
PHYSICAL REVIEW D VOLUME 14, NUMBER 12 15 DECEMBER 1976

Gauge theory of Poincare symmetry*

Y. M. Cho
The Enrico Fermi Institute, .'he University of Chicago, Chicago, Illinois 60637

and The Department of Physics, ¹wYork University, ¹wYork, ¹eYork 10003
(Received 22 December 1975; revised manuscript received 7 October 1976)

The Einstein-Cartan theory of gravitation is shown to be the unique gauge theory of Poincare symmetry as far
as one chooses the Lagrangian to be the lowest possible combination in field strengths. Kibble's derivation of
the theory is reformulated and refined in the fiber-bundle picture. The gauge potentials of the Lorentz
subgroup are identified as the local azine-connection coeAicients which in general allow torsion, and the field
strengths of this subgroup are identified as the curvature tensor of the corresponding Riemann-Cartan
geometry. The spin current of fermion fieldscreates the torsion of thegeometry,

I. INTRODUCTION

Recently it has been shown' that the gauge theory
of the 4-dimensional translation group T4 is unique
and becomes precisely the vierbein formalism of
Einstein's theory of gravitation. On the other
hand it was also pointed out' that in the presence
of spinor source fields the consistency condition
of the theory (that it should not depend upon a
choice of a local orthonormal basis) naturally
leads us to introduce gauge fields for the Lorentz
group, and that one can modify Einstein's theory
if one has spinor source fields in the theory. In
this case the translational gauge group alone is
not enough and one has to include the Lorentz
group in one's gauge group.

In this paper we show that with the 4-dimen-
sional Poincare group P4 as one's gauge group
one can derive the Einstein-Cartan theory' of
gravitation as the unique gauge theory of P4 if
one chooses one's Lagrangian to be the lowest-
order possible combination, linear or quadratic,
in field strengths (in this paper the uniqueness
should always be understood with this criterion).
Kibble' was the first to suggest that the Einstein-
Cartan theory may be viewed as a gauge theory of
Poincard symmetry. But in his argument the
gauge potentials of the translation and those of
the Lorentz group seem not to be treated on the
same footing, and there appear questions of how
these two groups are related and to what extent
the theory is unique. The theory was also derived
by Sciama4 as a gauge theory of the Lorentz group
alone, but in an already curved space-time, i.e.,
with the Riemannian metric as an input. In the
following we will reformulate and refine the works
of Kibble and Sciama in the fiber-bundle picture
and will argue that the Einstein-Cartan theory of
gravitation is indeed the unique gauge theory of
P4.

The geometry of gauge theories ha, s been known
as that of a principal fiber bundle, "" but there
seem to have been few applications of bundle
structure to specific problems in physics until
recently. The power of the bundle formalism has
been appreciated by Cho and Freund' ' in uni-
fying non-Abelian gauge theories with gravitation.
The relevance of the bundle structure in physics
has also been emphasized by %u and Yang. '
Throughout this paper we will use the bundle
formalism to exclude any possible confusion in
the argument although it is not necessary to use
the bundle language. But in this bundle formalism
one does not need matter fields, neither does one
have to make local "phase" transformations, to in-
troduce gauge fields. Bather, gauge potentials
are created, without ever mentioning the matter
fields, from the fact that one can choose a 4-
dimensional horizontal tangent subspace in the
tangent space of the bundle which does not nec-
essarily form a, closed Lie algebra, and the field
strengths are given by the vertical components of
the commutator of two horizontal vector fields.
For the details about the bundle formalism we
refer the reader to Bef. 6.

%e will first prove our claim by constructing
the 14-di.mensional bundle of the Poincare group
P4 over space-time and then discuss the theory in
the presence of spinor source fields. After this
the gauge potentials and the field strengths of the
Lorentz subgroup are respectively identified as
the connection coefficients that allow tox sion in
general and a,s the curvature tensor of the cor-
responding Biemann-Cartan geometry of the theo-
ry.

