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Density pertnrbations in cosmological models
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An explicitly coordinate-independent method, based on previous work by Hawking, is used to study linearized

density perturbations of k = 0 Friedmann cosmological models.

I. INTRODUCTION

Linear perturbations of spatially homogeneous
and isotropic univex ses have been investigated
since the pioneering work of Lifshitz, ' who studied
the growth law of density perturbations in relation
to the problem of galaxy formation. More recent
applications include the Rnisotropy of the O'K back-
ground radiation (Sachs and Wolfe, ' Silk, ' Peebles
and Yu, ' Sunyaev and Zeldovich'), inhomogeneity in

primordial element production (Silk and Shapiro, 6

Ipavich, ' Gisler, Harrison, and Bees'), and the
possibility of primordial black-hole formation
(Carr and Hawking, ' Carr, "Meszaros").

Density perturbations in cosmological models
have been studied by Bonnor, "Peebles, "Rnd

Savedoff and Vila' in Newtonian theory, and by
Irvine" and Peebles' in the Newtonian limit of
general relativity. Relativistic treatments include
those of Arons and Silk, '7 Field and Shepley, '8

Hawking, "Lifshitz, ' Lifshitz and Khalatnikov, '0

Nariai, "Nariai et al. ,
2' Peebles and j('. u, 4 Sachs

and Wolfe, Sakai, ' Silk, and Weinberg, with
review articles by Harrison, "Bees and Sciama, "
and Bees.'"

However, a difficulty arises in the interpretation
of density perturbation results. %'hile the density

p is, of course, a scalar invariant under coordinate
transformations, the density perturbation 5p is a
gauge- dependent qQRntlty ~ l.e. ~ 5p 18 tlat 1nvarlant
under infinitesimal coordinate transformations.
Since previous authors have used a variety of coor-
dinate conditions, they have obtained differing
results for 5p. For example, different gauge
choices can give different exponents in the power-
law growth (or decay) typical for long-wavelength
density perturbations; for details, see Sakai."

In fact, for arbitrary perturbations of an expand-
ing Friedmann universe, there a.lways exists an
appropriate choice of the time coordinate such that
one can set 5P=0 identically in that coordina. te
system. Conversely, in an unperturbed Friedmann
background model, apparent "density inhomogenei-
ties" can be generated by the choice of a time co-
ordinate other than comoving proper time, since
the ( = constant hypex surfaces for an arbitrary time
coox'dlnRte t need not coincide w1tll the honlogeneous

p= constant hypersurfaces. In general, with only
local information on the density p at coordinate
time t Rn obselvex' cannot dlstlngulsll 8 pIvoH
between physically significant density fluctuations
and nonphysical coordinate effects.

The primary purpose of this paper is to show
that the evolution of density perturbations of k =0
Friedmann universes can be calculated by an ex-
plicitly coordinate-independent technique, which
follows a prescription originally devised by Hawk-
ing'9 and does not require the introduction of
metric tensor perturbations. This method, based
on the continuity equation and the Raychaudhuri
equation (Sec. II), gives the evolution of the per-
turbations as seen by observers comoving with the
fluid Rnd as measured with respect to v', the proper
time along the fluid world lines. The density per-
turbation is defined relative to comoving propex
time, which has physical significance, rather than
via Rn arbitrary time coordinate. Therefore,
apa, rt from one remaining degree of freedom to be
discussed in Sec. IV, the gauge-dependent ax'-

bitx Rriness of 5p is eliminated.
Although the basic ideas for the coordinate-inde-

pendent methods are taken from the work of Hawk-

ing, '" the present results differ from those of
Hawking, as an error in one of his linearized evo-
lution equations is corrected here; see Appendix
B. A seconda. ry purpose of this paper is to recon-
cile coordinate-independent techniques and results
with those of other previous authors. In particular,
Field Rnd Shepley, "Ellis, '9 and Bardeen' have
independently noted certain conflicts with Hawk-
ing's coordinate-independent analysis; for the
present results (Sec. IV) derived from the correct-
ed equations, these disagreements no longer exist.

Although Hawking's analysis is also applicable
for the 4 = +1 background models, the present work
is xestricted for simplicity to perturbations of
P = 0 Friedmann universes.

II. BAMC EQUATMNS

As given by Hawking'9 and Ellis, 29 the continuity
equation and the Raychaudhuri equation for a per-
fect fluid ax'e
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t}= 2((o' —o') ——,
' 8' ——,'(p+ 3p) + u', , (2)

III. I.INEARIZED EQUATIONS

Define the density contrast 5p/p by

g-=n, (~) (&
~ ——~,

P

where p, (r) is that function of comoving proper
time 7 which corresponds to the density observed
in the 0 = 0 background universe at the proper
time 7 after the big bang. A related small quantity
S can be defined by

p=- ge'(I+S) .
Roughly speaking, S can be thought of in linearized
theory as a "spatial curvature perturbation. " This
identification becomes precise for irrotational
models (~ =0, Ellis" ), where the Ricci scalar
curvatux e of the hypersurfaces orthogonal to the
four-velocity u' is ' ft = 2(p ——,

' 8'+o'), implying
to linear order that S= ' R/2P.

