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Capture of particles from plunge orbits by a black hole
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Photon and "parabolic" particle orbits around a Kerr-Newman black hole are considered, both for uncharged
particles moving along geodesics and for charged particles under the influence of the Lorentz force (neglecting
radiative processes). Investigation of the radial equation of motion gives conditions under which a photon or
particle is captured from a "plunge" orbit when incident from a large distance; the cross sections and accreted
angular momenta are calculated for various fluxes of particles incident on the black hole. For example, the
cross section of an extreme Kerr (a = 1) black hole to an isotropic Aux of particles is 0.90 of that for a
Schwarzschild hole, and the accreted angular momentum per unit mass of swallowed flux is —0.828 leading
to rapid spin-down of the hole. The periastra of "escape" orbits are considered, and also the minimum

periastron corresponding to the unstable spherical orbit that divides plunge and escape orbits. The evolution of
the spin and charge of a black hole accreting particles and photons is discussed, including that of primordial
black holes. It is shown that such black holes may be of the Schwarzschild type having spun-down due to
consumption of radiation and particles at early times and subsequent neutralization in an ionized intergalactic
medium. The statistics of proton and electron capture by the smallest surviving primordial black holes,
M = 10' g, suggests that they are most likely to be found possessing a single quantum of positive charge.

I. INTRODUCTION

The existence of massive black holes (M= 10'~)
in the nuclei of galaxies has been postulated, ' and
the possibility that such a black hole may grow by
tidally disrupting the stellar population of the nu-
cleus has been considered. ' Relativistic effects
are important for a black hole of this size be-
cause the Roche limit for tidal disruption of a
star is of the order of the size of the event hori-
zon, ' and also because a significant contribution
to the growth may be made by the capture of stars
in plunge orbits. v

The velocity dispersion of the stellar population,
0„«c, and so the orbits of stars encountering the
hole are, to a very good approximation, "para-
bolic" with energy at infinity E = p, (rest mass en-
ergy). ' (In this case the small velocity at infinity
combined with the impact parameter serves to de-
t'ine the angular momentum of the orbit. ) This
provides the motivation for a study of parabolic
orbits in a Kerr metric, in particular the cross
section for plunge orbits and the periastron' of
escape orbits. Previous work has concentrated
on bound orbits' and orbits in the equatorial
plane. ""

Photon orbits are also considered"' " and again
the cross sections and accreted angular momenta
for various types of flux are calculated, although
sufficient density of radiation to affect the evolu-
tion of a black hole is only likely to have occurred
in a "big bang" and to have affected primordial
black holes.

The work is extended to include the possibility

of charged black holes although their existence
is, at the moment, questionable. It is, perhaps,
unlikely that sufficient charge may exist on a
black hole to perturb the metric [Q sM, i.e. ,

Q ~ 1.71 x 10"(M/Mo) coulomb], but more plausible
is the fact that sufficient charge may exist on a
black hole (from an electrodynamic process in an

accretion disk, perhaps) for the I.orentz force on

protons or electrons to be comparable to the
gravitational force [eQ/IjM= 1, i.e. , for electrons
with e/ p = 2.04 x 10", Q =4.90 x 10 '2M or
Q=8.38 x10 '(M/Mo) coulomb]. The vacuum
polarization considerations" show that rapid dis-
charge occurs if Q ~M2p. '/e. Thus for a black
hole with Q &M to survive, M~ 10"g= 5 x 10'M is
required, and for a black hole with eQ/yM=1 to
survive requires M~5 x 10"g. The neutraliza-
tion of charged primordial black holes in the in-
tergalactic medium is discussed.

Section II introduces the notation and equations
of motion, Sec. III discusses the radial motion
and the question of escape versus plunge, and
Sec. IV considers the evolution of the spin and
charge of black holes under certain conditions.

