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Absorption cross section of small black holes
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The absorption cross section of small nonrotating black holes is calculated for massive scalar and Dirac
particles. The latter cross section is shown to be exactly 1/8 of the former for all energies in the limit where
the wavelength is larger than the Schwarzschild radius.

Of interest recently has been the calculation of
the spontaneous quantum evaporation of small black
holes. ' One parameter of particular interest in
such a calculation is the absorption cross section
of a black hole for particles of various spins and
various energies. In my thesis, ' these transmis-
sion coefficients for massive Dirac particles on
small black holes were calculated, and shortly
thereafter the absorption cross sections for small
static black holes to massive Dirac particles and
to massive scalar particl. es were calculated. These
results are given in this paper. Some of these re-
sults have since been independently derived by
Starobinski, ' Ford, ' and Page. '

The metric for a Schwarzschild black hole is
given by

ds' = (1 —2M /r) dt' —dr'/(1 —2,'ll/r)

—r'(d8'+ sin'8dg').

The scalar field equations and the Dirac equations
are given by

dG, (r) k
p

'—-+—G (r) = —+p, F (r),k
p

, k&0

with
(5a)

p
' -y,(r)=,~)(:,(r),dF, (r) k

dy y ~
p

where k is a positive or negative nonzero integer,
i=1k+hi —l, ~d

g""P,„.,+m 'P = 0,

'Y & ()'+iP4=0.

(2a)

(2b) x.g = sin8cosgg, + sin8sin(t(g, + cos8g, .

(5b)

In the following I wiQ use units of mass and dis-
tance so that 2M =1 in the Schwarzschild metric.

The scalar and Dirac equations can be separated.
For the scalar equation one obtains

p = e ' 'f, (r)1',„(8,p),

p' d, d. . . l(l+1)r p'd +&u' —p' m'+, f„,(r) =0,

Here m is the angular momentum in the s (8 = 0)
direction, / is the total orbital angular momentum,
and j = lkl ——,

' is the total angular momentum.
For future use, I will also define v, X by

(1-m'/&u')'~' for scalar equation,

(1 —p. '/e')'~' for Dirac equation,

p = (1 —1/r)'~'

For the Dirac equation one obtains

G, (r)q, „(8,y)

r(l —1/r)'~' —iF„(r)x i,„-g(v8, p)

(2b) I will be interested in the solutions to the above
equations (3) and (4) when (d and e are much less
than 1 (i.e. , when the wavelength of the particle is
larger than the Schwarzschild radius of the black
hole).

For this case, the above equations may be solved
by an asymptotic expansion technique in which one
solves a simplified set of equations in which cer-
tain small terms are neglected in various regions
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for the parameter r. Since it is difficult to esti-
mate the relative magnitude of various parameters
in the first-order coupled neutrino equations (as
it is difficult a Priori to estimate the relative mag-
nitudes of I" and G), I will convert these to a sec-
ond-order set of equations.

For &&0, define the new variable x such that

dx 1+Ap

dr p

Then E may be elimated from the equations (4b) to
give a second-order equation for G.

d G 2 1 —Xp k'p' d kp
Ch' „1hP (1 ~ hP)'r' dh (( ~ hP)r)

This equation is most easily solved by breaking it
into a pair of coupled first order equations by de-
fining a new function

dG kpGH= +
dx (1+gp)r

'

Then the above equation becomes

dr pr

Note that this pair of coupled equations is not the
same as those obtained by simply neglecting &, p,

in the coupled equations for ~, G [Eq. (4b) j.

Region III: Far from the black hole

where r, p are now implicit functions of x. A sim-
ilar equation for P' can be obtained by taking A.

and k- —0, but is singular in general.
The various regions and the approximations to the

field equations applicable in each region will now
be defined.

All terms of order higher than (1/r)' are neglect-
ed.

Scalar equation. The scalar equation isd', , 2(d«' —m' l(l+ 1) rf, + (d) —m'+

Region I: Near the horizon

Scalar equation. Region defined by (r 1)—
c(u'/l(l+ 1)((1:

An additional term of order (d)'/r' has also been
neglected.

Dirac equation. The Dirac equation is

If we define a new variable rc by rd'=r+ln(r —1),
this equation becomes

All neglected terms go to 0 with rc - —~ (r 1) at-
least as fast as e""f, and are thus much smaller
than the term ~ f in the region of interest.

Dirac equation Region . defined by p = r —1&a'/k'
((.1;

d2

dx' (1+«(. ')

Again, the terms which have been neglected are of
order e"/(" «G, which go to zero as x —~ (r 1).