Hereafter, the dynamical equations wB1 be lin-
earized in ru, a, S, 5p/p, and their derivatives.
Combining Eqs. (I), (2), and (5) gives the lineariz-
ed result

eS = (p+ 3P)S - 2u .
If the spatial gradient of the density is defined

as X'-=h' p.
„

then the equation of state and Eq.
(3}, when hnearized, imply

',.= ''d.X, (7)
P+P

where div X=-X', Equation (8) can therefore be
reexpressed as

where p is the density, p is the pressure, the ex-
pansion rate 8=m'. , is the divergence of the four-
velocity g', and & and o are the rotation and shear
scalars. Covax iant differentiation along a Quid
wox'ld 11ne ls denoted by an overdotq l.e. y

p = Dp/D—r =—p.,u'. The four-acceleration caused by
pl essure g1'adlents 18

Pg&*.~a c Q 1~5
P+P

where h'~ =g'~+N'g~ is the projection tensor ortho-
gonal to the four-velocity u' (assuming normaliza-
tion u'u, =-l). Units are chosen such that BvG = c
—j.

Assuming an equation of state of the form p
=P(p}, the speed of sound is given by (v,)' =dp/dp.

In the unperturbed 0=0 Friedmann model with
expansion factor ft(7')y p = 3(ft/R) and e =3(ft/R),
while v =o'=u'=0.

6S = (p+ 3p)S+ 2 ' divX .(v, ) (8)
p+P

The evolution equation for div X is obtained by
taking the first and second spatial gradients of
Eq. (I); the linearized result, derived in Appendix
A, is

n3
e(divX) = [-5P - —,'(p+P)](divX} ~p(p+ p)

where m =constant, and a plane-wave expansion
of S has been made.

Equations (8) and (9) are sufficient to determine
the evolution of S, since divX can be eliminated.
The quantity 5P/p can then be related to S by the
continuity equation (I) in a manner that depends on
the equation of state. Fox example, if p=np, as in
the three examples given below, then

where the relations R(T) T and Po(&)
=47 '(I+ o) '/3 have been used for the k =0»ied-
mann background. S must be integrated once to ob-
tain

4

where C: satisfies C=O, and where the integral is
taken along a fluid world line.

Pf. EXAMPI.FR

In the background model, R ~ r '~' and p, (r)
=4m '/3. Equation (8) becomes

TS- 3S=O,

wi. th solutions

S~r'~' and P ~{~'~' 7 ')
p

where the curly brackets axe taken here to mean
that the general solution is a lineax combination of
the modes within the brackets.

B. p=pj3

In the background model, ft ~ r'~' and p, (r)
=3m '/4. Equations (8} and (9) combine to give

OO~'S- -', 7S+(-,'+-,'~'7)S=O,

where K = constant. The solutions are

x 81ng
Sac

x cosx
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2 2- 21-—2 cost ——sinx+—2
p

g2 x
2 . 21-—, sins+-eosxx' x

where x=- xWr In. the low-frequency limit (x «1)
the solution becomes

—-{~ ' 7 7"'}5p

The high-frequency limit (x» 1) gives

5p cos gW7
p

sing Wv

and in this limit the oseiQatory modes x'epresent
acoustic waves with constant amplitude and with
acoustic frequency red-shifting as R '.

C. p=p

In the background model, B~v'~' and po(7)
=7 '/3. Equations (8) and (9) combine to give

~'S &~S-+ (la+,'-p'~'")S = 0,

where P = constant. The solutions are Bessel func-
tions

where y =P7' '. The expression obtained for 5p/p
by integrating has simple limiting forms. The
low-frequency limit (y«1) gives

5—P-{l. ' v" v"Inr}.
y

The high-frequency limit (y»1) gives

of the one remaining degree of freedom left in the
definition of the density perturbation in terms of
eomoving proper time.

If v represents comoving proper time, then so
does v* defined by v- v~ = v+Ov, where Ov is a
small quantity satisfying Ov'. ,u' =0. The freedom
inherent in Ov corresponds to each comoving ob~
servex" choosing the event along his world line at
which he initializes his local clock, with later
evolution determined by T.,u' = v*.,u' =1. For the
equation of state p = |rp, definitions (4) and (5)
imply to linear order that

+
n p p

while 9 remains unchanged. Any v
' mode, but no

othex mode, can be eliminated from the linear
density perturbation by appropriate ehoiee of Ov.