II. NOTATION AND EQUATIONS OF MOTION

Units with c =G =1 are used, the mass of the
black hole I= I, for particles the rest mass
p, =l (thus the energy, angular momentum, etc.
ar e on a "per unit mass" basis), and for photons
LU,

= 0.
For a black hole of spin a and charge Q the

metric in Boyer-I. indquist coordinates is
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ds' =-—
z (dt —asin'8dp)'

P
2+, [(r'+a')dp ad-t J'+—dr'+ pad8',

(2.1)

where p'=r'+a'cos'8 and 6 =r' 2r-+a' +Qz.
The event horizon is located at

r, =1+(1-a'—Q')' ' with Q'+a' &1. The vector
potential of the electromagnetic field is

r' =—[2er'+ 2r'(1+A) —I.'r']'/'dr
A' (2.6)

ratio of the Newtonian gravitational attraction
and the Coulomb electrostatic attraction, and
A = —1 represents the case of "balanced forces"
when the resultant motion is due to relativistic
departures from the Newtonian description.

The Newtonian radial equation of motion (for
particles) around a point mass is

A= ——,(dt —a sin'8dg).
p

(2.2)
e =-,'(E' —1)

The conserved quantities in the motion of a par-
ticle or photon are

= (pe + eA. e),

Q =pe + cos 8 [a (lz —E ) + Lg /s 111 8]

01

Ã = 0 + (I., —aE)' ~0.

Other quantities are

I. =total angular momentum

—(Pa + L 2/sine 8)1/z

b, = azimuthal impact parameter

=I„/E (photons only),

=polar impact parameter

=pe/'E (photons only),

b =total impact parameter

=L/E (photons only).

The quantities b„be, & are defined for photons
only; it is convenient because the orbit of a pho-
ton does not depend on its energy E but on its im-
pact par ameter.

The radial equation of motion is' ' "
pa gal (2.2)

P =E(r'+a') —I,,a +Ar,

R =P' b[p'r' +-(L, —aE)'+ CJ.

(2.4),

(2.5)

The sign of the root may be taken to be positive
or negative depending on the portion of the orbit
in question. The quantity A =- eQ in (2.4) is the

p, =rest mass (p, =1 for particles, p.=0 for photons),

e = charge per unit mass (e = 0 for photons),

E =. energy at infinity

= —(p, +em, ),

I., = azimuthal angular momentum

=kinetic energy at infinity. (2.7)

Electromagnetic and gravitational radiation pro-
cesses are ignored, further justification being
given in Sec. III. The latter process is negligible
in considering capture of stars by a black hole
in a galactic nucleus. '

III. RADIALMOTION: ESCAPE AND PLUNGEORBITS

(a) T/ze radial equation of motion dePends on 8
onLy in the factor p' and is decoupled from Q and
t. Thus the behavior of R(r) determines the type
of orbit and the question of escape versus plunge
for given E, I,„and g. Since R(r) is a quartic
polynomial in x and motion is only possible when
R(r) ~ 0, analysis of the position of its roots is a
powerful method of investigation [ see (14)].
Qualitatively R(r) must behave as follows:

(i) R(r) may have no roots in r ~ r, in which case
the orbit is "plunge. "

(ii) lt may have 2 roots in r ~r+ when we have
an escape orbit.

(iii) There may be a double root .R(r } =R'(r ) =0
for r ~r [with R" (r ) &0] in which case the orbit
is an unstable spherical orbit dividing the cases
of escape and plunge (an incident particle with
"critical" angular momentum will tend to this
orbit'}.

(iv) The above cases give at most 2 roots of
R (r ) = 0 inr & r+ . If r+ = 1 (a' + Q' = 1), R (r ) may have a
double root at z =r+ and an additional root in
r &r, (3 roots in r~r, ) This is as. sociated with
the appearance of straight-line segments in the
shape of the cross sections (see Fig. 2).

In all cases an unstable spherical orbit divides
the plunge and escape orbits (see Ref, 11}. A
particle with nearly the critical angular momen-
tum will tend to linger near r =~ in its orbit,
winding many times around the black hole (see
Ref. 9).

