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The calculations of the first paper of this series (for nonrotating black holes) are extended to the emission

rates of massless or nearly massless particles from a rotating hole and the consequent evolution of the hole.
The power emitted increases as a function of the angular momentum of the hole, for a given mass, by factors
of up to 13.35 for neutrinos, 107.5 for photons, and 26380 for gravitons. Angular momentum is emitted
several times faster than energy, so a rapidly rotating black hole spins down to a nearly nonrotating state
before most of its mass has been given up. The third law of black-hole mechanics is proved for small

perturbations of an uncharged hole, showing that it is impossible to spin up a hole to the extreme Kerr
configuration. If a hole is rotating fast enough, its area and entropy initially increase with time (at an infinite

rate for the extreme Kerr configuration) as heat flows into the hole from particle pairs created in the

ergosphere. As the rotation decreases, the thermal emission becomes dominant, drawing heat out of the hole
and decreasing its area. The lifetime of a black hole of a given mass varies with the initial rotation by a factor
of only 2.0 to 2.7 (depending upon which particle species are emitted). If a nonrotating primordial black hole

with initial mass 5 &&
10'" g would have just decayed away within the present age of the universe, a hole

created maximally rotating would have just died if its initial mass were about 7 X 10' g. Primordial black holes

created with larger masses would still exist today, but they would have a maximum rotation rate determined

uniquely by the present mass. If they are small enough today to be emitting many hadrons, they are predicted
to be very nearly nonrotating.

I. INTRODUCTION

Black holes, as Hawking and others have
shown, ' ' emit particles like thermal bodies. Paper
I' reported numerical calculations of the emission
rates from a nonrotating black hole. This paper
gives the rates for the known particles of zero or
negligible rest mass from a. rotating (Kerr) black
hole and shows how such a hole would evolve as it
emitted these particles. These results are of in-
terest in testing the validity of the simplifying as-
sumption that most black holes which emit signifi-
cantly today are not rotating (see, for example,
Refs. 7—9).

Paper I noted that although a small black hole
mill quickly give up its electric charge, "" it is
much less certain whether the rotation will also
become small. The main difference in the time
scales of the two processes can be seen in the fol-
lowing way (using henceforth the dimensionless
Planck units spelled out in paper I):

The parameters that determine the shape of a
black hole are

a„= J/M' and Q —= Q/M,

where J' is the angular momentum, Q is the
charge, and M is the mass (which sets the scale of
the size). These quantities have a domain limited
by the constraint

Only black holes which emit quanta of much small-

er energy than the hole mass mill be considered,
so that the adiabatic approximation used in the
quantum calculations of the emission' ' will be
valid. The quanta emitted have typical energies of
the order of the black-hole temperature or of M '
[with (10"g)

' =266 MeV in conventional units],
which we want much less than M, so we need

M»1 (Planck mass) =2.18 && 10 ' g.
Then roughly M' quanta are needed to carry away
the energy of the hole; i.e. , the entropy in the ra-
diation, which is roughly the number of quanta
when thermally distributed, is of the same order
as the initial entropy of the hole, which is one-
fourth the area" or roughly M'.

When a black hole is charged and/or rotating so
that Q„and/or a„are significantly different from
zero, and when it has temperature or electrostatic
potential high enough to permit emission of elec-
trons or positrons, it tends to emit most of its
quanta with the same sign of the charge and/or
angular momentum as the hole. A charged particle
carries off charge

I
+ql =e =0.0854, (4)

which is roughly of order unity, and a typical quan-
tum also carries off an angular momentum

(5)

of order unity. Since a~ and Q must have absolute
values not greater than unity, the number of
charged particles needed to neutralize the hole is

14 3260,
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Q/e, which is only of order M, whereas the num-
ber of particles needed to carry off the angular
momentum J is of order M', Thus the charge can
be emitted fairly quickly, but the loss of angular
momentum requires roughly the same number of
particles as the loss of mass. Therefore, in this
paper we will assume that the charge neutraliza-
tion has already occurred but that the angular mo-
mentum may still be significant.

Though one expected a black hole to give up its
angular momentum in the same order of time as it
gives up its mass, it has not been known whether
a tends to zero as the black hole evolves. Car-
ter argued that it would tend asymptotically to-
ward a fixed value less than unity, but he gave no
indication of what that value would be. Numerical
calculations were needed to show whether ln J al-
ways decreases faster than lnM', pushing a to-
ward zero, or whether these two quantities de-
crease equally fast at some nonzero limiting value
for a~. There is some indirect evidence, to be
given below, that if there were a large enough num-
ber of massless scalar fields (unknown at present
and therefore not calculated in this paper) to domi-
nate the emission, a~ might indeed get hung up at
some nonzero value. However, this paper shows
that emission of the known massless fields can only
decrease a~ toward zero, and that in fact the de-
crease is rather rapid compared with the mass
decrease.

Because black holes that died in recent epochs
or that are emitting significantly today spend al-
most all their lives with temperatures of order
20 MeV, which is well above the mass of the elec-
tron but well below that of each known heavier par-
ticle, it is reasonable to do the calculations for
the idealized case of emission of a fixed set of
species with negligible rest mass. For example,
the "canonical combination" used below is the set
of known species with masses less than 20 MeV:
gravitons, photons, electron and muon neutrinos
with one helicity each, electrons, and the corre
sponding antileptons. However, the results will
also be given for other sets of species, to include
some of the possibilities (to be discussed below)
of other near-massless particles in nature or of
the emission from black holes too cold to emit
electrons and positrons.