II. GAUGE THEORY OF THE POINCARE GROUP

To derive the unique gauge theory of the Poin-
care group P, it is relevant to understand how'

Einstein's theory comes about as the unique gauge
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where ~*' and ~~ij ale the directional derivatives
to the vertical direction of Q and $*., respectively,
one easily obtains

0! —,8 fl(R 8 fl(x + $0!q (flllC kl fllaC kl)
Z j Z j j i

(9)
kl 8 C kl g C kl~c km' lm C kmc lm

Zj i j j Z i j i

Now gauge transforrnations in this bundle picture
are changes of bundle cross section. """"' However,
since we want to view here the Poincare symmetry
as a space-time symmetry, not just as an internal
symmetry» thg I0J'8ntz s745g'voQp shoMld also Oct
on the local orthononnal basis e; as u?el/ as on the
vertical fiber space. For the translational sub-
group we interpret as in Ref. 1 that it does not act
on the local orthonormal basis ei» but on the co-
ordinate basis e„generating a general coordinate
transformation. So i. this gauge theory of space-time
symmetry the gauge transformation is made of two

parts, one from the change of the cross section, the
other from the corresponding change of the basis.
Thus under an infinitesimal gauge transformation
of P„one has

5a'= 'f . a'. 8"+--'-f. c.'ke'+8. 8 + e. f?i ~ gy jk i ~ jkgg i i ik k

gk C»nepk+8 8~k+ 8 C ~k (10)

is linear in the field strength 8;,.k' and clearly a
possible candidate„ it comes from the Lorentz
part of the field strengths alone. To ensure the

P~ gauge invariance of the action integral (12) one
has only to notice that the volume element 4-g d4x

can be made invariant under the P, gauge trans-
formation. " Kibble has chosen this form for sim-
plicity, but notice that the Killing form of the in-
variant metric for P, is singular since the group
is not semisimple so that, on the basis of the sim-
plicity alone, there seems a priori no reason why

one should exclude a quadratic combination in X;j
in one's Lagrangian, this being the lowest-order
combination of the translational part of the field
strengths. However, one can easily argue that the
action integral (12) is indeed unique since any quad-
ratic combination in X;j is not invariant under
the P, gauge transformation (or more spe-
cifically under the T, subgroup gauge trans-
formation). This is so because in Eq. (11) 5X,,'
necessarily contains the term ,' fk, ~&R,.&k' 8~—under

the gauge transformation, which will spoil the
gauge invariance for any quadratic combination
in X,,'. Thus the action integral (12) for P, gauge
fields is indeed unique if one keeps the lowest-
order possible combination of field strengths in
one's Lagrangian.

Gf course gauge invariance alone cannot exclude
a quadratic term and jor tugher-order combinations
in'; j ' from one's Lagrangian, and this kind of arbi-
trariness is common to any gauge theory. Now since
the action integral (12) is linear in';~ ' one might
like to include the "kinetic" term 2' for C,jk,

1 1gt y g g p klan kl

5X.~" =
~ &s, k~X y'8"'+'f ki, g&;g"'8'

—~fr, p". X:8"
& f kl p mngpq & f mng kl gpqij 4~ mnpq ij 4~ ij&pq

where 8 and ~'k= —L9k' are the 10 infinitesimal
functions corresponding to the P4 gauge trans-
formation. Notice that the last term in each of
the 4 equations above comes from the rotation of
the local orthonormal basis

kl -O
ik ~ i kl (14)

Ci jk ~jik + ~zkcl lj ~jkcl l i Tij k+ ~zk Tj l l ~jk Ti l l

where

in one's Lagrangian. But there seems no com-
pelling motivation for this since we have already
seen that the gauge invariance of the theory has
excluded the kinetic term for 8, also.

In the absence of matter fields the action integral
(12) gives the following equations of motion:

~Z=~i+ 6ik~k»

which one has to take into account in addition to
the "internal'" part of the gauge transformation of
the space-time symmetry P4.

As for the action integral, Kibble's'

'0 jmOkn

m
z jk zj ~km

One ean solve the second equation and obtain

(15)

I =— v-g 8 "d'x
K

4-g =det(h, ', )

Using Eq. (15) the integral (12) can be rewritten
in terms of 8; alone and one easily finds that the
theory reduces to Einstein's vacuum theory.
Notice here that had one included the term 2' in
one's Lagrangian, one would not have had Eq. (15)
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e] =h~e, ie =h„e;, (2)

where h' are the inverse vierbein fields, so that
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From Eqs. (1) and (2) one easily finds

T,&k = (s; h.;. s&h;)hk—

h~hj(& -h» —&„hk), (3)

where 8, and 8„are the directional derivatives
with respect to e, and e, . Notice that we start
from a flat space-time and so far our h~ remain
trivial although they become nontrivial when one
requires local T4 invariance. '

For the group space of P„ let g (n =0, 1,2, 3)
and $,.k= —gk, (i, k=0, 1,2, 3) be the 10 generators
of P4 with the familiar commutation relations

[~., ~, ]=0,

theory of translation because some of the argu-
ments apply the same way here. We will not
repeat these arguments and for the details of
the derivation of Einstein's theory as the unique
gauge theory of translation we refer the reader
to Ref. 1.