Although the physical significance of the decaying
mode is therefore not clear from the work given
so fax, this problem in interpretation ean be re-
solved by considering other quantities in addition
to 6p/p and S. Either by using coordinate-invari-
ant techniques or by adapting the work of the previ-
ous authors cited in Sec. I, it can be shown that in
the p=0 case (but not in the p= p/3 and p= p cases)
the nonoscillatory decaying mode, for which
(&p/p)- r ', also appears in such gauge-invariant
quantities as the spatial gradient of the density
(X,), its divergence (divX), and the fluid shear
tensor (o,~), all of which are unaffected by the above
transformation involving Ov. In this sense the de-
caying mode is "real" for p=0 (i.e. , removable
from 5p/p, but not from other quantities, by re-
setting the origin of proper time), but it is "fictiti-
ous" (i.e., entirely removable) for the cases with
p= p/3 and P =p. This difference occurs because
the coupling between the various perturbed quanti-
ties can depend on the equation of state, as ean
be seen, for example, for 3 and divX in Eq. (8).

7'~' sin(p~'~')
p

7'i' cos(pl'i')

i.e., the acoustic wave modes oscillate with amp-
litude growing as 8, and with acoustic frequency
red-shifting as R '.

D. Discussion

Present in each of these three examples is a
nonoscillatory decaying mode for which (3p/p)

For this mode, and only this mode, the
quantity 8 vanishes identically, as can be seen
from Eq. (10). Furthermore, the interpretation of
the decaying mode is not straightforwaxd because

The author thanks R. K. Sachs, J. Silk, %. Q.
Unruh, B.J.T. Jones, and J. M. Bardeen for
comments and discussions. This work was sup-
ported by the National Science Foundation under
Grani No. GP-2925VX3 at the University of Cali.-
fornia, Berkeley, and under Grant No. MPS-72-
05056-A02 at Cornell University.

The purpose of this appendix is to derive the
linearized evolution equation for the quantity divX
=g'.„where &' —=g p. ~ is the spatial gradient of
the density. If Y' =-A'~0. , is defined as the spatial
gradient of the expansion rate, then taking the
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spatial gradient of Eq. (1) gives

X'=-~8X' (P+P)r', (A 1)

„~~~a„~~~eg~e cb e 5 e

where this equation, like the other numbered equa-
tions in this appendix, has been linearized. Taking
the divergence of Eq. (Al) yields

(divX) = -~~ 8(1ivX) —(P +P}(1ivt'), (A2)

where the only nontrivial step, involving an inter-
change in the order of differentiation, is

X' u =X' u~+X@" u

= (divX),

and where the curvature tensor term vanishes via

APPENDIX 8

The purpose of this appendix is to indicate how

the present work differs from that of Hawking. "
The difference lies in the treatment of the u'. ,
term (the four-acceleration germ) in the Raychaud-
huri equation. In those cases where the four-ac-
celeration of the fluid is important (a,s in the case
of acoustic waves, for example), Hawking's analy-
sis is not valid, as has been noted by ELLis" and

Barde en. so

Using the equation of state, definition (4), and the

identity [P0(v)]., = p,v.
„

the linearized form of Eq.
(7} can be written as

's P( g) h e hob P P [qsb ) ]P+P - P;s;c& P+P

n 8
dlvX = 3 8divF —x8 (A3)

assuming an expansion in plane waves, as in Hawk-

ing, " to set

where n' = constant.
Finally, combining Eqs. (A2) and (A3) gives the

result which is Eq. (9) in the text:

2$
8(dtvX) =[-5P —2(P+P}](«vX}-RP(P+P} 2 ~

R

(A4)

using the Einstein field equations, A„--,g,~B =7.',»
and the stress tensor for a perfect fluid, T„
=PRE&+ (P+P)sa nn

Taking the divergence of the spatial gradient of
definition (5) gives

(Bl)

Though this expansion is not explicitly required in

the calculations of Sec. III and Appendix A, the
treatment there is equivalent to keeping both of the
terms on the right-hand side of Eq. (Bl).

Hawking keeps the first term from the right-
hand side of Eq. (Bl), rewriting the factor in

brackets as [-(n'/ft')(5P/P)], after expansion in

plane waves. The second term does not appear in
Hawking's analysis; however, in general, this
second term does not vanish and should be retain-
ed. For those cases in which the fluid four-veloci-
ty u is orthogonal to the v'=constant hypersur-
faces, the second term does vanish immediately,
since in those cases v.„=-u„andthe relation
@"g~ = 0 is an identity. However, u~ and z.~ need
not be parallel in general; indeed, they cannot
be parallel in the presence of nonzero four-accel-
eration (since u, =fr , imme. diately implies both

0

((I = -1 and I,=u~.,u'=0).
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