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Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism
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A generalization of the classical approach of barrier penetration introduced by Klein, Sauter, Heisenberg, and

Euler to curved spaces endowed with future horizons is given. This technique allows one to recover most

directly results obtained by Hawking recently. The treatment here presented encompasses, as special cases, the

works of Deruelle and RuAini, of Damour and Ruffini, and of Nakamura and Sato.

one of the most important results obtained in
recent years in black-hole physics has been the
realization that the total mais-energy of a black
hole can be separated into three components': the
irreducible mass, the Coulomb energy, and the
rotational energy. That both rotational and Cou-
lomb energy could be in principle extractable by
a set of classical gedanken experiments has been
known for some time. ' lt has been only recently,
however, that the quantum analog of these pro-
cesses occurring in the "effective ergosphere"
have been analyzed. ' The use of the Klein-Sauter-
Heisenberg-Euler formalism has led to a most
direct understanding of these processes of vacuum
polarization' and to detailed analyses of possible
astrophysical interest.

Hawking' has suggested, however, that, also,
by vacuum polarization processes the irreducible
mass of a black hole could be radiated away. In
the present paper we show how a generalization of
our previous treatment of barrier penetration4
leads to a clear understanding of this phenomenon.

We consider (a) a Kerr-Newman geometry en-
dowed with a vacuum future horizon, (b) a massive
charged scalar field @' fulfilling the covariant
Klein-Gordon equation in that background geom-
etry, and (c) we assume analyticity properties of
the wave function @ in the complexified manifold.

The result ean be obtained mathematically thanks
to the existence of explicit asymptotic expressions
for the field ~' near the horizon and at spatial in-
finity. Physically, it comes from the existence,
inside the horizon, of a spacelike Killing vector
$„which allows a classical particle as "seen"
from infinity to reach a negative-energy state.
In the quantum description, this phenomenon al-
lows an antipar tie le to reach positive- energy
states. These states, classically confined in the
black hole, ean be tunneled out by a wave function
"over" the horizon which gives rise to the creation
of a pair: one particle (positive energy) going out
and one antiparticle (negative energy) falling back
toward the singularity. Note that this approach

dr~/dr = (r'+a')/a,
we have when r —r, (r& r, )

(2a)

with (2b)

We shall first treat the case of a Schwarzschild
metric (a = e =0}. The scalar function &' fulfilling
the covariant Klein-Gordon equation in this given
metric can be separated as

~' =(2vl~lr') '"& (r*, ~)yP(8, 4),
the F, being the usual spherical harmonics and

E~ being monochromatic in time. In the following
we take ~ & 0, that is, a flux of Particles at in-
finity, the flux of antiparticles being treated as
usual by charge conjugation. It is easy to show
that just outside the horizon H, (r & 2M} two linear-
ly independent solutions exist:

~in -iLg(t+t~)»iQJvc ~ —8

and

only requires the existence of a future horizon and

is totally independent of any dynamical details of
the process leading to the formation of this hori-
zon.

As usual we consider the Kerr-Newman metric

ds2 = Z(s ' dr 2+d 8~)

+Z 'sin28[(r'+a')d&f& —adtj'

—Z 'A(dt —a sin'8 dQ)',

with o. =r' —2Mr+a'+e'=(r —r, )(r —r ), where
r, =M +(M' —a' —e2)~' and Z =r'+a' co's,8M
being the mass, e the charge, and a the specific
angular momentum of the black hole. (Here and

in the following we choose G=c=K =1.) We also
indicate by H, the future horizon. Introducing the
coordinate &~,
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gout e- j(tl(t-y'~} e2j(dy'+ +- j(d& (+ 2M)j&NK - j QJv
(d I

where we use the usual advanced Eddington-Finkel-
stein coordinates, t+&~ = v, &, 8, P in which the
metric is well behaved and, in fact, analytic over
the whole coordinate range 0&r&~, —~& L) &~
including H, (r =2M, —~ & u & ~).

While Eq. (4a) corresponds to a wave purely in-
going on H, and ean be extended inside «2M,
Eq. (4b} represents an outgoing wave and has an
infinite number of oscillations as &-2M and there-
fore cannot be straightforwardly extended to the
region inside H, . %'e will in the following use and
generalize to analytic curved spaces the well-known
result of flat-space relativistic wave theories'8:
The wave function @(x)describing a particle state
(positive frequencies) can be analytically continued
to complex points of the form z =x+ ip if y lies in
the past cone; similarly, for an antiparticle state
(negative frequencies) y has to lie in the future
cone.

