
PHYSICAL REVIEW D VOLUME 14, NUMBER 12 15 DECEMBER 1976

Generalized Einstein-Cartan field equations

R. Skinner and D. Gregorash~
Department of Physics, University of Saskatchewan, Saskatoon, Canada, S7X 08'0

(Received 3 August 1976)

Field equations are studied for generalized Einstein-Cartan-Sciama-Kibble (EC) theories in which the
connection is not necessarily compatible with the metric and the Lagrangian is not necessarily the curvature
scalar. The condition that the Euler-Lagrange equations for a general Lagrangian density L(g, 3g, BBg,l', Bl )
involve no third- or higher-order derivatives of the metric requires that the gravitational field equations be
equivalent to those of general relativity with modified sources. The divergence of the symmetric "energy-
momentum" tensor SL,«„/Bg&,,&

evaluated with girt „—(,„'„))= 0 for a generalized EC theory does not vanish in

the presence of spin. The general form of the spin field equation linear in the defect X',„=r',„—(,„')is derived.

I. INTRODUCTION

r',.s(Einstein) = f &'sj

ger
«~~, s+gst, r gjs, i)

is symmetric, so the torsion, defined by

(1.2)

is zero in that geometry. On the other hand, the
linear connection of the EC theory is determined
by both torsion and metric, and these alone,
through the assumption that the connection is com-
patible with the metric tensor:

g. .. -0. (1.3)

In Einstein's theory of gravitation the mass
distribution alone determines the metric tensor
g, , (in the notation of Ref. 1) in terms of which
the geometric properties of the pseudo-Riemannian
space-time of general relativity can be described.
However, spin is an intrinsic property of matter
as significant as mass, ' so it seems natural to
modify general relativity to reflect the fundamen-
tal importance of spin. One such modification is
achieved in the Einstein-Cartan-Sciama-Kibble
theory~ [often abbreviated Einstein-Cartan (EC)
theory] in which the material spin density acts as
the source of the geometric torsion q',.s of space-
time.

The linear connection I",.
„

for the pseudo-Rie-
mannian geometry of general relativity

=I.,(zc), (1.8)

where, for example, R[r(EC)] is the curvature
scalar formed from the connection

The metric condition generalizes the case of
special relativity for which the Minkowski metric
q, , satisfies the condition g, , ~

= 0 sufficient for a
flat space. It ensures that space-time is locally
Minkowskian with respect to both metric and con-
nection. ' Furthermore, while the existence of a
metric allows one to introduce spinors, the met-
ric condition defines natural covariant derivatives
of spinors. '

These arguments for space-time being metric
are not so strong, however, that nonmetric space-
times must be excluded from consideration.
Therefore, in the following we consider geome-
tries in which the defect need not be restricted by
the metric condition.

Similar considerations apply to the possibility
of generalizing the field equations of the EC theo-
ry. A field equation for a geometrical object in a
physics theory decomposes naturally into two
sides, one involving purely geometric variables
and the other involving the material or physical
field sources. The geometric sides of the field
equations for the EC theory are a straightforward
generalization of the Einstein equations, as they
are derived from the geometric Lagrangian den-
sity Lo(EC) given by

L o(Einstein) = (-g)'~'R[ ( j ]- (-g)'~'ft[r(EC)]

[A space-time for which (1.3) is satisfied is said
to be metric. ] The solution of (1.2) and (1.3) de-
fines the defect'

r*',,(zc) = (,',]+~'„(Ec).

This Lagrangian density may be rewritten

(1.7)

for the EC theory:

l ';,(Ec) = --.(q', ,+ q, ,'+ q„').
Thus, the metric and the torsion describe the
geometric properties of the EC space-time.