Let us first start with a 4-dimensional flat
space-time and introduce a local orthonormal
basis at each point, i.e., four orthonormal vector
fields e; (i =0, 1,2, 3), with the following commuta-
tion relations:

[e,, e,. ] = T„kek .

If we introduce a commuting coordinate basis e
(p, =0, 1,2, 3), e; can be written in terms of the
vierbein fields h~ ~

&ZZ~ + Z &ik~

in this bundle. Then the gauge potentials B, and

C,~k are as usual given by the connection coeffi-
cients of e& (i=0, 1,2, 3), the lift of e, into a. gauge-
defining 4-dimensional submanifold o of the bundle:

KB i = kLl (ei)
Jk —~ik(e )

where we have introduced a dimensional constant ii (of
dimension of a length) to give the canonical dimen-
sion' to the gauge potentials B,. and C;~k. This v

will serve as the coupling constant for the gauge
group P, and will be related to the gravi-
tational constant later on. As in Ref. 1 we will
interpret the gauge potentials B,. as the nontrivial
part of the vierbein fields,

h~ =6"-+vB~ .i

This means that ive create the curvature for our
sjace-time by erecting the gauge Potentials B",.
and making the vierbein fieLds hi~ nontriviaL. This
identification was a crucial ingredient in deriving
Einstein's theory of gravitation as the unique
gauge theory of the translation group T, . A justi-
fication of this identification can easily be given
as before" and we will not repeat the argument
here.

In the bundle let e,. be the horizontal lift of e, ,
and let $* and $*,k

= —$*,. be the vertical funda-
mental vector fields corresponding to $ and $,.».
Clearly these 14 vector fields e;, g*, and $*. can
serve as a basis for the bundle with the following
commutation relations:

[g* ~g] 0
[&;k &.]=(lL;.&'k &k.8'*)&—k =Ak, &k,

[ ~ i 4l ] L k~ii 0jl ~ik lL~ lk }4k~'il

1
&fii,kl ~ZZZZZ

where

ll, k
= diag(+, —,—,-) .

(4) [~*,.„&.*]= 'f;,, '. ~l,

[ &ZZZ &kt]=& fig, kt &ZZZnZ

Here we have used and will continue to use the
Greek indices cl, p, . . . for the translational sub-
group T4 and the Latin indices i,j, k, . . . for the
Lorentz subgroup for the convenience of the phys-
ical interpretation of the group actions, since the
translational subgroup can be related to the trans-
formation of the coordinate frame e„as in Ref. 1
and the Lorentz subgroup will be related to the
transformation of the local orthonormal frame
eg ~

Now let us construct the 14-dimensional bundle
space whose base manifold is the 4-dimensional
space-time and whose fiber space (the vertical
space) is isomorphic to the 10-dimensional Poin-
care group P4, and introduce a connection'

Here again v is inserted to give the canonical
dimension to the vector fields. To determine
X,, and R,,k' in terms of potentials, observe
that e, can be written as

e. = e. liB~)* ——' iiC ik$*
CL jk

which comes from the definition of v (Ref. 6)

(zl (ek) =0, id"(ek) =0,
(gOI()kz) QZZ (gZ (Z$ )ZzP

~zz(gzZ ) —P &iZ'(] lz ) —8i8i zLli8l

Using Eqs. (L) and (8), and noticing that"
ggBB 1 +-lg Q C i3

OL k ~ ~e4j k

(8)
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and there would have been no way to interpret the
gauge potentials 8; as dynamically independent
variables.

where

U =1-—,
' S,,0~k,

III. SPINOR SOURCE FIELDS

Now let us consider the theory in the presence
of spinor source fields. For simplicity let us
consider a Dirac spinor P as the source field and
start with the fo11owing action integral for the
spinor written in the local orthonormal basis (1),