The quantities to be calculated in this paper are
the rates at which energy and angular momentum
are radiated, the evolution of the mass, rotation
parameter, and area of the hole, the lifetimes of
holes with different initial angular momenta, the

masses of primordial black holes (PBH's) that
would be just disappearing today, and the maximum
rotation parameters that PBH's of various masses
today could have. The remainder of the paper will
derive the mathematical formulas for the quantities
desired, describe the numerical methods used to
calculate them, give the results, and discuss their
properties.

II. MATHEMATICAL FORMULAS

f —= M'd lnM/dt = —M'dM/dt,

g—= M'din J/dt = —Ma~ 'd J/dt.

(6)

These can be seen to be functions of a~ alone: If
we define the scale-invariant energy of an emitted
particle as

x =—Mco,

then Eq. (I.12) gives

(s)

(g)

where the expected number of particles of the jth
species of spin s emitted in the mode or state with
energy M 'x, spheroidal harmonic l, axial angular
momentum m, and polarization P is

Since the total number of particles emitted during
the black-hole evolution, roughly M', is assumed
to be very large, the emission may be approxi-
mated as a continuous process with negligible fluc-
tuations due to particle discreteness. Then the
rates are mell-determined functions of M and a~
alone (assuming that Q~ = 0, which was justified
above). The rest masses of the particles emitted
are assumed to be negligible, and the particle
species emitted are assumed to be fixed (indepen
dent of M), so the only scale in the problem (other
than the Planck units, which are here defined to
be unity) is determined by M. All quantities to be
calculated scale as some power of M and can
therefore be put into a scale-invariant form (e.g. ,
depending only on a~) by dividing out this power
of M —or, when one calculates the evolution of a
hole [Eqs. (11) ff. below], by dividing out the value
of M at some particular point on the evolutionary
track.

First, let us consider the rates at which the
mass and angular momentum of a black hole de-
crease, which are given in paper I by Eq. (I.12).
Since the time f, scales as M', we may define the
scale-invariant quantities

rt, p(a~, x)
&x™ exp (477[1 + (1 .a ~) i~]x 27(a (1 a ) ji ~) ( 1) ~ (10)
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Here Eq. (I.4) has been used, with the values of the
surface gravity, angular frequency, and electro-
static potentia, l of the hole obtained from Eqs. (I.8),
(I.9), and (I.lo). I'»

&
is the absorption probability

for an incoming wave of the mode considered and
can be found by numerically solving the Teukolsky
equation. ' ' It can easily be seen to depend only
on a~ and x in addition to the subscripts. The de-
pendence on the species j and polarization p is only
through the spin s (assumed positive) and the num-
ber of polarizations P that the species has; then l
and I can take on any values such that l —s and
I —~'m

~
are non-negative integers.

Next, let us consider the evolution of the black
hole. Equations (6) and (7) give the rates of change
of M and J with respect to time once f and g have
been calculated. However, since f and g are
functions of a~, it is easier to solve the equations
if a is considered as the independent variable.
Furthermore, dividing Eq. (7) by Eq. (6) shows us
that

dlna~ din J g
dlnM dlnM f

which approaches a constant value as a approaches
zero (assuming that the value is positive so indeed
a -0 as M-0). Because of the logarithms in Eq.
(11), it is convenient to define the independent va.r
iable to be

T(0) =0.
Then Eq. (6) combined with Eq. (16) gives

(18)

e e
dy fh g —2f ' (19)

y. —= —lna gz y

e,. =e(y,.) = —ln(M, ./M, ),
-=~(y, )=M, '.f, . -

(21)

(22)

(23)

These equations determine M, and t,. such that the
hole would have mass M,. and rotation a~,. Rt time
t, if it had started with M =M, and a~ =1 at time
t =0. In terms of M,. and a~„ the evolution follows

M =M~e 8=M,-e'&",

t, =M, '(v . w,.) =M, 'e"~(7' —.w,.) .
(24)

(25)

From the solutions g (y) and v(y) of the coupled
differential equations (16) and (19), one can get
y(w) and e (v), and hence a„and M/M„as a func
tion of time. From these, one can find how other
quantities evolve, such as the area

A =8mM'[1+(1 a ')'~2]

Once one has the evolution of a black hole from
a =1, one can consider holes with other initial
values a~, of the rotation parameter. They will
follow the same solution e(y) and v(y) but with dif-
ferent initial values:

To cover the greatest range of possibilities, the
evolution will first be calculated from a =1 or y
=0 to a =0 or y =~; a black hole starting at a dif-
ferent value of a~ will simply follow the evolution-
ary track from that point onward.

Now the object is to find how the mass and time
vary with y. Let the starting mass at a = 1 be

M, -=M(y =o);

Equation (25) and the "standard evolution law"
e(y) and r(y) can be inverted to get w and hence y
and a as functions of time, and then Eq. (24) gives
the mass.

A particular quantity desired is the lifetime
T(M, , a,.) of a black hole with initial mass M,. and
rotation parameter a„, It can be seen from Eq.
(25), assuming that the black hole does evolve to
Q 0 Dr y ~RS M Os thRt this ls

this will be the mass that sets the scale. With an
eye back on Eq. (11), set T(M, , a~,.) =t(y = ~) —t, =M, 'e"~(v& —v,.). ,.

