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Why is a black hole hots
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The distribution function as well as the fluctuation spectrum of the radiation emitted from a spherically

symmetric black hole is derived within the basic framework of statistical mechanics from the fact that it is an

entity endowed with a densely spaced quantum level spectrum. The fluctuation spectrum of the emitted

radiation is thus found to exhibit deviations from that of pure thermal radiation.

The purpose of this note is to identify in what

way the densely spaced quantum energy-level
structure of an incipient black hole gives rise to
(a) emission of radiation which is blackbody in its
essence, i.e., both in regard to its energy and its
fluctuation spectrum, and (b) deviations from
blackbody radiation, deviations that serve as a
signature for the quantum level structure of the
black hole. The statistical-mechanical treatment
of thermal emission from a many-level compound
nucleus is well known. ' That a black hole should
have "internal (quantum) configurations" was
first stated by Bekenstein' and was also used by
Bekenstein' and Hawking' to discuss its statistical-
the rmodynamical aspects.

Consider an isolated black hole. Denote by 0 "
the number of microscopic states accessible" to
that black hole. If the black hole can indeed be
characterized by such states then it follows that its
entropy is

S'" =aln n'".
The entropy and, hence, the number of accessible
states is determined by certain macroscopic pa-
rameters only. For a spherically symmetric black
hole there is only one parameter, its mass M.
This fact is expressed by the equation

n'" = n'" (M)

The entropy of a black hole is

The constants k and I z' = h/G c are Boltzmann's
constant and the squared Planck length, respec-
tively. On dimensional-theoretic grounds Wheeler
estimates the dimensionless constant n to "of
order unity. " On statistical-thermodynamic"
as well as information-theoretic grounds Beken-
stein estimates n «96. On quantum-field-theoretic
grounds, Hawking' and others"'" give cy =4m. On

the basis of classical field theory applied to zero-
point fluctuations one obtains" the same value.

Consider a gas of n photons each of frequency

5~. The total energy of this gas is

q =nkvd.

S"~(t!)=kbG [(f+1)ln(f+1) flnf], -
where

f = q/hG „R(u = n/AG ~

(4)

is the mean number of photons occupying any one
of the 4G „phase-space cells.

Consider an incipient black hole (a star during
late collapse) at that instant of time when its mass
energy is M ' . It proceeds to make a transition to

a state of lower energy I ' and thereby emits a
gas of photons of energy q

' occupying 6G phase-
space cells. Next, the black hole makes another
transition to a state of mass-energy M ' and emits
thereby a photon gas of energy g

' also occupying
AG phase-space cells, etc. We have the following
family of processes.

M lM + 'g

m"' -m'"+q'"

These processes are stimulated at the star's sur-
face by the zero-point fluctuations of the vacuum

Let these photons be distributed over AG„phase-
space cells ("Planck oscillators, " outward-traveling
modes each satisfying the wave equation). The num-

ber of accessible quantum states of this radiated gas
of n photons (i.e. , of this ensemble of b,G oscilla-
tors) is"

Q~ (q) = (AG „+n —I) !/(hG ~- 1) !n!. ,

In terms of the entropy of the ("monochromatic")
photon gas under consideration this number is

0"' (q) = exp[S"'(q)/kj .

For large n and 4G the entropy, we recall, has
the form first determined by Planck,
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and are ordered in a time-sequential way. " A typi-
cal process is one in which the black hole makes a
transition from a state of mass-energy I+g to a
state of lower mass M.

Within the context of several transitions as ex-
hibited by Eq. (6) introduce the mean energy gd of
the concomitant (monochromatic) photon gases so
that the energy of a. typical gas is

rapidly decreasing function of e, while the second
factor is a rapidly increasing one. The product,
one expects, has a maximum corresponding to that
macroscopic configuration of the total system which
has the largest number of quantum-mechanical
energy levels. This maximum is reflected in the
maximum of the entropy of the total system. A

Taylor-series expansion around e = 0 yields

'g = 'gp+E' . (7) Stotal SBH + Srad

Then ask: What is theprobability that a black hole,
whose initial mass is Mp+qp, emits a, gas of photons
of energy g = gp+ & and thereby makes a transition
to a state whose final mass is

M=Mp —e?
The answer is

(probability) „=const x 0 (M, —e)Q"d(q, + e) .