The two techniques that have been developed to
analyze escape versus plunge are the following:

(i) a root search inr ~r, for R(r),' 'e and
(ii) solution of R(r ~) =R'(r~) = 0 to determine the
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FIG. 1. Behavior of the function R(r) governing the radial motion, with the various types of orbit indicated: P for
plunge orbit, E for an escape orbit, and T for a trapped orbit. (a) Coordinate axes in angular momentum space, with
a typical plunge region depicted. I =pe is the angular momentum along the spin axis of the black hole, L„=L /sineo
is the component perpendicular to the spin axis (positive for prograde orbits) and L =(L„+L~ ) is the total angular
momentum. For photons the corresponding quantities are the impact parameters b =be, b„=b~/sinoo, and b =(b„
+b ) . (b) Behavior of R(x) for photon orbits. Curves (i), (ii), and (iii) show the transition from plunge orbit to
escape orbit, the marginal case being when the turning point touches the & axis at r = r+, giving an unstable spherical
orbit. Curve (iv) is an example of the "exceptional case" whichhas 3roots in x r+ (withadoublerootat ~=-~,). (c)
Behavior of R(x) for particle orbits, E =1, A& —1. Curves are identifiedas forphotons. (d) Behavior of R(r) for slightly
hyperbolic particle orbits; E =1+6, A & —1. Both Newtonian (N) and relativistic (R) cases are plotted.

critical angular momentum dividing escape and
plunge, other parameters being constant. "

Here we generalize previous work to include the
case of charged particles in a Kerr-Newman
metric as well as to perform computations for the
uncharged particle case relevant to massive black
holes in globular clusters or galactic nuclei. For
completeness black holes with Q =M are considered
although the astrophysical applications are not
evident at this time.

The orbits are specified by E, L„Q, p, , and
A, and in addition the "incident" values (i.e., as
t--~) of the polar angle 8, and polar angular
momentum Pe will also be used. The results are
depicted in angular momentum space as in Fig.

1(a), with L„=L,/ ins8and L„=Pe, and showing a
"plunge" region which is always symmetrical
about the L„axis since only L,'=pe ' enters the
problem via ~. The important consideration of
the average angular momentum accreted through
a cross section of this shape is obtained for a
uniform flux by calculating the centroid of the re-
gion. These diagrams have been used previously
in Refs. 11 and 12.

We shall consider orbits with E =1 ("parabolic" ).
(b) Photons The behavior . of R(x) is as des-

cribed in Fig. 1(b), a sample of cross sections is
shown in Fig. 2(a), and the numerical values of the
cross sections and accreted angular momenta are
shown in Figs. 3 and 4, having been computed with



3284 PETER J. YOUNG

(a)

I I I
I I I I I I

I 2 3

a=0
a ",2

5 6 7
b= L/E

I el I I
I e e

l I
~ v 1

a=4
a=O

I I

4
I I I

5 6
L

2+ a2= l

ea = ~/2
A=0

Q2+ a2

80 = ~/2
A =0

I I
I I g

a=0

3 l4 5 6 7
L

I i i I

3 4 5 6 7
L

Q =0
e, =~/2

A =0

a = I

Q =0
80 = ~/2
p, = I

FIG. 2. Region in angular momentum space occupied by plunge orbits for particles in parabolic orbits, or photons,
incident upon a black hole from infinity. (a) Photons (p =0, A=O) equatorially incident (80 = ~~) open an extreme Kerr-
Newman black hole (a + Q =1). b =L/E is the impact parameter. (b) Uncharged particles (p, =1, A=O) incident
equatorially (80 = ~x) upon a Kerr-Newman black hole (a + Q =1). L is the angular momentum per unit mass. (c) Un-
charged particles equatorially incident upon a Kerr hole (Q =0). (d) Charged particles incident equatorially upon a Kerr
hole. This represents the limit Q 0; )e~ ~ with A=-eQ fixed.

r~ = 2 [1+cos [-', cos '(+a)]j
(upper sign prograde, lower sign retrograde or-

(3.l)

technique (i). Some special cases are the follow-
ing:

(i) Q=O, 8, = —,'s, bs=O (orbits in the equatorial
plane of the Kerr metric'). Then

bits). The critical impact parameter is given by

r ' ' =+(6, ,„,—a) (3.2)

and the periastron is found from

5, ={2a+ [4a' + (r, —2)(r, '+a'r, + 2a')] ' s)/(2- r, ).