I = V' —g [ —,
' i(Py'&; ici —&, iciy'P) —mTiig]d'X,

(16}

where y' (i=0, 1,2, 3) are the Dirac matrices. Now
notice that, independent of whether the space-time
is curved or not, the action integral (16) as it
stands cannot describe a meaningful theory simply
because it is not independent of the choice of a
local orthonormal basis. To take care of this
defect and also to create a Riemannian metric
for the space-time &et us require Poincare gauge
invariance on the action integral (16), a.nd intro-
duce the P4-gauge-covariant derivative D,. for the
spinor;

V~ y'(s;+ -' C;"S&,) iC

ply'(sl + &
CIGARS )ql

= ( U 'y'U(&', + —,
'

C,'~ U 'S,U+ U '&', U) P

= q y'(s,.+ —,
'

C,. "S»)q .
Thus, the Lagrangian (21) is indeed P, gauge in-
variant. Now including the Lagrangian for the
gauge fields of P, in Eg. (21) one obtains the fol-
lowing Lagrangian:

&=&-g [-'i(pr's;0- s;4r'0)
+ —,'iC "$(y~S»+S)~y')i'+�(1/K') Ri)"] .

(23)

As before, C,~k are not dynamically independent
since the Lagrangian (23) is linear in R,;~'. From
the Euler-Lagrange equations of motion C k can
be written as

where B;, C ", and f are as before and

S;~=- l[r;, y]

(17)

(18)

Ci~k=cok+ Cok(0) (~)

where"
(0)C = , (T, .T. .„--T„. .

(24)

are the spinor representations of the generators
$,, of the Lorentz subgroup. Now as in Ref. 1 one
can interpret that the field g remains invariant
under the translational subgroup T4 in this bundle
formalism so that

(=0,
and one has

5g = —~ S;~ 8"iIi (20)

= &- g [-'i(4r*a;0 s;4y'0} m44--
+ —,'i C;~~ g(y'S»+S»y')ill] (21)

Notice that under the infinitesimal P4 gauge trans-
formation, one has

under the zehole infinitesimal P4 gauge transforma-
tion. With the covariant derivative (17}one can
easily write down the P4-gauge-invariant Lagran-
gian for g:

2 = 0 —g [ 2 'L,(y D i( + (C.C.) —miJJiff]

+ .i(0y's;0 —s;4y'0}™—A
--. ~*"' T;,'Fri y'0 +»~'(4y'y'4}'

(23')+ a total divergence .
Clearly the Lagrangian (23') describes the Ein-
stein-tartan theory of gravitation"' in the pres-
ence of the spinor source field provided that

~' =16wG, (26)

C(1) &2~ qyly5y

Thus, in general, spinor source fields make an
additional contribution to C k. Geometrically,
this additional term (i.e., C',.~) is known as the
contortion created by the spinors. The geometric
meaning of the theory will be discussed in detail
soon.

Using Eil. (24) the Lagrangian (23) can be re-
written in terms of dynamically independent vari-
ables alone:

Z = 4- g —
2 (~ T,,i,f,~i, + —,TOi,Tii,q

—T,,)T»i)

-'C."S. --' C". kS.i jk ~ i jk
(22)

where 6 is the gravitational constant. The 4-point
fermion interaction in the Lagrangian (23 ) mea-
sures precisely the difference between Einstein's
theory and the Einstein-Cartan theory in the pres-
ence of spin-& source fields. Observe that this
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modification was naturally introduced to make the
theory basis independent in the presence of the
spinor source fields and, from the point of the
gauge principle, Einstein-Cartan theory seems
the natural one for the theory of gravitation. Of
course this modification is obtained within the
context of the classical field theory and it is an
open question" whether or not a quantum correc-
tion would induce new terms not contained in the
Lagrangian (23') into the theory. At this point it would
be nice to recall how Einstein's theory accommodates
itself with the local Lorentz invariance in the
presence of spinor source fields. Observe that
C,'~» itself satisfies the transformation law (10)
under the Lorentz gauge transformation so that
one can make the Lagrangian (23) gauge invariant
just by replacing C;j„by C;"j~ in it. Indeed, this
is the way Einstein's theory satisfies the local
Lorentz invariance.