'(26)

ln(M/M, ),
which has the initial value

(14) where

= y(y —ao) (27)

e(0) =o (15)

and evolves according to the reciprocal of Eq. (11)
RS

de/dy = I/h =f /( g —2f ) . (16)

v=—M, t

with initial value

It has been noted that the time scales as the mass
cubed, so define the scale-invariant time parame-
ter as

is the lifetime in units of M, ' of a hole that started
with a =1. The mass dependence of the lifetime
can be divided out to get the scale-invariant quanti-
ty

0,. = M, 3T(M, ,a,.) =e "—(v&. —r,.),
thus written in terms of quantities previously cal-
culated. Once the lifetime of any black hole is
known, one can calculate the initial mass of a pri-
mordial black hole that has just disappeared within
the present age t~ of the universe:
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M,.(a„,, f,) =f,'/3e. -'/'

1/3e'g(~ g)-&/3
0 f i (29)

III. NUMERICAL METHODS

The major part of the numerical calculations
consisted of computing the functions f (a„) and

g(a ) by Eqs. (9) and (10), which was done at 14
values of a~ from 0.01 to 0.99999 to an accuracy
of one part in roughly 104 or better at low a and
10' at high a„. The basic method is briefly sum-
marized in Sec. III of paper I. In order to cover
different possibilities for the set of particle spe-
cies, the contributions to f and g from each spe-
cies were calculated separately. Thus f,/, and

g, /„ f, and g„and f, and g, .were calculated as
the contributions from one species with two polari-
zations of spin &, 1, and 2, respectively:

.x&m ag -, ~

Here the dependence on the species is only through
its spin s, and the sum over the two polarizations
has already been taken, since the expected num-
ber emitted in a mode labeled by x, l, and m is
independent of the polarization. Then

=n ~~' +n ~ +n (33)

where ny/2 ny and n, are the number of species

Since PBH's would have been spinning down since
their creation at time t, ago, their present values
of a should have anupper limita (M, t,) less
than unity, depending upon the present mass M. It
is simpler to solve for the inverse function
M „(a*,to), the minimum mass of a PBH with a
today. By combining Eqs. (24) and (25) with t —t,
=to, one finds that

M=f "'{' ')-"'e-'
0

where 7 and z are evaluated at the present value of
y or a . Clearly, the minimum occurs at the
smallest value of v, , which is zero if PBH's can
be created with a~,. up to unity, so in that case

M „(a*,t)=t, ' '[1(-lila )]' 'e"' *', (3l)

where —lna~ is shown explicitly as the argument of
r(y) and z(y). If a„,. has a smaller maximum val
ue, the corresponding minimum for 7',. is to be
used in Eq. (30) to give M „(a„,to). One can see
that for fixed 7,, M in Eq. (30) is a, monotonically
increasing fllllctlon of Q*q assuiillllg tllatg —2f ls
always positive so that 7 is a decreasing function
of a*by Eq. (19). Thentheinversea~ ~(M, t, )
is uniquely defined and is a monotonically increas-
ing function of M.

4M~=2[1+(1 a«') '/'] ', (34)

which varies from 0 at a~ =1 or y =0 to 1 at a =0
or y = ~. The fits of these variables indeed were
quite smooth, with the slopes never changing by a
factor of more than 3.6 (even though the values of
the fractional powers themselves changed by fac-
tors exceeding 50) and with only four of the 84 val-
ues of the second derivatives of the splines at the
knots exceeding unity in magnitude.

The functions f, and g, were evaluated at 363 val
ues of a~ from 1 down to 0.0005 by the cubic spline
interpolation algorithm and then were combined by
Eq. (33) for some combination of n's to get f and g
at each point. A fourth-order Runge-Kutta method
was used to integrate Eqs. (16) and (19) simultane-
ously over the corresponding range of y with the
initial values set by Eqs. (15) and (18). At every
other point (since the integration requires two
points per step), the values of M/M„e™,.(a*„f,),
M „(a*,t,), andA/A, (whereA, =8vM, 'was the
area at a~=1) were calculated by Eqs. (24), (28),
(29), (31), and (20). As a check on the a.ccuracy

with spin 2, 1, and 2, respectively, assuming
that there are no massless particles of other spins.

A total of 463 angular modes (a combination of
s, I, m, and a*) were calculated and integrated
over frequency: 170 modes for s = 2, 155 for s =1,
and 138 for s =2. For example, at low a~ all the
modes up through $ = 2 for s = ~ and through l = 3 for
s =1 and s =2 were calculated. At high a~ the l =-m

modes were calculated up to l = '-,' for s = ~, / = 11
for s =1, and 7 =9 for s =2, and several l =~@+1
modes were calculated (with considerably smaller
results), but no modes with I —m&l. At interme-
diate values of a, some combination between
these two extremes was taken. The modes calcu-
lated appeared to include nearly a11 of the radia-
tion, though estimates for the small contributions
of all the other modes were a.dded in, assuming that
the sum over n~ dropped off exponentially in /

roughly as the calculated modes did.
Once the functions f, and g, were found at 14

values of a~, an interpolation algorithm was needed
to evaluate them at other values of a~ or y. These
functions varied by factors of up to 25 000 from
a~ =0.01 to a~ =0.999 99, and the variation with a~
was particularly rapid at the upper end. To find
smooth relationships, various functions of the f's
and g's were plotted against various functions of
a~. Of the combinations tried, a small fractional
power of the f 's and g's versus the surface gravity
g of the hole was the most linear. Therefore,
cubic spline fits, "minimizing the sum of the
squares of the third derivative discontinuities at
the 14 values of a*, were made of f,"andg, o'
versus
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a =' f (a ~ = 0),

P --- g(a = 0) .

Then Eqs. (16) and (19) become

de/dy ~ &/(6 »-) =-x,

(35)

(s6)

(37)

d~/dy ~ e "/(6 —o'),

so the solution is

——y dy (41)

is a constant that was simply estimated as z —yy
at a~ =0.0005. The solution for large y or small
a~ gives the asymptotic forms

PI/M e-~v-6 e-6~ r- [sa.(7 ~)]x/s
(42)

[cf. Eq. (I.26), where M, =M,. and ~ =T(M, ,a,. =0)],

M, (a„,—0, t,) -. (s~t,)'~', (44)

of the numerical integration, the step size was
halved, which resulted in agreement to four or five
decimal places.