Since in Finkelstein coordinates the vector
e/sr is everywhere null and past-directed, the
prescription r-r —i0 will yield the unique con-
tinuation of Eq. (4a) describing an antiParticle
state,

RQRlogs of the Eddington-Finkelstein coox'diDRtes
RQd R eox'x'espondlDg gRuge tlansformatlon for
the el.ectromagnetic field, that the normalized
ingoing wave 4 is regular at H+ but that 4'"'
contains a factor (r -r, )'( 'oui', where x is given
by Eq. (2b) and where

'Ht being the usuRl, azimuthal quRQtum Dumber of
the particle, & its charge, Rnd 0 Rnd V being

P„=lV 4'„"'(r —2M —i0),

or introducing the Heaviside function 7,
P -X [F(r 2M)e "-'(r 2M}-

+s"" y(2itf-r)e:"'{2itf-r)],

where N is a normal. ization factor such that

(5a)

(5b)

(P, P ) = —5(u&, —~s)5» 5, . (5c)

As @~wRs Rlx'eRdy Qornlallzed lt 18 vel y Simple
to obtain N

I& I'=(e'""~-1) '

Now Eq. (5b) describes the splitting of P in

a wave outgoing from the horizon and a wave
falling on the singularity (see Fig. 1). The prob-
ability flux carried away by this outgoing wave
is simply IN„I'/2s per unit of time [see Eq. (2)]
and onl, y a fraction I' of this flux will be trans-
mitted to infinity, where I is the transmission
coefficient of the potential. and centrifugal barrier
(Fig. 1). Using Eq. (6) we get at infinity an out-
going flux of particles of

(f'/2s)(e"" —1) '

per unit of time and per unit range of frequency,
which is Hawking's result. '

If we consider now a scalar field in R Kex'r-
Newman geometry, it can be shown, "using the

FIG. I, In usual Eddington-Finkelstein coordinates,
a qualitative represelltation is given of the splitting of
the antiparticle state P~ [see Eq. (51)] into two compo-
nents: (aj a particle wave of strength IiV~ It outgoing
from the horizon and partially transmitted to infinity
E'if ~ & p) and partially backscattered into the hole, and

(h) an antiparticle wave of strength IN I

etvs" 1+Iii It=
with positive energy flux outgoing in the past from the
singularity. This can always be interpreted as a nega-
tive-energy flux of antiparticles IP~ I ingoing in the
future toward the singularity. P„being normalized,
Iiv J /2v yieMs the rate of pair creation per unit fre-
quency from H+.
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respectively the angular velocity" and the electric
potential' of the black hole. As in these coordin-
ates the vector 8/er is still null and past-directed
we can use the same prescription as before, r-r
-i0, to describe an antiparticle, which yields
the splitting analogous to Eg. (5b):

P =N [y(r —r )4'„"'(r —r, )

+e' 'n i"F(r -r)C'"'(r —r)] (9)

However, in the present situation of a Kerr-
Newman geometry two drastically different situa-
tions occur for an energy of the wave +&+0 or
(d & QPO.

For ~&coo the norm of 4""' is positive and its
flux is +(2v) ' so that one gets )NJ'=(e'"~
—1) '. And as usual only a positive fraction I'
of this flux is transmitted to infinity through the
combined potential and centrifugal barriers.

For ~&(do the norm of 4~' is negative as well
as its flux —(2s) ' (antiparticles) so that one gets
l&J'=(1 —e"l ~~~") '. But we are precisely
in the conditions of l.evel crossing' betgeeen the
horizon and spatial infinity so that a negative
fraction I' of this flux will be transmitted to in-

finity.
Therefore in both eases one observes a positive

flux at infinity (particles) of

(1,/2v)(erne(~ ~,)y. 1)-x (10)

per unit of time and per unit range of frequency.
The drastic difference between those two re-

gimes appears clearly if we consider the limit
where the effective temperature «/2v of the black
hole tends to zero. In the Sehwarzschild case
the rate of particle creation goes then to zero.
In the Kerr-Newman solution the rate goes also
to zero if &o&&o„but in the range p &~&~, (where

g is the mass of the particles) the rate of par-
ticle creation tends to —1'/2v which is the phe-
nomenon studied in Ref. 4.

If we now take into account that the effective
temperature is given by «/2v=10 'x(MO/M) 'K

we ean conlcude that the only place where thermal
contribution to the vacuum polarization of a black
hole can exist is in the early stages of cosmology
(black holes of M&10" g). For macroscopic black
holes, outcoming from stel. lar collapse, only the
process of vacuum polarization described in Ref.
4 can possibly be observed.
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