(3.3)
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FIG. 3. Cross section 0. of a Kerr-Newman black hole

to photons incident from infinity, referred to 0 =27m
(Schwarzschild hole). (a) x-axis units are hole spin a,
Q =0 Op=z7l (b) j.s in units of Op (0—Op —zx)& Q =0&
a =1. (c) is in units of a, Q =0; isotropic photon flux,
uniform from all Op. (d) is in units of Q, a =0. (e) is
in units of a, a +Q =1, Op=27t.

pIG. 5. Cross section a of a Kerr-'Newman black hole
to uncharged particles in parabolic orbits incident from
infinity referred to 0 =167t (Schwarzschild hole). (a)
Units of x axis are a, Q=0, Op=2m. (b) is in units of Op

(0~ Op~ 2m), Q =0, a =1. (c) is in units of a, Q=0;
isotropic particle flux. (d) is in units of Q, a =0. (e)
is in u its of a, Q'+a'=1, O, =-,'7r.

205

The reference cross section is that of the Schwarz-
schild hole,

-2.288
s h= 27m (3.4)

—2.0
(ii) a = 0, then only b need by specified since the

metric is spherically symmetric:

—l.5 - I.525

„=-.'I3 (9-8e')"],
b„;g = I2r'/(r —1)] 't',

r 2/(r 2 2r + q2)l/2

(3.5)

(3.6)

—I.O

0 .2 4 ~ 6 ~8 I.O

FIG. 4. Average angular momentum accreted by a
Kerr-Newman black hole capturing photons incident from
infinity. (a) Units of x axis are hole spin a, Q =0,
Op

= 27t. (b) is in units of a, Q =0; isotropic photon flux.
(c) is in units of Op (0 —8p~ 27(); Q =0, a =1. (d) is in

units of a; a + Q 1& Op z7l.

Qualitatively the effects of charge and spin on the
hole are the following:

(i) They decrease the cross section, charge
having a greater effect reducing o to 16m when

@=M.
(ii) The polar cross section of a spinning hole

(a =1) is less than the equatorial cross section by
a small (3%) amount.

(iii) The average accreted angular momentum
for a uniform flux of captured particles is always
negative and reaches (L) = -2.288 for equatorial
incidence onto an extreme Kerr black hole.

(iv) Spin a =1 (Q = 0) will allow a particle to graze
the event horizon at x, =1 and subsequently escape;
but Q =1 (a =0) will only permit r, ~2 with escape.

(c) Particles For A& —1(i.e., net attraction)
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FIG. 6. Cross sections 0 for particles of charge A

& —1 referred to the Schwarzschild case, 0 =167r. (a) Q
=1, a =0. (b) Q=a =2, Op=2m. (c) Q =0, a =1, the
limit Q 0, ~e( ~, with A= —eq fixed. (d) a =0, charge
Q =A. Thus the dashed curve is a particle of constant
charge in the metric of varying Q.

Fig. 1(c) shows typical radial functions R(r) and
plunge regions are shown in Fig. 2(b)-2(d).
Figures 5, 6, and 7 graph the numerical results.
Again some special cases:

(i} Q = 0, 8, =-,'w, g =0 (see Ref. 7):

r„=2 +a+2(2 wa)'~a (3.8a)

(3.8b)

The reference (Schwarzschild) cross section is
now v&,h =16 and the periastron is

r, =,'- L '(1+[1-16(L, —a)'/L ']' 'J

(ii) a=0, A =0:

q r I/2(2 r Il 2)112

= (r &~2 1)

L' =r,'(2r, —q')/(r, ' —2r, +q')

(3.8c)k

(3.9)

(3.10)

(3.11)

(iii) Q=O, a=0, A& —1 (the limit Q-O, ~e[-~,
A = —eQ fixed):

r =2+[4+A'/(1+A)]'~',

L~a =r (1+A)'

(3.12)

(3.13)

and as A-~, r -A' ', I- ., -A,
L' =r, ' [2r, (1 + A) —(Q' —A')]/(r, ' —2r, + Q').