(9)

The first factor is the number of final states
accessible to the black hole making such a transi-
tion. For each of these final states accessible to
a. black hole the emitted photon gas is in any one of
its accessible states whose number is given by the
second factor. It follows that the transition prob-
ability for the process

Mo+qd- (Md —e)+ (qd+e),

which is proportional to the total number of final
states accessible to the black-hole-photon-gas
system, is given by the product of the two factors
of Eq. (9).

[One may note that the probability for a black hole
to make a transition from an initial mass Mp+ g»
+qp + ~ ~ ~ to a final mass I,—e, —e, —~ ~ ~ by emit-
ting photon gases characterized by frequencies
w„&„.. . and having respective energies g»+e„
'gp2 + f2' ~ ~ ~ ls

probability =const x 0 "(Mo —(d, +e, + ~ ~ ~ ))

x A~, (g„+d,)Q~, (q„+e,) ~ ~ ~,

Such a more general and complete expression has
to be understood, but does not have to be mentioned
explicitly every time we mention in this paper the
total number of states accessible to the black-hole-
photon-gas quantum system. ]

The connecting link between the quantum-me-
chanical microstructure and the thermodynamic
macrostructure of the total system is the inverted
Planck-Boltzmann relation"

0"'" =exp(S""'/k)

= 0 "(M —d )0"d
(q + d)

Equations (2) and (4) show that the first factor is a

= S'" (M,) + S„"'(q,)

d(S "+S"d'}
I 1 d'(S +S*'d)

~ ~
~

cR p 2 QE

(10)

Let gp be that photon-gas energy which extremizes
the number of accessible final states and, hence,
the entropy of the total system. Thus the linear
term vanishes. Substituting Eqs. (2) and (4) into
this extremum condition, using Eq. (7) and then
finally Eq. (5), one obtains

Ro = &G (u 7~fo

=b.G~he[exp(8&M~) —1] ',
the most probable energy of a set of photon gases,
each occupying hG phase-space cells.

Such a statistical quantum-level formulation of
the emitted- radiation-black-hole system yields
not only its extremal thermodynamic properties
but also the nature of the deviations from the ex-
tremum, namely the properties of the fluctuations
of the emitted radiation. Indeed, in terms of only
the first nontrivial term of the Taylor expansion,
Eq. (10), the expression for the spectral-emission
probability, Eq. (9), becomes

d 2SBH d 2Smd(
(probability) „=const x exp —,+

p 2

This expression gives a Gaussian probability dis-
tribution for the emission of photon gases, each
occupying AG phase-space cells. The probability
is a function of e, the deviation from the mean en-
ergy qp of the gases. The content of the curly
bracket gives the inverse squared width of the dis-
tribution, the mean squared value e' of the energy
fluctuation of (monochromatic) radiation to be found
in aG~ phase-space cells. Using Eqs. (2) and (4}
with the help of Eqs. (5), (7), (8), and (11) one ob-
tains for a single (bG =1) phase-space cell

(12a)

1 Lx 1+— ~ (8BM&)2fo(fd+1)+ ~ ~ ~ . (12b)
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FIG. 1. Probability for making transition to final states accessible to a photon-gas-black-hole system. Each dot