It is not the purpose of this paper to study the
detailed properties of the Lagra. ngian (23) and for
this we simply refer the reader to the existing
literature. " Bather we will discuss the geometri-
cal meaning of our P4 gauge theory in the following.

IV. GEOMETRICAL INTERPRETATION

Cartan geometry this is not so since in this case
one has the torsion t; j given by

V;e, —V, e;=[e;,e, ]+t;; e». (27)

So in general the connection coefficients F;," are
given in terms of the metric and the torsion. In
the local orthonormal basis one easily obtains"

(z) (c)Fi jA Fiji'+ ri jk

where

1'„.„=2(T;,, —T;», —T,»;),(a)

F;,»
—»(t, ,»

—t, » —t, »&)
(c)

and

(28)

tj =tj q

Observe that I";,.„has a new contribution F;„from
the torsion in addition to the good old Riemannian
part r;(",.~. This new term Fi jp is characteristic
of Riemann-Cartan geometry and called by defini-
tion the contortion. Also the curvature tensor
8;,, is defined in this basis as

&,,»' e, = f+, , +, ] e» —+&,. . &
e»,

so that

= lim —[P; '(~)e~(r) —e,.(0)) .
T ~0

(26)

Here, by "covariant" it is meant that one is com-
paring the two vectors Q, '(r)e&(v)and e&(0) at'the
same point C,(0) and the "covariant" derivative V,
has nothing to do with the P4-gauge-covariant
derivative (1V). Now in Riemannian geometry, of
course, the connection coefficients Fij~ are de-
termined by the metric alone. But in Riemann-

Thus we have constructed the unique gauge theory
of the Poincarb group P4. Now, at this point
there is no doubt that" the geometrical meaning
of the gauge theory should be given in terms of
Riemann-Cartan geometry. In fact one can easily
identify the gauge potentials and field strengths of
the Lorentz subgroup as the connection coeffi-
cients and curvature tensor of the corresponding
Riemann-Cartan geometry. To see this let us first
recall some basic quantities in Riemann-Cartan
geometry.

Let C, (v) be the integral curve of the vector field
e,. with a scalar parameter r and Q;(7') be the paral-
lel transport of the tangent space at the point C; (0) onto
the one at C,.(v) that leaves the metric invariant.
Then the affine connection coefficients I";,.' are
defined as the components of v;ej, i.e. , the "co-
variant" derivative of ej with respect to e;:

V,.ej=r,j e,

(29)

Now it is clear from Eqs. (24) and (28) that the
gauge potentials C; j~ are nothing more than the
connection coefficients F;j,. In the presence of
spinor source fields the spin current of the fer-
mions creates the controtion C,, and one has the
torsion

«. »i O'Y 'Y 0
1 5 (30)

V. CONCLUSION

It has been shown that the Einstein-Cartan theo-
ry of gravitation is indeed the unique gauge theory
of the Poincare group if one chooses the Lagran-

in one's geometry which is in addition to the metric
and makes the geometry Riemann-Cartan. Also,
from Eqs. (9) and (29) one identifies the gauge field
strengths 8;j ' precisely as the curvature tensor
of the corresponding geometry.

The gauge potentials of the translation subgroup
can be interpreted as usual as the nontrivial
part of the vierbein fields, ' and they create a
Hiemannian metric to the geometry.
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gian to be the low'est-order possible combinations
in field strengths. The gauge potentials of the
Lorentz subgroup are identified as the connection
coefficients that allow torsion in general and
the field strengths of the subgroup as the curvature
tensor of the corresponding Riemann-tartan geom-
etry. The gauge potentials of the translational
subgroup are interpreted as the nontrivial part of
the vierbein fields, and they create a Riemann-
ian metric to the geometry.

Note added in Proof Rec.ently F. W. Hehl, P.
Heyde, G. D. Kerlick, and Z. M. Nester [Rev. Mod.
Phys. 48, 393 (1976)j also tried to derive Einstein-
Cartan theory as the gauge theory of the Poincare
group. However, we would like to make clear that

our approach is different from theirs. These
authors admit that the commutation relation of
their gauge group, in particular Eq. (4.28), does
not yield the algebra of the Poincar6 group, and
thus their derivation of Einstein-Cartan theory as
the gauge theory of Poincare symmetry appears
to be controversial and incomplete.
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