(1.5)

Lo(zc) =(-g)'~sA[ ( ) ]+L,+divergence, (1.8)

where I., is a scalar density that is a homogeneous
polynomial of degree two in the torsion. Thus, an
effective Lagrangian density for the EC theory is
the Einstein Lagrangian density plus a homoge-
neous quadratic in the torsion. In other words,
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the EC theory may be considered as general rela-
tivity with modified sources. '

Generalized geometric Lagrangian densities L~
have been considered recently by von der Heyde. '
He assumed that the metric condition is satisfied,
so the geometry of space-time is determined by
the metric g,, and the torsion Q',.», and that the
geometric Lagrangian density contains no funda-
mental constants except c and the gravitationa, l
constant G and is quadratic in the torsion. He
found that, under these conditions, the general
form of the effective geometric Lagrangian density
1s

(1.9)

where a and b are numbers and L, is homogeneous
quadratic in the torsion and is completely deter-
mined up to three arbitrary constants. By assum-
ing that there exists a basis, anholonomic in the
presence of torsion, in the tangent plane at any
single point in space-time such that the total La-
grangian can be reduced at that point to the matter
Lagrangian of special relativity, von der Heyde
obtained the Lagrangian density (1.6) of the EC
theory.

Sandberg' recently has considered the case in
which the linear connection F,.k satisfies no
a Priori conditions, such as the metric condition,
under the assumption that the geometric Lagran-
gian density is the generalized Einstein density

(1.10)

He further allowed the spin density

ral choice, but it is not necessary; because there
is an additional geometric field, the defect tensor,
in principle I.~(Einstein) can be generalized at
least by adding to it any scalar density that
vanishes for zero defect. In the present paper,
we consider the general case in which (i) the geo-
metric Lagrangian density L~ is dependent in an
arbitrary way on the metric tensor and its first
and second derivatives and on the connection, sub-
ject to no a priori conditions, together with its
fll st der1vatlves

L ~= 'I
G,(g, Bg, BBg, I", B 1'), (1.13)

and (ii) the Euler-Lagrange equations involve no
derivatives higher than the second. We show in
Sec. IIA that all such LG do reduce to I.o(Einstein)
for zero torsion, generalizing results of von der
Heyde, ' Sandberg, ' and Nester. ' In Sec. IIB we
derive the geometric side of the gravitational
field equation in terms of the spin and show that
LG must satisfy conditions in order that the Euler-
Lagrange equations do not involve third- or fourth-
order derivatives of the metric tensor.

More detailed consideration is given to special
cases in which the geometric side of the field
equation for the defect is (i) derivative-free and
linear in the defect and (ii) linear in the defect and
its first two derivatives. Case (ii) allows for the
possibilities that the defect is nonzero in regions
of zero spin density and that defect waves exist, "
contrary to ca.se (i) and the EC theory where the
defect is related algebraically to the spin density. "

defined in terms of the matter Lagrangian density
L, to be arbitrary and thus not restricted by the
skew property

$kii Skji

usually assumed to provide a physical interpreta-
tion for 5I,„/6X,,» as the physical spin. " Sandberg
showed that as a result of the projective invari-
ance of the Lagrangian density (1.10) the matter
Lagrangian density was restricted by the condi-
tion S„.i =0. By modifying the usual comma-to-
semicolon rule (B/Bx' in special relativity- V,. in
general relativity for determining L from the
Lagrangian in special relativity) he found a way to
satisfy this restriction automatically, and in this
manner obtained field equations from (1.10) equiv-
alent to Einstein's with a modified source Lagran-
gian.

The Einstein-Cartan (and the Sandberg) Lagran-
gian density is the simplest generalization of that
of Einstein [see Eq. (1.6)] and thus is a very natu-

II. GENERAL CASE

A. Generalized form of the Lagrangian density

The difference between two connections is a ten-
sor, so, in a space-time whose geometry is de-
termined by a linear connection I",.k and a metric
g, , , with its corresponding Riemannian connection

, this geometry is determined also by the de-
fect tensor X',» of (1.4) and the metric g, , Thus,
the general geometric Lagrangian density (1.13)
assumed in this section has the form

Lo-—LG(g, Bg, BBg, A. , BA.) .
We assume that L~ is a scalar density for all

tensors X,,k a,nd all symmetric tensors g,-,. with
nonvanishing determinant (so the inverse tensor
g" exists). Thus, in particular, the functions

I.~= I.c(g, Bg, BBg, 0,0)-
(2.3)

are scalar densities. Because L~ is a scalar den-
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sity dependent only on the symmetric second-order
tensor gij and its derivatives, it satisfies the
Rosenfeld identity, "which remains valid for La-
grangian densities dependent on second deriva-
tives,

~

~
&La m .l + LE 0ijn gkl g gij ng(i j) ',

m g(i j)
(2.4)

for all symmetric second-order tensors gi j. The
notation in this equation is as follows. Firstly,