For a„smaller than 0.0005, the values of f and

g at a~=. 0 or y=-~ were used:

M, (a, t,) - (snt, )'~'(sn7~e"a '" —1) "~'

- (t /g )'~'e-'a "=M,(a, = 1, t,)e 'a ~",

(45)

W/X, - 2M'/M, '- 2[so (~, —~)]'".

IV. RESULTS

The values of f„ the scale-invariant power in a
two-helicity particle species of spin s, and of g„
the scale-invariant torque per angular momentum
of the hole, are listed at the 14 values of a~ in
Table I, along with the extrapolated values for a~
= 1. The cubic spline interpolations are graphed in
Figs. 1 and 2, which show that below roughly a~
=0.6 the neutrino (s =-,-) power dominates, followed
by photons (s =1) and finally gravitons (s =2).
However, at greater values of a~ the order is re-
versed, with gravitons dominating the emission
and photons and neutrinos coming second and third,
respectively.

This behavior can be explained qualitatively in
the following way: For a slowly rotating hole, the
coupling depends most strongly on the spheroidal
harmonic index t (which reduces to the total, not
the orbital, angular momentum when a~ = 0) rather
than on the axial angular momentum rn or the spin
s. The coupling is greater at lower l values (e.g. ,
paper I showed that the emission rate at low fre-
quencies goes as uP'"), but l~ s, so the emission
is greater at lower values of s, which allow lower
values of /. On the other hand, a rapidly rotating
hole couples strongly with the axial angular mo-
mentum and also with the spin, "so the s =l =m

g((a )

TABLE I. Power and torque emitted by a black hole. For each spin s, f, (~~) and g, (a~) are
the contributions of one species with two polarizations to f=-j/13dlnM/dt and g=-M3dln&/dt at
that value of the rotation parameter ~~. The first 14 rows were calculated by Eq. (32); the
l.ast row came from a cubic spline extrapolation. The values for &~=0 are nearly the same as
for &+= 0.01; see Table II for more precise values.

+p = ~/~' fPgP(&~} f)(&~) f2(&~) Z) f2(&~) g2(&,)

0.01000 8.185 xlQ 3.366 xlp 3.845 xlp 6 6 161xlp" 4.795 xlp 1 064 xlp
0.10000 8.343 x10 ~ 3.~80x10 4.684 xlp 6 6.174xlp 4 4.895 xlp 4 1 167xlp 4

0 20000 8 830 xlp-~ 4 265 xlp-5 7.732 xlO-6 6 218 xlp-4 5.207 xlp- 1 514 xlP-4
0 300 00 9 669 x10 & 5 525 xlp 5 1.494 xlp 5 6.299 xlp 4 5.759 xlo 4 2 233 xlp 4

0.400 00 1.089 xlp 7.570 xlo 3.116xlo" ~ 6.430 xlp 6.599 x 10"4 3.603
0.50000 1.258 xlp 4 1.080 xlp 4 6.822 x10 "' 6.631 xlp 7.845 xlp 4 6.236 xlp 4

0.60000 1.487 x10 4 1..594x10 4 1.574xlp 4 6.946 x10 4 9.668 xlp 4 1.155xlp 3

0.700 00 1.804 x 1Q 4 2.450 x 10" 3.909 xlp 7.457 x lp 1.245 x10 2.322 x10
0.800 00 2.284 x10 4.014 x 10 1.104 xlp 8.366 x 10 1 706 xlO-3 5 286 xlp-3
0 90000 3.j95xlp 4 7.520 xlo " 4.107 xlp 3 1.034xlp 2 632 xlQ 3 1.544xlp
0.960 00 4.567 xlo 4 1.313X10 1.305 xlp 1.343 xlp 3.976 X10 3 4.057 xlp 2

0 99000 6 708 xlp-4 2 151 xlp 3 3.578 xlp"2 1.810 xlo 3 5.829 xlp 3 9.555xlp
Q. 999 QO 9.253 xlQ 3.057 xlp 7.251 x]Q 2 340 xlp 7,723 xlp 3 1.753 xlQ
0.99999 1.O74 x 10-3 3.555 x 10-3 9.785 xlO-2 2 641 x10-3 8 730 xlo-3 2 271 xlo-i
1.QOQOO 1,093 xlp 3 3.616 xlp 1.012 xlp ~ 2, 678 xlp 3 8 851 xlp 3 2.338 xlp
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4

CU

0
II
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.2

0
0 .2 .4 .6

t/lifetime

I.O 0 .6

t/ lifetime

.8 I.O

FIG. 5. Time evolution of the mass of a black hole
which started out maximally rotating. The vertical and
horizontal axes have been scaled by the initial Inass M;
=M, and lifetime M; 38; =M

&
v'&. For a black hole that

starts with a . & 1, one can use one of the same curves
but shrink the axes so that the upper left corner of the
graph is on the curve at a later point (to be determined
from the value of t/lifetime at a+=a+; in Fig. 6) and
the lower right corner stays fixed, at the end point of
the curve.

[Eg. (29)], assuming that the present age of the
universe is

g, = 16 x 10' yr = 9.37 x 10'o

so that

(48)

t ' '=2.11 x10 =4.5S x10"g.
For example, a PBH emitting the canonical combi-
nation of all known species (except for the small
amount of muons and heavier particles emitted)
would have just given up all its mass by now if its
initial mass had been 4.73 x 10'~ g if nonrotating or
6.26 x 10'~ g if initially maximally rotating. The
curves marked "neutrinos only emitted" in Figs.
3 and 4, as in Figs. 1 and 2, give the results if
only one species of neutrinos is emitted; for suc-
cessive graphs it does not matter how many neu-
trino species there are for the curves labeled

FIG. 6. Time evolution of the rotation parameter ag
of a black hole that started with a~;=1. For any given
curve representing the emission of an assumed com-
bination of species, the evolution from a~; &1 can be
gotten by moving the left vertical axis to the right until
it intersects the curve at a~=a~;, meanwhile shrinking
the horizontal axis appropriately to leave its right end
fixed.