(3.14)

.2 .4 .6 .8 I.O

FIG. 7. Average angular momentum I accreted from
capture of uncharged particles in parabolic orbits. (a)
Units of x axis are a Q =0 Op

= per, (b) is in units of a,
Q =0; isotropic particle Qux. (c) is in units of Op (0 —Op

~~7t.), Q=0, a =1. (d) is inunits of a, Q +a =1, Op=2&.

photo ns:

(i} The minimum cross section is again found
for Q = 1, a = 0 (when A =0), and is 0 = x (3.330)2.

(ii) The polar cross section of a spinning hole
(a = 1) is now some 4/p larger than the equatorial
cross section (when A = 0).

(iii) When A =0, ( L) = —1.242 is maximum for
equatorial incidence onto an extreme Kerr hole
(a =1) but may be increased if charged particles
are accreted and Q c 0.

(iv) The relativistic effects always decrease r,
below the Newtonian value r, = L'/2(1+A); the
greatest effect being for prograde orbits in the
equatorial plane of a Kerr hole. Since tidal forces
vary as r'/p' this increases greatly the cross
section of a spinning black hole to tidal disruption
(for detailed calculations involving stars in para-
bolic orbits see Ref. 5).

For charged particles with A& -1 [see Fig. 1(d)
for the behavior of R(r)] we note that E =1+5& 1
for motion to be possible. Then we see a central
"pit in the potential, " absent in the Newtonian case,
that can trap a particle near r =r, and haul it into
the hole despite the savage repulsion. It would,
however, take a contrived situation to set this up
since the energy of a stationary particle near a
black hole is

& = —9's+eA, )

The qualitative effects are similar to those for =Ar/p' . (3.15)



CAPTURE OF PARTICLES FROM PLUNGE ORBITS BY A

When A» 1, noting that r -A't2, I., -A (as
A-~) we find

R(r) -2r'A+r'(A' —L') +2r(L' —aAL, ), (3.16)

2e' 2v(1+A)2t2
~lad 3 ~ 5/p

and we require that

2e' 2~(1+A)"
L'zad 3 1/2Q

(3.24)

16A(L'-aAL„) "'
4A (I,'- A')

E„d« tJ.E, I rad « p, L = ts (nM)v . (3.25)

I „; -A+ 2A' ' (1-a I.,/I, )' ',

r„-A' 2(1 aL,/-L)' ' .

(3.17)

(3.18)

(3.19)

Thus we obtain,

—»A(A+1) t - 7-, —»A(A+1)Bm Q , /2 4m

8 3Q e 3~3/P. ~

(3.26)

and upon setting a = 4 for a Schwarzschild black
hole, we require that

I,.=A+2, I 2(1+A). (3.20)

(d) Particles. With A= —1 in a "balanced force"
situation we find a curious set of neutrally stable
circular orbits when R(r) = 0. This—requires that
all the coefficients of the quartic R(r) should
vanish, which happens if and only if

I,=L=a, Q=O, 8=2m, A=-1, a'+@2=1.

(3.21)

Then the particle executes circular orbits in the
equatorial plane of an extreme Kerr-Newman hole
with the same angular momentum per unit mass as
the black hole. If a =0 (Q =1), the particle may be
stationary in neutral equilibrium (as in the New-
tonian case), but for ac 0 the frame-dragging of
the hole demands that the particle should orbit.
Small perturbations cause a particle to coast away
from equilibrium, eventually succumbing to an
instability. As regards capture of "balanced"
particles we note that

(1 q2)1/2 (3.22)

is independent of a and 0,. The dividing case can
now be a neutrally stable orbit instead of an un-
stable circular orbit.