5L~ BL~ BI @ BLE
+

g(ij) g(ij) g(ij), k, k g(i j),kl, kl

(2.5)

Secondly, o „.„denotes the generators of the in-
finitesimal transformations of a tensor t„;if
under the vector transformation

gC

v'(x) - v"(x') = . v'(x) -=a".v'(x)
Bx i

the tensor t„(x)transforms a.s

t„(x)-t„,(x') =o„,s(a)ts(x),

(2.6)

(2.7)

then under an infinitesimal transformation a",.
= 5',. + e ",, with all

~

&",.
~

«1, t„(x)tr ansf orms by

t„,(x') t„(x)= e"„o—"„.„'t,(x),

with

(2.8)

m 2 (2.9)~~n = Bn gi =()i.

The generators for an arbitrary covariant second-
order tensor gi j are given by

(2.1O)

Substituting this relation into the Rosenfeld iden-
tity (2.4) and using (1.1) show that any scalar
density L~, dependent only on a second-order
symmetric tensor, with nonzero determinant, and
its first and second derivatives, satisfiesthe rela-
tion

where G" is the Einstein tensor

Qi j pi j —gi jp (2.14)

and can be derived from a Lagrangian density of
the form

L, =(-g)'/2(~f~[ ( }]+P), (2.15)

where o! and P are constants, as well as others. "
The residual Lagrangian density L, =—L~ —L~

depends crucially on the defect tensor X'» in the
sense that L, vanishes when the defect vanishes.
Thus, we arrive at the following conclusion:

The most general Euler-Lagrange field equations
dependent on the metric tensor and its first and
second derivatives and the defect tensor and its
derivatives are the Euler-Lagrange equations of
the total Lagrangian density

L =—(-g)'/'(o. 'R[ ( }]+P)+L,+L„, (2.16)

B. Geometric side of the gravitational field equations

The variational derivative

ij — s
2 (2.17)

which appears with the usual Einstein tensor E,"
(2.13) on the geometric side of the gravitational
field equations, is determined in part by the vari-
ational derivative

where L, depends crucially on the defect tensor
and L is the source Lagrangian density of the
matter and physical fields.

This result generalizes von der Heyde's theorem'
which applies in the special case in which (i) the
connection is metric and (ii) the Lagrangian den-
sity L, is homogeneous quadratic in the torsion.
The form (2.16) for the total Lagrangian density
also generalizes previously published results, de-
scribed above, for the EC theory' and for its gen-
eralization with Lo =R[I'] for unconstrained defect
tensor s.'

5L
( g)-1/2 Z = O

Qng(ij)-i j
{2.11)

Cijk — G — s5L 5L
6X,.

„

(2.18)

Thus, under our assumptions the second-order
tensor components

i/
( g)-1/2 E5L

(2.12)

E 'J =i2Qi/[ ( } ]+ fungi/ (2.13)

are (a) concomitants of the metric tensor and its
first two derivatives [assumption (ii) of Sec. &]

and (b) divergence-free [Eq. (2.11)]. One of Love-
lock's theorems" therefore applies to E,"; it
necessarily has the form

which is the geometric side of the spin field equa-
tions, because the particular combination of gij
and A, jk forming L, is a scalar density. The rela-
tion between E," and Cij allows one to simplify
the gravitational field equations by replacing the
variational derivative 6L~/6X, ,«with the spin and
also to determine conditions under which E," does
not depend on third- or fourth-order derivatives
[through terms like (SL,/sg, . «, ) «, ] of the metric
tensor. In this subsection we calculate the rela-
tion between E," and C"".

We assume that L, has the general form
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L, =L,(g, Bg, BBg, X, BX) . (2.19) Some useful local variations are

I BJ nL
~A, &++ A:n ~~m~ B (2.20)

is. Similarly, the second derivatives g, j» of the
metric tensor are not tensors, but they can be
written at any point, in an orthonormal Riemann
normal coordinate system, "as linear combina-
tions of the curvature tensor

(2.21)

In such a coordinate system the first derivatives
g, j k vanish at that point. Thus, in that coordinate
system at that point, Equation (2.19) can be written
as

(2.22)

a tensor relation in one coordinate system that is
therefore valid in all coordinate systems.