"neutrinos only, " since those graphs have the rates
scaled out and depend only on the ratios of f 's and
of g's at different values of a~.

The time evolution of the mass and rotation pa-
rameter are shown in Figs. 5 and 6. The curves
for neutrinos, photons, or gravitons only cover the
purely hypothetical cases in which the black hole
emits only particles of one spin; they are included
to illustrate the different behavior that would re-
sult. For example, gravitons cause the mass and
particularly a~ to decrease more rapidly at large
a, as compared with the behavior at small a,
than photons or neutrinos do. Only one combina-
tion with species of all three spins being emitted
is included, (n, &„n„n,) =(4, 1, 1), since other com-
binations gave curves only slightly different. One
can see that for this canonical combination, a
black hole which started at a~ = 1 will lose half its
initial mass in 71~/g of its lifetime but half its initial
a~ in only 21% of its lifetime. (Half the angular
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FIG. 7. Variation of the rotation parameter with the
mass during the evolution of a black hole, which pro-
ceeds from the upper right to the lower left corner.
The evolution from g+, & 1 can be gotten by keeping the
left end of the horizontal axis fixed and shrinking the
scale so that M/M;=1 falls at u~=a&; on the curve con-
sidered.

momentum X=M'a~ is lost in only 6.7% of the life-
time. )

Figure 7 shows how a~ varies with the mass as
the black hole gives up its angular momentum and

energy. The emission of gravitons causes a~ to
decrease at the fastest rate compared with M, es-
sentially because gravitons have the greatest spin
and thus carry off the most angular momentum per
quantum. For the canonical combination of spe
cies, Fig. 6 showed that a~ is reduced to 0.19 after
half of the lifetime from a~ =1, but since it takes
71% of the lifetime to reduce M to half its original
value, a~ is further reduced to 0.06 by then, as
Fig. 7 illustrates directly. A check of the values
represented by Fig. 1 reveals that f is then only
1% greater than its value at a„=0. Therefore, a
black hole decaying by the emission of gravitons,
photons, the presently known neutrinos, and ultra-
relativistic electrons and positrons will emit more
than 50% of its energy when it is so slowly rotat-
ing that its power is within 1% of the Schwarzschild

FIG. 8. Evolution of the area A of a black hole, scaled
by the initial area A; in the case a+,. —-1. For general
a~;, the evolution starts at that value of ag with the
vertical axis rescaled to give A/A; =1 there, and pro-
ceeds to the left along the appropriate curve as a~ de-
creases with time. The evolution of A. is plotted versus
a~ rather than time to spread out the very rapid changes
near a~ =1, where A actually increases with time. Since
the area is four times the entropy of the hole, these
curves can also be viewed as giving the evolution of
the entropy.

value given in paper I. This result gives a fairly
strong justification for the usual simplifying as-
sumption, mentioned in the Introduction, that emit-
ting black holes are not rotating. ' '

One might note that this result was not apparent
a Priori, since h(a~) in Eq. (11) might have gone to
zero at a nonzero value of a~, in which case the
curves in Fig. 7 would have leveled out at that val-
ue of a as M decreased. In fact, although the cal-
culations have not been made for hypothetical mass-
less spin-0 particles, there are two reasons for
suspecting that h might indeed go to zero some-
where if the emission were predominantly in scalar
radlatlon;

(1) If one defines k, (a~) by Eg. (11) with f and g
repla. ced by f, and g„one has the logarithmic
slope of a~ vs M in the curves for only one spin
emitted in Fig. 7. These curves thus have a~ go-



3268 DON N. PAGE

alnM &nM J~

.8
=———2a~ & 0.1 m

a (51)

.6

.2

0 '

10 g (0I5
(
OI6

FIG. 9. Maximum present rotation parameter ag of
a primordial black hole with mass M today, assuming
it was created 16 billion years ago with unity as the up-
per limit on the rotation parameter then. Under these
assumptions, the actual maximum is probably near
(particularly for M & 10'5 g) or somewhat below tparti-
cularly for M & 10'5 g) the bottom curve given, depend-
ing upon the additional emitted species not covered in
the canonical combination.

ing as some power of M for small a~, where the
power is h, (a~ =0). The numerical calculations in-
dicate that there is a remarkably linear relation-
ship between h, (a„=0) and the spin s for s = —'„1,
and 2'

h(a =0) = 6.3611 (52)

in the canonical case.
Another interesting result is the evolution of the

black-hole area A, which is illustrated in Fig. 8.
The area first increases with time at large a and

then decreases to zero along with a~ and the mass.
This can be seen formally by using Eq. (11) to dif-
ferentiate Eq. (20):

Therefore, if ho(a ) is continuous and is negative
at a =0, it must become zero at some intermedi-
atea .

(2) The dominant angular mode at small a is
pr esumably the l = s mode, as it is for s = 2, 1,
and 2. For s =0 that mode carries off energy but
no angular momentum, so unless higher angular
modes contribute significantly, one would expect
g, (a =0) to be roughly zero and hence ho(a„=0)
to be roughly .-2. The higher angular modes would
raise h, (a =0) above -2 [conceivably to the value
-1.1948 predicted by Eq. (50)] but would probably
leave it negative, so again one deduces that ho(a~)
may be zero for some a between zero and one.

