become clear soon. With
Eil. (12) one finds

[D, , D, ]=T,,~D„+G;~".$

are the gauge field strengths for T4.
Qne can identify the gauge potentials B~ of T4 as

the nontrivial part of b~ (Ref. 1):
[$., $i, ] =f,i,'$.

Then clearly we have

and the G-covariant derivative D,. can be intro-
duced as usual;

B,.= 8,-+ eA;$, ,

(6) (14)

where we have introduced a dimensional parameter
ii (of dimension of a length) to give the correct di-
mension to h", Clearly this ~ can serve as the
coupling constant for the gauge group T, and one
does not have to introduce an extra coupling in Eq.
(12). Notice that ice nogv have created the curva
ture of space time by erecting t-he gauge potentials
B~ for T, and having nontrivial vierbein fields b",.

given by Eq. {14). Now, interpreting the T, sym-
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metry as a symmetry among the source fields at
each physical space-time point as before' we
have

le;, &.i =0

where D, is . the T, G covariant derivative (19).
Clearly the Lagrangian (20) describes the coupled
Einstein-Yang-Mills theory with the scalar multi-
plets provided that

and K' = 16m'G (21)

= e,.y = (5;. ~ ~B,' )e,y. (17)

Thus the gauge fields B', cou.ple to the source
fields as if the generators of T, were the coordi
nate derivatives 8, which one can interpret a
posteriori but not a priori, owing to Eq. (14)

With Eq. (14) one can write down the gauge field
strengths G, ," of T, in terms of T,,", and one is
led to have the following unique Lagrangian qua-
dratic in the field strengths and independent of the
choice of a local orthonormal basis:

K

as has been shown in detail in Ref. 1.
Now it is straightforward to construct the unique

gauge theory of T4(3 G. The covariant derivative
D,. in this case will be

g /=0.
Notice that, had one identified the coordinate de-
rivatives 8, as one's generators for T4, one would
not have had Eqs. (15) and (16), and one would have
lost the complete parallelism between a gauge
theory of an internal symmetry and that of the T4
symmetry. At this point one may ask how the
gauge fields of T4 can couple to the source fields
if they are singlets under the group. The way
they couple is dictated by Eq. (14):

D,.y = (e, +B;(..)y.

where G is the gravitational constant.
For the P, G case let us start with a set of spinor

multiplets g' (a = 1, 2, . . . , n). The covariant de-
rivative D, in this case will be

D, =8, ye. A', $, +B~) +~C, ' S,.„,
where A;, $„and f, are as before, and

1
&,~=--ly; y. l

(22)

and one has

are the spinor representations of the six genera-
tors of the Lorentz subgroup of P4. Here we have
used the Greek indices for the translational sub-
group T, and the Latin ones for the Lorentz sub-
group for the convenience of the physical interpre-
tation of the group actions, since we relate, as
before, "the translation subgroup to a tr ansfor ma-
tion of the coordinate frame e& and the Lorentz
subgroup to the local orthonormal frame e;. Notice
that we have riot introduced the coupling constant
for P, in Eq. (22) for the same reason as before:
It will be introduced by Eq. (14). Remember that
our gauge group P, is not a direct-product group
and we need only one coupling parameter K for
P4 ~

Clearly

D, =B;+eh';$, +B~$~,

and one obtains

(19) ID(, Dgl = T&g'Do+ e+;g'$a +X&J"t', + k&;y &ar ~

where I',&' are as before, and

(23)

with E,,' and G,,' given as before.
The uniqueness argument of the Lagrangian for

T, I3 G goes the same way as in the T, case' [no-
tice that the Lagrangian (10) is explicitly inde-
pendent of the choice of a local orthonormal ba-
sis], and one obtains the following Lagrangian
for the T, {3G gauge theory in the case of the
scalar-multiplet source fields:

1&=&-g ~, (gT, ,aT&, i+ gT;, IT ag
—T...T, aa)

F aI; a+ ~D PaD g 2m PaP (20)

P //PE (BaC kl BaC al)

kl g C kf 8 C kl +C kmC f m C kmC i m

—T;) C

For the Lagrangian for the Poincare gauge fields
one can show that P4 gauge invariance of the theory
prevents any quadratic form that can be made of
X;,." in one's Lagrangian and, for the spinor-
multiplet source fields g'„one is led to choose
the following Einstein-Cartan- Yang-Mills La-
grangian as the unique Lagrangian for the gauge
group P4 G:

& =&-g ~&'(py'&&( —&&py'p) —~ p5+~2e&;4y'(h. +5.)4 —~~'C&'"P(y'S&~+S~a")4 —4+it +f5 2 fJ" ~

(24)
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Notice that with the Lagrangian (24) the gauge fields
of internal symmetry do not create additional torsion.
That is, the spin density of internal Yang-Mills fields
does not couple directly to the gauge fields of the Lo-
rentz subgroup C;"(as the current density of the sub-
group) as one would naively expect. Clearly this
is due to the requirement of the gauge invariance
of the internal symmetry which dictates the above

Lagrangian.
Thus, interpreting the space-time symmetries T,

and P, as the symmetries among the source fields and
of the local orthonormal frames at each physical
space-time point, we have shown in the conventional

gauge formalism that the gauge theory of T, G is in-
deed the coupled Einstein- Yang-Mills (or Einstein-
Maxwell) theory and the gauge theory of p, NI G is the
coupled Einstein-Cartan- Yang-Mills (or Einstein-
Cartan-Maxwell) theory. If one keeps the lowest-
order possible combination, linear or quadratic
in gauge field strengths in one's Lagrangian, the
theory in each case becomes unique.
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