(e) ¹gleot of radiation damping. The effects of
radiation damping are to radiate off energy and
angular momentum according to

dE/dt = ——,—e' v',
I

dI /dt= —2e'vxv .
(3.23a)

(S.23b)

In performing a simple Newtonian calculation,
let us consider the effects of radiation in a cir-
cular orbit at distance o.M from the black hole, to'
simulate one "wind" of a near-plunge orbit around
the hole. The energy and angular momentum
radiated in one revolution are

Despite the strong attraction, we find as L,/L-1
and a-1 the particle may swoop down to graze the
horizon at x,=1 and then escape, when incident
upon a "straight-line segment" in the angular mo-
mentum space located at

—, »A(A+1)'" . (3.27)

For accretion of elementary particles by a mas-
sive black hole with Q «M it is clear that (3.27)
is easily satisfied because the length scales in-
volved are too large to permit savage enough ac-
celerations to cause radiation damping. It is for
small black holes near the Hawking limit (10"' g)
with Q = e that we should concern ourselves with
the possible breakdown of (3.27). Then for pro-
tons ~A2~=2X10 ', which is quite safe, but for
electrons

~
A, ~

= 3.7, which may cause trouble.
We shall estimate the change in the critical

angular momentum by taking it to be such that
L„,d--- p, L, thenwe require that

and if L, becomes pL„;„-,'-e =- p' [I+(1—p')' '] (in

the Schwarzschild case). As an example of the
small black hole with ~A, ~

=-3.7, —,'o. =4, P=1.5
which changes the capture cross section and thus
(4.15) only slightly.

We shall not consider here more eomplieated
processes whereby radiation of energy results in
the particle being trapped in orbit around the
black hole.

IV. EVOLUTION OF A BLACK HOLE

(a) If a biaoh hole is bathed in mass-energy flux
I"„ then the evolution in tAne dt is descxSed by

dm=Fdt(oM2),

dM=(1-E)dm,

d(aM') = (LM) dm,

d(QM) = edm=-(A/Q) dm,

(4.1)

where we have reintroduced the black-hole mass
M explicitly; a, Q are as before„' oM2 is the
cross section of the black hole; LM is the average
accreted angular momentum; E is the energy
radiated during the plunge; A =-eQ is the charge
parameter of the captured particles„and dm is
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the captured mass-energy. Then

d M/dt = (1-E)F(oM'),

da/d (lnM) = —2a+L/(1-E),
d Q/d(lnM) = —Q+ e/(1- E)

If a charged black hole accretes highly charged
particles (~e ~»1, as for protons and electrons),
then the evolution in mass is negligible, and is
approximately

M dq/dt = (eI ) (-oM')

=- —(AF/q) (oM') . (4.3)

The orbits are not appreciably affected by
quadrupole gravitational radiation if M/u, » 1, and
similarly are unperturbed by dipole electromag-
netic radiation if Q/e»A(1+A)' ', in which cases
+~ 0

tb) The spin-dou:n of a Kerr hole due to accretion
of an isotroPic flux of uncharged Particles or Pho
tons may be calculated by integration of the second
equation of (4.2) with E = 0 and L taken from Eigs.
7 and 4, resPectiz~ely. The resulting evolution
with mass proceeds as

ao:M "t' (I.= —4a/3) (photons),
(4.4)

a ~M 't' (I = —2a/3) (particles)

and the hole may be effectively spun-down from
a=1 as the mass increases by a factor of 2,
This process may include the following cases:

(i) Black holes in galactic nuclei, where
for M~ 107MO the consumption of stars in
plunge orbits is appreciable. This has been dis-
cussed with the added effect of an accretion disk'
opposing the spin-down.