The desired formula for &L,/Bg, jean be o.b-
tained from a Rosenfeld-type identity, express-
ing the fact that L, is a scalar density function of
the variables listed in (2.22). We obtain this iden-
tity in obviously covariant form in the following
way. Let F(x) denote the totality of field variables,
with all indices and labels suppressed. The sub-
stantive variation of F(x), under the infinitesimal
coordinate transformation

x'- x' =x'+ & '(x), (2.23)

The ordinary derivative X,.jk,
———AA, is not a tensor,

but the combination
B*~'„,=-(B*(,,]), (B*(;;])

„

(2.26)

~'(j'k j= 'g"-"(~*gjl)~ k+(~*gkl), j —(B*gjk)(,1,

(2.27)

and the following. Each type of variation of AAIi

depends on the corresponding variations of the
XB's and the g, j's:

B~A
i i

—B4
i ( I k,=0+ B4

i i I kk=o (2.28)

However, while B*F,. = (B*F),, the similar result
for Riemannian covariant derivatives is

so

B*F„.I„,= (B*F),, (2.29)

A li ( )Al (

+ &gm Bp gnl

[( *g,„)( ( *g, )i —( *g.„)i,]
(2.30)

The condition that L, be a scalar density is that

[&*L,+ (L,(') i,.]d'x = 0 (2.31)

for arbitrary infinitesimal coordinate transforma-
tions, i.e., for arbitrary g'. Application of the
formulas above and the integration-by-parts form-
ulas (valid for 5 and 5*)

is given by [see (2.8)]

&F =F(x) -F(x) =(j& ,Fg'„'.
while the local variation of I is

B*F=F(x) F(x) =BE F,gj-
=(r ~F('i j F

i
jg—

(2.24)

(2.25)

M'(BF)~,. =(m*BF)~,. M*~,&F.
N' j(5F)(,j= (N" (. BF)(,. —N '(,j.&F]

(
j+N"

i j;~F

(2.33)

gives, for arbitrary f'(x),

d'x i 2E22ilj-C AAIi- C VJA:i AB Ij

BL . . BL
2@ j gAgj Bj s j( +(i pljk + s (jk Bj( fjJ(k $i pljk ) =-0

2 i A: i B By Ali Ik ill By A:i 8 i) Ikl
L Al j Al j 'Ij)

(2.34)

i(j — Ls (j 8 Ls i 8
k) By A:k) B+ By A:k) 8

Ali A l(j

BI
k)A: B &

A I(j
(2.38)

and

ij (ij) s5L

~g(i j)

BL,
B&(ij),r, z

& Uk(i j) + ~k&ij
2 Ikl &

(2.3'f)

~ i jkl —~ (i j) (kl ) —pkl i j—2 sBL

B~((k» j
(2.38) 5L BL BI

A. A Ali li
(2.38)
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For a vector density t/', V'~,. = V', , so by choos-
ing g "s that vanish at the boundary of the region
of integration but are otherwise arbitrary we ob-
tain

~ *&j-1&;i;+E';ij-2C ~Ai;+ k(«'A:; 4)&;,

(2.39)

the divergence of the geometric side of the gravi-
tational field equations depends solely on the spin
and the defect. This divergence is not zero, as it
is in general relativity, so the "energy-momen-
tum" tensor &1. ,«„/&g&,, &~k, „ofthe EC theory
or its simple generalizations is not conserved in
the presence of spin.

The condition that L, be a scalar density implies
both (2.39) and that the remaining coefficients of
$' and its symmetrized covariant derivatives under
the integral in (2.34) be identically zero. The
symmetrization is necessary in order that only an
independent set of arbitrary functions be consid-
ered; the relation

n m B
~Ali j AA& ji mij A: n ~ &&

can be used to eliminate skew pairs of adjacent
covariant-derivative indices. For example, with
the symmetries of the curvature tensor and the
use of (2.40), we obtain

-&'&k& jp'";

For example, if L, consists of a term that is
homogeneous quadratic in the first Riemann co-
variant derivatives of the defect XA with only
metric tensor coefficients and a term like
R,.», X "A.k', then E',. does not depend on deriva-
tives of the metric tensor g, j higher than the
second. Moreover, in this case the spin field
equations in va|."uo have the form

g X
I

+g g R ) =0 (2.43)

with appropriate contractions on the indices. This
field equation describes waves of the defect (called
contortional waves for the special case of a metric
space-time in speculations by von der Heyde and
Hehl'). Here the curvature tensor acts like inertia,
to modify the magnitude of the propagation vector
of the waves.