If either (1) or (2) is valid and if scalar radiation
dominates sufficiently at low a~ for the total radia-
tion to give h(a =0) &0, then the black hole will
spin down only to the nonzero value of a~ at which

h(a~) =0. This does not occur for emission of the
canonical combination of species, which causes the
hole to spin down rapidly toward a~=0, as shown
in the curve marked "everything" in Fig. 7. Once

a~ is reduced to a small value, it decreases as a
power law of I, with the exponent being

h, (a „=0) = 13.4464s —1.1948 (50)
dlnA g (1 2)~)2
dlna„g 2f (53)

is accurate to one part in 10~ for all three values,
roughly the accuracy of the numerical calculations.
Although there is no apparent theoretical reason
to suspect such a highly linear relationship, which
comes only after one evaluates integrals over fre-
quency and sums over angular modes in Eq. (32)
and therefore seems to be accidental, it is tempt-
ing to extrapolate it to s =0 to get a negative value
for h, (a„=0). One can easily see that the emission
of any species makes h(a~=1) &0, since Eq. (47)
says that the emission from a maximally rotating
hole is entirely in the superradiant regime where
each quantum contributes

One may further use Eq. (6) to express the time
derivative as

=AM '[(1-a~') '~'(g —2f) -gj. (54)

For small a„, the right-hand side of Eq. (54) be-
comes -2AM 'f. This means that the area de-
creases logarithmically at twice the rate the mass
does from Eq. (6), which is obvious since at small
a~ the area is simply proportional to M'. At large
a~, it was shown above that h &0, and hence g —2f
&0 since f &0. But (1-a~') ' ' diverges as a~-l,
so dA/dt becomes positive and even goes infinite
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as a -1 (cf. the vertical behavior of the curves at
the right edge of Fig. 8). The area is at a maxi-
mum where

2f =[1—(1 —a ) i ]g. (55)

For the canonical combination of species, this oc-
curs at a~ =0.8868, where tbe area is 17.3% great-
er than the original value, after a time of only
6.729M, ' or 1.7% of the total lifetime 394.5M, ' of a
hole with a,- =1.

Physically, the behavior of the area can be un-
derstood by thermodynamic arguments, since the
area is proportional to the entropy of the black hole
(as was first suggested by Bekenstein, "though
there were problems with this interpretation for a
black hole immersed in a background of very low
temperature until Hawking discovered that black
holes not only absorb but also emit thermal radia-
tion"). At high values of a~, the emission is pri-
marily the spontaneous emission discovered by
Zel'dovich" that corresponds to the stimulated
emission of superradiant scattering. In this pro-
cess, pairs are created in the ergosphere with
particles (say) being emitted to infinity with posi
tive energies and their antiparticles going domo
the hole with negative energies as measured at in-
finity but positive energies as measured locally.
In fact, the antiparticles can even be on classical
trajectories at the horizon. Thus heat flows down

the hole as well as out to infinity, increasing the
entropy of both. On the other hand, at lower val-
ues of a~ the emission is primarily thermal, draw-
ing entropy out of the hole. The process may still
be regarded as the creation of pairs, with antipar-
ticles going down the hole having negative energies
with respect to infinity, but outside the superradi-
ant regime (which becomes negligible at small a~),
the antiparticles also have negative energy locally
at the horizon and therefore cannot be on classical
trajectories. Instead, they are tunneling through
a classically forbidden region in virtual states
that actually bring heat out of the hole.

There is still some entropy produced by the par-
tial scattering off the gravitational potential bar-
rier surrounding the hole, but outside the superra-
diant regime this can only partially cancel the en-
tropy flow out of the hole and serves in effect to
increase the entropy emitted to the surrounding
region for a given entropy loss by the hole. For
example, numerical calculations for a nonrotating
hole show that the emission of s = —,

' particles into
empty space increases the external entropy by
1.6391 times the entropy drawn out of the hole, s
=1 particles increase it by a factor of 1.5003, s
= 2 particles by 1.3481, and the canonical combi-
nation of species gives 1.6233 times as much en-
tropy in radiation as the entropy decrease of the

hole.
The fact that g —2f &0 at a =1 allows one to

prove the third law of black-hole mechanics" for
small perturbations of an uncharged black hole.
(Similar reasoning can presumably be made also
for an electrically charged bole. ) The third law

states that it is impossible to reduce the surface
gravity K to zero by a finite sequence of operations„
Using Egs. (6) and (7) to differentiate the expres-
sion for a in Eq. (L8) [cf. Eq. (34)], one finds that
the emission of particles makes

d~ [1—(1-a~')'~'](g -2f)+(1-ag')f g —2f
2M'(1 -&,')'"I.l+ (1-~, )'"]

(56)

which diverges as a~ 1or v-0. One cannot bal-
ance this divergence with a finite accretion rate,
as shown by the Mlowing argument: Bosons inci-
dent in the superradiant regime are not absorbed
but amplified, increasing z. Fermions in this re-
gime are absorbed and do decrease z, but the ex-
clusion principle prevents more than one incident
particle per mode. Even if each such mode with
& &mQ is filled, the excess of absorption over
emission goes as I'(1+exp[ 2m' -'(~ —IQ)]}'.
This dies sufficiently rapidly as lt, -0 that these
fermion modes cannot balance the effect on x of
the boson superradiant modes. Outside the super-
radiant regime, each accreting particle of energy
dM «M can be shown to contribute dz &- M 'dM,
which can only decrease K at a finite rate with a,

finite accretion rate dM/dt. As one tries to reduce
~ by accretion (at least if the accretion is only a.

small perturbation at any one time), eventually the
emission dominates and keeps v away from zero.
Thus it is impossible to spin up a black hole adi-
abatically to the extreme Kerr configuration.