(ii) Primordial black holes The grow.th
of such holes by accretion after their for-
mation may be discussed as in Ref. 17. If a hole of
mass M, = qt, is formed at time t, (where @&1 such
that the hole if formed within the particle horizon),
then at time t

the intergalactic medium. Taking the medium as
a fully ionized plasma with n, =n~=10 ' cm ' and
T = 10' 'K for the present epoch (n, T higher in the
past), then the mean free paths and rms velo-
cities of protons and electrons are

Xp = 2 x10 cm, ZUp =2 &10 cm sec

A, = 2 x 102» cm m = 7 x 107 cm sec '. (4.6)

Z =ov„, gs,h
=16M .

From (3.18),

Z =m'A'M v„'

(4.8)

(4.9)

Averaging over a Maxwell distribution of rms
(space} velocity w, we find

»/2

(Zv) =@A M — w ', (4.10)

and the accreted flux is

F =A M 2(6~2)'"q w (4.11)

where q is the charge density of the medium from
particles of the type to be accreted From (.4.3),

dQ
M—=-I"

dt

The radius of influence of the black hole, r„,
may be estimated by

M/rI, +eQ/rl, = u,w'-or r„/M= (A+1)/w'. (4.7)

Thus even for M= 10'Mo (= 1.5 x10" cm) we may
have [A~[=10' or (A, ~=10' for r„«A~, A, Under
these conditions we may treat the accretion of
electrons or protons as a noninteracting particle
process. The time required to pull a particle
into the hole, the orbit travel time, will be ne-
glected. The mean free paths of the particles
may be significantly reduced when an intergalactic
magnetic field exists and is stronger than the
field of the black hole at r =r„.

(i) A»1. Significant accretion occurs only for
particles of opposite charge to that of the hole.
For particles with velocity at infinity v„, the
cross section for plunge orbits is, "

t t1+—~-1 -M, (1-q) (t- ).
t» M

(4.5)

= —A'M'(6w} t'qw

= —e'Q'M'(6~)'t'qw ' . (4.12)

If the hole manages to grow by a factor of 2 (i.e. ,
q& —,'}, most of the growth occurring at early
times, and the captured flux is isotropic, then
it will be spun down.

For t, &1 sec (M, &2x10'M) the universe is
radiation-dominated and photon flux causes the
spm damping; for t »

&1 sec paar production xs

important and it is a photon-particle fluid that is
ac creted.

(c) The neutralization of a charged black hole in

This integrates to give a "half-life" for the charge
of

t
&

-' = 2(6~)'" q e'(wMq) (4.13)

t,&,(p) = (1.8x10')/(gM) sec,

t, (e)t=(1.8x10 ')/(QM) sec . (4 14)

which depends only on the total charge (MQ) on the
black hole. For proton and electron neutraliza-
tion, with (QM) in coulombs,
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t (p)/t (8) = 0.17 (4.15)

for a black hole accreting the particle of opposite
sign.

%hen in a neutral state, the times required to
accrete a single proton or electron are

t*(p)lt*(e) =0.»9, t*(p) =t(p) (4.16)

With the above values for the density of the inter-

The difference is due to the greater charge per
unit mass, e, of an electron, slightly countered
by its larger rms velocity.

It is clear that significant charges will decay
rapidly and that charges of only a few quanta may
survive.

(ii) For a small black hole, M=-10"g, QM = e
=1.6~10 "coulombs, which avoids both the
Hawking radiation and the vacuum polarization
limits, ~A, ~=3.7, (A~( = 2x10 ' so that (4.14) are
not applicable. Ignoring effects of quantum gravity
and electromagnetic radiation, use of the cross
sections for the above A values gives

galactic medium,

t (p) =5.7x10" sec.

This time scale is likely to have been much
shorter in the past when the intergalactic medium
was much denser, and in a flat universe the total
flux accreted by a fixed cross section in the life-
time of that universe is enhanced by a factor of 3.
Even allowing for errors in the adopted values of
the density and temperature of the intergalactic
medium, it is likely that t (p) «H, ' =5 x10"sec.
Then the above time scales suggest that the sta-
tistical fluctuations of the accreted protons and
electrons by small black holes would result in the
majority being positively charged by a single ex-
cess proton.
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