III. SPECIAL CASES

This section is concerned with the special cases
in which the spin field equations are linear and
homogeneous in the defect XA and its first and
second derivatives, thus generalizing some re-
sults of von der Heyde. ' We derive the general
forms of these field equations, deduce the number
of arbitrary constants that appear in them, and
find the conditions among these constants that must
be satisfied if the spin field equations are the
Euler- Lagrange equations of some Lagrangian.

The field equations are assumed to have the form

Pkil j 3 Iq
. ('i-'(k (u"*'& . . +p:jkA'. . )k pji p i jk Q" (g, Bg, ssg, &&. BX see.) =s ' (3.1)

(2.41)

The coefficient of $'~ &jk&
in the integrand of (2.34)

vanishes identically. The coefficient of $' from
the divergence term. can be shown to vanish as a
consequence of the coefficients of g'~ j and $'&&jk&

being zero. The coefficient of ('~ j& gives the con-
tribution from L, to the geometric side of the grav-
itational field equation:

where Sk" represents the spin density. We con-
sider initially only those cases in which «""can
be expressed in a form with no explicit dependence
on the curvature tensor; a brief discussion is
given at the end of the section on those cases in
which the curvature tensor must appear explicitly.

A. Spin field equations linear in X&

E.'j =&2 '.
)

] gi A (i B s=2 L. j+«A j) ~B —,,q ~A~j)
A I (i

+ ~kl i + s &(i Bp„pl(iBL
ex A: j) B — j)

All

klm&i R j)kl ~ (2.42)

This can involve third and fourth derivatives of the
metric in the (82,,/SXA~&)~& and Pk&"

j&~» terms.
These higher-order derivatives are absent if both
Sr.,/S»A~ and 81. /BRki j» are independent of

The latter case obtains, for example, if
Ls is linear in the curvature tensor.

C ijk { +)1/kD i jkimny
lmn (3.2)

depend only on the metric tensor g„,. These coef-
ficients must have the form

We consider here the case in which the geometric
side of the spin field equations does not depend on the
curvature tensor and is linear in the defect XA,

and thus necessarily homogeneous unless another
odd-order tensor is involved; we treat the case
that involves derivatives of the XA' s in the next
section.

Since there does not exist a tensor that can be
formed from the metric tensor and its first deriva-
tives, the tensor coefficients DA appearing in
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1 2 3 4 5 6 Q a'()234~56) g 1' 2' 3' 4' 5' 6

(3.3)

where )&'(n„n„.. . , n2 ) is a permutation of

Ãy PS2 n, formed from the product of I trans-
positions of the 2m arguments, Q, , (» 2 &f is
a set of constants whose individual values depend
on the particular permutation )('(I, 2, . . . , 2m) but
not otherwise on the indices i„andg' "i'""'2m'
is the product of the m gi "s whose indices are the
elements of the transpositions in ))'(i„.. . , i2 ),
for example g(~&~3) (&2&6 ( 4~5 =g & 3g~2 6g~4 5 The
general spin field equation (3.2) contains fifteen
arbitrary constants.

Assume now that C~ is the variational derivative
of some Lagrangian density L~:

fied. This variational derivative may be written
as

Lgmn+ s &(m n)By5L 5L
5g A: B~

(mn) A

(s.io)

the form to which (2.42) reduces in the special
case under consideration here.

We now examine the spin field equations

Cijk Ski j (3.11)

and the conditions for a metric theory under the
usual assumption of a skew spin density

Skij Skji (3.12)

Introduce the collective symbols a, b, . . . for the
combinations [ij]13, a', b', . . . for the correspond-
ing )'3[ij], and n, P, . . . for (ij)k:

Ls (3.4)
Dab) +Daa) ( g)-1/2sa'

b

D~9. +D"X,=o.a

(s.isa)

(3.13b)

The integrability condition for this set of equations
ls

The condition that the connection be compatible
with the metric is

D AB DBA (3.6)
(3.14)

reducing the number of arbitrary constants by four
to eleven. We have

I.,= ,'( g)'i'D4') —„)-,. (s.6)