represents a state of this combined system. A given horizontal row of dots represents a fixed black-hole state with the
photon gas assuming any one of the energy values of its quantum states. Similarly a vertical column of dots represents
a photon-gas state with a black hole assuming any one of the energy values of its quantum states. As indicated by the
spacing of the columns and the spacing of the rows, the accessible states of a black hole and those of an emitted photon
gas are rapidly increasing functions of energy. Energy is conserved when a black hole makes a transition from some
initial state of, say, energy M 0+ go to a final photon-gas-black-hole state. Consequently, the nu~ber of accessible
final states is limited to a subset within the indicated diagonal narrow strip within which energy is constant (to a pre-
scribed degree of accuracy). The Gaussian probability curve plots the number of accessible final states as a function of
the deviation e away from the mean photon gas energy go. There are no laws of physics (e.g., selection rules) that
favor one of these states over any other. Consequently, all are equally probable. The photon-gas-black-hole system
will therefore share the energy Mo+ F0=M+ q in a probable fashion determined by the density of accessible states along
the narrow region of constant energy. It is therefore clear that the conservation of energy gives rise to the property
"temperature" (T). The inverse temperature, T ', is merely the magnitude of the fractional change in the black hole
(or photon gas) states per unit energy in that neighborhood where the density of accessible states of the combined system
has an extremum. In the picture this happens at M=MD and q= qo. The fluctuations in the energy of the emitted photon
gas as well as in the mass-energy of the black hole are reflected in the finite width of the Gaussian density of accessi-
ble-final-states curve. Upon making another transition the combined system makes a jump to another state in a second
constant-energy strip parallel, adjacent, and to the left of the one indicated in the picture. In other words, as the black
hole evaporates a representative point executes a kind of random walk towards the origin of this picture.

Here the physical constants G and c have been re-
introduced by replacing Eq. (8) by M =M, —eG/c'.
The constant EI,'= (h c'/G) is the squared Planck
energy. The first term is important for macro-
scopic black holes, M'»LJ, '. This term is pre-
cisely the. mean squared value of the fluctuations
in the radiative energy emitted by a black hole. '
This agreement between the detailed computation
for an incipient black hole and the general results

of statistical mechanics not only shows that such a
black hole is a blackbody in the precise sense of
the term but also accounts for the emission of the
radiation in terms of theblackhole making quantum
transitionsamong its densely spaced set of energy
levels.

These fluctuations correspond, we recall, to a
mixture of statistically independent Boltzmann
gases. ' '4' 6 Thus, the fluctuations are primarily
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due to the particle nature of the emitted radiation.
The second term becomes important to the extent

that the black hole is no longer macroscopic. M'
Under such a circumstance, the fluctuations

are no longer due to only the quantized nature of
the emitted radiation, but also due to the yet-to-
be-determined detailed structure of the set of ac-
cessible energy levels of the black hole itself.
Therefore, our considerations do not approximate
the black hole as an "infinite thermodynamic" res-
ervoir. However, this common approximation is
made implicitly or explicitly in the computations of
Refs. 10-13.

The determination of transition probabilities,
Eq. (9), via the method of entropy extremization,
Eq. (10), constitutes, we recall, the foundation" of
statistical thermodynamics. It is applicable not only
to a photon-gas-black-hole system, but also to the
system consisting of a black hole together with any
particle gas; one merely has to know the entropy.

The fluctuations, Eqs. (12), evidently give an in-
determinacy in the observed magnitude of the
mass-energy of a black hole. If its size isI (cm '), then the mean squared value of the ener-
gy fluctuations is -(8/BvM)' = (Compton energy)'
for such an object,

2

x 1+ — —g'f (f +1)+ ~ ~ ~

16m M

Here x =BmMu is the dimensionless "'Boltzmann
exponent. "

It is appropriate to remind oneself of the logical
status of the accessible-state formulation of the
energy and the fluctuation-spectral properties of
radiation emitted from a black hole. Is the premise
of the existence of quantum states accessible to a
black hole necessary for the understanding of these
properties'? The answer is no only if one does not
care to identify the underlying idea(s) responsible
for the energy spectrum and the fluctuation spec-
trum associated with a black hole.

Presently there is at least one direct benefit
from the accessible-state formulation of the statis-
tical many-level structure of. a black hole.' As a
black hole radiates away its mass energy, and
thereby approaches a microscopic black hole (Af

-Lr), its finite size and„hence, its quantum
structure plays an increasingly important role in
its evolution. This role manifest itself, as is evi-
dent from Eqs. (12), in a. fluctuation spectrum
which is characterized by a mean squared deviation
which is different from that associated with radia-
tion coming from a body with an "infinite"' heat
capacity. If a black hole could be isolated suffici-
ently from other noise-producing sources then
there would exist the possibility of actually observ-
ing the difference and thus verifying the basic quan-
tum nature of a black hole.
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