Figure 9 gives the maximum present value of the
rotation parameter a„ for a PBH with present
mass M that was created 16 billion years ago, as-
suming no spin up from incident particles. The
curves resulting from the emission of neutrinos„
photons, or gravitons only are purely illustrative;
the true maxi. mum is probably near or somewhat
below the curve for the canonical combination of
particle species, since those speci. es and possibly
a few others are the one predominantly emitted
for the mass range shown. For example, elec-
trons, positrons, and all lighter particles will be
emitted with negligible effects from their rest
masses over the whole range shown, and muons
and heavier particles will also be emitted at: a
significant rate for M & 5& 10~~ g, as paper I pointed
out. The graph shows that a PBH with M &10"g
should have a~ &0.64 today.

The asymptotic behavior of the graphs in Pigs.
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1-9 at small c was given in functional form by
Eqs. (35) (46), and the parameters n, 8, y, 5,
vz, and M, (a~, =-0, tc) are given in Table II for the
various combinations (n, &2, n„n, ) of species oi
spin ~, 1, and 2. Note that

o.'f (a„=0)
P —2n g(a =~0 2f (a—„=0)

a, ,„(M, t,)
- (M/4. 870 x 10"g)""
=4 234 x 10 '(M/10'~ g)s '" (60)

The actual maximum is almost certainly somewhat
lower than this, since muons and other particles
omitted in the calculation will have decreased the

is the reciprocal of the exponent of the power-law
behavior of a~ versus I at the lower left edge of
Fig. 7. The ratio of the lifetime of a black hole
with a,- =1 to one of the same initial mass with
a,.=-0 is3nv&, so Eq. (29) gives the initial mass
of a PBH with e~,- = 1 that would just go away today
RS

M,.(a„,. =1, t,) =(t,/7, )'"
=(3o'.~~) '~'M,.(a„,. =0, t,), (58)

here written in terms of the parameters in Table
II„Then M „(a~,t,} can be directly evaluated
from the last quantity in Eq. (45) at small a„. One
can invert this asymptotic formula to obtain

a, „(M, t,)-[e'M/i', (a„,=I, t,)]'».

for M «M,.(a,. =1, tc). For example, the canonical
combination of species gives

spin even more, and the upper limit on a,- may be
lower than unity; but unless small black holes
were formed significantly more recently than 16
billion years ago, one may predict that any black
hole found today with M & 10" g will have a
& 0.000 042'3.

One can also get asymptotic forms near a =1.
The lifetime has already been given by Eq. (26)
with g,. =0, 7,. =0, and 7~ listed in Table II, and

M,. (a~, =1, t,) wa.s given by Eq. (58). If we set

o., -=f (a„=1},
tl, -=a(a„=1),

(61)

(62)

which can be evaluated by combining the numbers
of the last row of Table I according to Eq. (33),
then integrating Eqs. (6) and (7) for a small time
t «M, ' from t =-0 at a =1 and M =M, gives

M-M, (1 —o.,M, st),

Z-M, '(I P,M t),
a„—:Z/M2- 1 —(P, —2o.',)M, st.

(63)

(64)

(65)

Since the mass decreases only infinitesimally with-
in the age of the universe if My» , to one can
use Eq. (65) with M =M, and t =. t, a.s an asymptotic
approximation to a~ (M, t,) for large M. For ex-
ample, the canonical combination of species gives

a, (M, to = 16 x 10' yr) - 1 (M/1. 500 x 10"' g)-'

=1 —0.003378(M/10" g) '.
(66)

This formula depends only weakly on the number
of spin- —, species, since gravitons dominate the
emission. However, since f andg change so rap-

TABLE II. Pal. ameters in the asymptotic behavior of a slowly rotating black hole: n =f(a~= 0)
i' dM/dt, P—==g(a„=-0) - Ma~ ~dZ/dt, -y =n/(P —2—a) -dlnM/dlna„, 6 ==j (h —y)a„~da~ Vina„

ln(~/~M f) Tf ~(+~= 0) = (lifetime from + ~ = 1)/(initial mass M&), and M'(a ~; = 0, t 0)
=—(initial

mass of a Schwarzschild hole ~ith lifetime &0) =(3+to)» 3. These are given for var ious combina-
tions of n&y2 spin-$, n& spin-l, and &2 spin-2 species.

(n(y2, n(, n2) 104m M, (a„.=p, t,)

(1, 0, 0)
(0, 1,0)
(0, 0, 1)
(0, 1, 1)
(1,1,1)
(2 1 1)
(3, 1,1)
(4, 1,1)
(5, 1,1)
(6, 1, 1)
(8, 1, 1)
(10, 1, 1)

0.818 30
0.336 38
0.038 36
0.374 75
1.19304
2.01133
2.829 63
3.647 93
4.466 23
5.284 52
6.92111
8.557 71

6.16108
4.793 64
1.062 65
5.856 29

12.01736
18.17843
24.33952
30.500 59
36.661 67
42.82275
55.144 90
67.467 06

0.180 86
0.081 63
0.038 91
0.07338
0.123 87
0.142 09
0.15148
0.16721
0.16107
0.16384
0.167 57
0.169 96

0.323 38
0.295 39
0.280 73
0.264 05
0.282 14
0.240 84
0.246 51
0.260 47
0.256 06
0.269 17
0.266 10
0.27164

2011.52
3856.63

32 560.0
3449.2
1159.5
695.08
502.44
394.60
325,27
277.01
214.02
174.65

2.8728 x10~4 g
2.1360x10&4 g
1.0359 x 10&4 g
2.2143 x 10'4 g
3.2575 x10~4 g
3.8770 x 10&4 g
4.3442 x 10&4 g
4.7280 x10~4 g
5.Q58Q xlp g
5„3497 1Q g
6.8531 x1014 g
6.2823 x 10&4 g
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idly with a near one (e.g. , decreasing roughly 10'%%uo

between a~ =1 and a~ =0.9999), these asymptotic
formulas are only accurate very near a~ =1.