An explicit form for E,"=6L,/6g(, ,&
can be ob-

tained from the following considerations which
exemplify the fact that the BL,/Bg(,.z& ~ r ~ terms in

(2.42) arise from the factors g" and (-g)'~2 re-
quired to form, with the other tensors, a scalar
density. The tensor transformation law (2.7) in-
volves the same function 0 as the transformation

3 ~1"'()( gal" ~ aN)1 ~ a)((g—»)7
3] ~ ~ ~ Jpf

(3 7)

from covariant to contravariant components.
Therefore, since gij=6'j, varyinggij keeping

fixed gives

g(ml e)...sg'. In)gg. ..yg~ Qgj~...j~ (mn)

(3.8)

~ &(mn)&'( iyy ~ e ~ 2 i6)y
i4i~ ie

with o „.„agiven by (2.9). Thus, the variations
in I.„(3.6), due to the variations in g, , only yield

s &l2~L
( g) Q 3 (15 ~ 6) i)iai3

g(mn)

(3.16)

A, +A, «0, 2A, A, «0, 2A,'-A, +3A, «0. (3.16)

If the conditions (3.16) are satisfied, then in
order for the theory to be metric it is necessary
that D '=0, in which case L, involves at most
eight arbitrary constants.

If, moreover, det(D 6) «0 then the theory with

skew spin is necessarily metric. This restriction
can be evaluated from

J. ()
- (-g)'~2(A4X(, ,)'A("&, + A5)((;i&b)("'&5

as follows:

+A6~(i j)k~'""+A7~' j~kkj

+A ) ( )(()3 & )8 ij k (s.i7)

(5A4 + 2A, +A, +A,)(A, + BA, +A,)

«(A4+A6+ 2A5)(A 6+ 4A, + 5A6),

If this is satisfied and the X, can be determined
from (3.13a), then det(D") «0. This restriction can
be evaluated' by direct computation of the spin
equations for the Lagrangian density

L,()
=——'(-g) i D' X X

»)(( .)b~

+ 1gmn(i jky2 ijk ~ (3.9) (3.16)

where the last term comes from the variation of
(-g)'i2 and the notation for o „.„ahas been modi-

2A, -A, ~O,

A, +A60 0.
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If these inequalities are not satisfied, as they
are not in the EC theory, then one can generalize
Trautman's Theorem 3 Among the defects sat-
isfying a spin field equation with skew spin and
D ' = 0, there is exactly one such that the theory
is metric.

If the theory is metric, i.e., X = 0, either as a
consequence of the spin field equations or by de-
cree, then one can solve the equations

l, ,k
= [ j/2, i j + A.{,,i», (3.19a)

(3.19b)

for the defect X, jk=—A.
&, j» in terms of the torsion

or for the torsion in terms of the defect:
1

i jk 2(@ikj @kji+ @jik) ~ (3.2oa.)

(3.2Ob)

In this case the theory is equivalent to one in which
the geometry is determined by the metric tensor
gi j and the torsion tensor Q, jk. This is the case
considered by von der Heyde. '

yg" ~Ny N2 &y n2&y
AN I "2n2'

(3.21)

The general expression of this type involves 105
arbitrary constants A, , This high degree of arbi-
trariness can be reduced to a manageable level
by, firstly, imposing the condition that C N& be
the Euler-Lagrange expression derived from a
Lagrangian density. Since

B. Spin field equations linear in the derivatives of 'j{{&

Tensor field equations linear in XA and its de-
rivatives and involving at most second-order de-
rivatives of the metric divide into two groups,
those containing even-order Hiemann covariant
derivatives and those containing odd-order Rie-
mann covariant derivatives. This result follows
since contraction with the tensors gi j and R,j» of
even order cannot change the character of oddness
or evenness of a tensor's order. We consider only
those terms linear and homogeneous in the second-
order Biemann covariant derivatives since these
could appear in the spin field equations Cijk =S""
combined with the terms linear in the XA. Similar
considerations as those given directly below apply
to field equations in XA ~, , which need not be homo-
geneous.