V. CONCLUSIONS

The power emitted from a black hole in particles
of negligible mass and of spin ~, 1, and 2 are
strongly increasing functions of the rotation param-
eter a =J/M', varying in the range a =0 to a =1
by factors of 13.35 for spin 2, 107.5 for spin 1,
and 26380 for spin 2. The power increases 299.3
times for the "canonical combination" of 4 spin-&,
1 spin-1, and 1 spin-2 species that represent all
of the presently known particles with rest masses
less than 20 MeV. The power is greatest in spin-&
particles for a~ ~ 0.6, followed by spin 1 and then
spin 2; but for a ~0.6 the order is reversed.

The emission of angular momentum also in-
creases greatly with a, even after the linear de-
pendence expected at small a~ is factored out to
get the relative torque or logarithmic rate of de-
crease in the angular momentum of the hole. The
relative torque g behaves similar to the relative
power f with respect to spin and a~, but it is al-
ways sufficiently greater than 2f, for the three
spins calculated, that a black hole spins down to-
ward a Schwarzschild configuration much faster
than it loses energy. More than half of the energy
is emitted after a is reduced below a small value,
less than 0.06 for the canonical combination of
species. At this point the power is within 1%%uo of
its Schwarzschild value, so the assumption that de-
caying black holes have negligible rotation is gen-
erally valid.

Even though the power emitted is such a strong
function of a, the fact that a black hole loses u~
so rapidly means that the total lifetime for a given
mass varies only by a factor between 2.02 (for the
emission of spin 2 only) and 2. 67 (for spin 2 only)
over all a~, A black hole emitting the canonical
species has a lifetime 2.32 times as long if initially

nonrotating as one the same mass maximally ro-
tating initially. The initial mass of a PBH created
16 billion years ago that just disappears today
varies from 4.73 &10' g for a Schwarzschild hole
to 6.26&&10' g for an extreme Kerr hole initially.
(This is for the emission of the canonical species;
the emission of muons and heavier particles will
make these masses somewhat greater, say 5 x 10"
g and 6. 6 x 10'» g, respectively. )

A black hole evolving from a~,.= 1 initially has
its area and entropy increase as heat flows into the
hole from particle pairs created in the ergosphere.
Then as a~ falls low enough (below 0.89 for the
canonical species), the nonsuperradiant thermal
emission begins to dominate, taking heat out of
the hole and thus causing the entropy and area to
decrease. The maximum increase in the area is
about 17.3%% for the canonical emission. For a
Schwarzschild hole that emits its energy into the
canonical species in empty space, the emission
process increases the entropy of the universe (—,'A

+entropy outside) by 62.3% of the black hole's
initial entropy.

Finally, it was shown that a black hole cannot
be spun up to a =1. A PBH today is predicted to
have a maximum rotation parameter as a function
of mass that is given by Fig. 9 for 10' g&M&10 g
and by Eqs. (59) and (66) for larger and smaller
values of the mass. Black holes that are small
enough to emit many muons and heavier particles
today are seen to be very nearly nonrotating.
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angular mode dominates greatly and now has an
effect increasing with s.

It is of interest to note that as a - 1, the surface
gravity and hence temperature of the black hole go
to zero, but the emission does not. In fact, Eq.
(10) becomes

( 1)""r„„,(a„x)a(m 2x), (47)

where H(m —2x) is the Heaviside step function (0
if m —2x&0, 1 if m —2x&0), so one gets simply
the spontaneous emission (first discovered by
Zel'dovich") inthe superradiant regime where the
angular velocity ur/I of the wave is lower than the
angular velocity

Q~ 2M
a~~1

of the hole. For bosons (2s even), I' is negative
in the superradiant regime, as predicted by
Zel'dovich" "and confirmed by Misner, ' Starobin-
sky, ~ and Press and Teukolsky for scalar waves,

and by Teukolsky" and Starobinsky and Churilov~'
for electromagnetic and gravitational waves. That
is, the waves gain amplitude on reflection and ex-
tract rotational energy from the hole in the wave
analog of the Penrose process. ' Bekenstein" has
shown that this result follows from Hawking's
area theorem" for waves with positive-definite en-
ergy density. For fermions (2s odd), I" is always
positive, as Unruh" has shown for the classical
neutrino field, which has a negative energy densi-
ty near the hole in the superradiant regime. In the
quantum analysis, the amplification of a boson
wave corresponds to stimulated emission, whereas
the Pauli exclusion principle prevents fermions
from being amplified. The fact that this behavior
shows up in the solutions of the classical wave
equations is a manifestation of the connection be-
tween spin and statistics. " Field-theoretic deriva-
tions of the spontaneous emission from a rotating
black hole with the appropriate initial state for no
thermal emission have been given by Unruh" and
Ford, '0 but one must remember that a black hole
formed by collapse has a nonzero temperature
(except when a~ = 1) and thus emits at a greater
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FIG. 1. Power emitted in various combinations of
species by a rotating black hole, expressed in a scale-
invariant way byf. The symbol (n~yq, n~, n2) denotes a
combination of n&y2 spin-2, n& spin-l, and n2 spin-2
species, where each species is assumed to have two
polarizations (e.g. , left-handed neutrino plus right-
handed antineutrino),
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FIG. 2. Relative torque emitted by a black hole (i.e. ,
the rate of emission of angular momentum, divided by
the angular momentum of the hole), expressed in a
scale-invariant form by g.
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