If the Riemann curvature tensor does not appear
explicitly in the terms that are linear and homo-
geneous in XA~, j, the general form of these terms
in the spin field equation is

C" 1=(-g)'" Q A„(„j/„„)

ny 2) &' (N2N~ ~
(s.24)

this reduces the number of arbitrary A, , 's to
sixty. Secondly, the number of arbitrary A, , 's
can be reduced further by assuming that the theory
is metric, so X,jk= —A. &,j». Under these conditions
the number of A, 's is sixteen.

The second derivative terms XA~, may involve
the curvature tensor implicitly:

10k f By
A(ij Al(ij) 2 "lij A: k B (3.25)

These gravitation-spin coupling terms are absent
only if the A„'ssatisfy the condition

(N]N2" p2) ~ (N] 9"2"]) (s.26)

this reduces the number of arbitrary constants to
nine.

The contribution from the Lagrangian density
L, ,'d'"' to the gravitational field equations is given
in (2.42). The contribution of L,{~"'"'arising from
the g" coefficients in (3.23) occurs in the second,
third, and fifth terms in the same manner as the
first term in (3.9) because

Ak: ' A: '
k

'
k A' (3.27)

The terms involving BL,/BRA{ in U"'» arise be-
cause XA~,. involves the metric tensor and its de-
rivatives in the connection.

Derivative terms AA~, j can appear linearly with

XA or direct gravitation-defect coupling can exist
only if some constant l defining a fundamental
length is involved; the general form of a linear
spin field equation is

f'(g-~1
{ +g g R & )+& =s

(3.2S)

Von der Heyde' used the fact that there is no
natural fundamental length for such a theory as an
argument to discard the terms in parentheses in
(3.28) from the field equations, but this argument
can be reversed. Evidence for derivative or direct
gravitation-defect coupling terms in the spin field
equations would provide evidence for the existence
of a fundamental length in the geometry of space-

( +)1/2gw' {AB jj {yAlij B

( g)' 'g" '" "'AA{,.XB{/+divergence,

(3.22)

the typical term in the Lagrangian density L,' "'"'
can be taken to be

g ( g )1/2gw' {ABij{j{ (3.23)

The integrability condition for C N to be the varia-
tional derivative ({jL,-{d"'"'/ &RA{,.){,. of a sum of
terms of the form of ~L, is that
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time. However, at present there is no experimen-
tal evidence even for torsion, so the possibility of
determining a fundamental length in this way seems
remote.

If one accepts the arguments of von der Heyde
and Hehl' that the gravitational theory required
for elementary-particle considerations must in-
volve at least torsion in space-time, one could
combine Planck's constant with c and the gravita-
tional constant G to form the Planck length
(Gh/c')' '- 10 "m. Defect waves in flat space
would then correspond to the Planck mass
(c8/G)'~'- 10'~ GeV, a large value but one already
being considered in unified models of weak and
electromagnetic interactions. Furthermore, ac-
ceptance of von der Heyde and Hehl's arguments
could lead one to a particular choice" for L, that
corresponds to a definite spin state for the defect
tensor A, j~.

IV. CONCLUSIONS

Any simple generalizations of the Einstein-Car-
tan-Sciama-Kibble theory of gravitation obtained
by introducing a general connection into the geo-
metry is equivalent to general relativity. The de-
fect would manifest itself, however, in the co-

&C X~)g+ &(C o g ~ Xs)f ~ —T (4.1)

Metric generalized EC spin field equations linear
in the defect and with no direct gravitation-defect
coupling can involve up to seventeen arbitrary con-
stants, nine of these before terms linear in second
derivatives of the defect. These latter terms have
the appealing feature of allowing the torsion to
extend into space-time beyond the spin sources
and to undergo wave motions. However, this fea-
ture would require the introduction of a fundamen-
tal length. Direct gravitation-defect coupling also
requires the existence of a fundamental length.

variant derivatives of the matter and field vari-
ables, although one could interpret such cross
terms as just another coupling.

The Euler-Lagrange equations, given in part by
(2.13) and (2.42), of generalized EC theories do
not involve derivatives higher than second order
if, as one might suspect, BLc/BX„~,. is independent
of the curvature and L~ involves the curvature only
linearly. These conditions do not eliminate the
possibility of direct gravitation-defect coupling.

The divergence of the symmetric energy-momen-
tum tensor density T"= BL,«„/&g&,, & ~„odoes not
vanish in the presence of spin. There is a local
balance between that energy-momentum tensor and
the spin given by
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