Region II: Intermediate region

Scalar equation. The terms in co', m' are much
smaller than all other terms:

(1 +X)$ 0 ( )„1+A.p

Again a term of order e'/r' has also been neglect-
ed. Note that the effective gravitational mass is
(2&v' —m'), not either ~' or m'.

These sets of equations in the three regions can
be solved by means of well-known functions. By
matching these solutions in the areas of overlap
between the regions, one can find an approximate
solution for the wave equation, and in particular
determine the fraction of the incident wave which
is transmitted down the black hole.

Region I

only those solutions are retained which represent
no particles coming out of the past horizon of the
black hole.

Scalar solution. This is

d d—r'p' —l(l+ 1—) f= 0.
dr dr (12) g eP((dr + 5)

Dirac equation. The terms in z', p,
2 are much

smaller than other terms:

d —k p d kp (12)dx' (1+«(p)'r' dx (I+«(p)r

where 5 is a phase which will be conveniently
chosen later.

Dirac solution. This is
j(e p*+ 5)
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Region II Then the solution for G may be written as

Scalar solution. The scalar solution is

f«(r) =A»PI(2r 1)+—P«q, (2I —1), (2o)

p
Gri —err 1

+ pire+p
(22)

where P„Q, are the Legendre functions.
Dirac solution. We can solve Eq. (14) readily for

the function II:

(21)

where Q zs a particular solution to

d9 k 1+gp 1-p
pJ' p 1+p

For k=0 we obtain

(23)

1 —p
' I'P 2(1+Xp') (1-p')'i'i '

1+p J I p' (1+p')'i" I+'

whereas for k&0 Q may be written as

1 p
0 PP 2, 1+gpI 1+pl

(24)

(25)

Region III

Both equations have solutions in terms of Coulomb wave functions F, and G, (see Ref. 3).
Scalar solution. The scalar solution is

Fc( —«I(1+ v')/2v, &IIVI') Gc(- «I(1 ~ v')/2V, IdvI')
III III y' +BI r

DA'ac solut2on. Define I= k for k&0 and l= —k —1 for k & 0 to write the solution as

(1+Xp)'~' c I' e(1+ v') ~ c f e(1+ v')
G«I(&)= t cIIIIEI l(

— 2,evtl+p „GI I

—
2

evil (27)

M%III + iBIII

II'III +iPm =2.
(28)

ecano ta o e esrc n giii Bm and

II. I«, p«, by demanding that f and G have unit in-
coming amplitude. From the asymptotic form for
pc and Gc (see Ref. 3) one finds that this can be
satisfied by

f, = AI(1 —i(u(r+ —r,+))

= A, ([1+i«r 1«(I", —1)]—i' in(I'- 1)),

where 5 has been chosen equal to (- &ux,*).
f„can be determined from the behavior' of

P„QI for 2I' —1 near 1:

P, (2r —1) = 1+ O(r —1),

(29)

The relation between the various coefficients is
now found by joining the functions in the overlap
between the various regions.

Regions I and II

(30)

qI(2r —1) = ——,
' ln(r —1) + —,

' ln2 + g —+ 0(r 1)—
m

= ——,
' in(r —1)+a,

The definitions of regions I and II do not really
lead to an overlap region. However, near the point
r, =i+cd'/(i+1)' or I;=1+&'/k', all of the nonde-
rivative terms in the differential equations for f
and G are small. One can approximate the solu-
tions by linear combinations of constant terms and
terms proportional to in(r —1). Furthermore,
since ln(r, —1) is equal to in[&@'/(l+ 1)'] or in(& '/k'),
I will neglect terms of the form &u in(I'0 —1) or
e in(r, —1) when compared to unity.

ScalaI equation Near r = r,. we have from Eq. (18)

+ II +I r

BII - 22GOAI.

(32)

where a is a constant.
Equating f, and f„near I; gives the following re-

lation among A» r B», and A.i:

A «+ 8» ( ——,
' 1n(I' —1) + a) = A, (1 —i&a in(r —1)).

(31)

Keeping terms only to lowest order in ~ we obtain
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Dirac equation. For the Dirac solutions, a simi-
lar analysis applies. Taking

Similarly we use the asymptotic expansions' for the
Coulomb functions near &vi= 0:

r, = (1+e '/k')

we have from Eq. (19) with 5= —erg

G, = o.I(1 —ie (r* —rf))
= cI l(1 —ie ln(r - 1)),

(33)

(34)

&rlr

r (2l+ 1)g)(- (d(1+ v')/2v)

(42)
where we have neglected terms of the form e 1»(e'/
k') with respect to 1 as well as terms of order
(r —1).

G» must be evaluated for the two cases of k&0
and k=0. First, as r-l, we have that p-0. Then
for k &0 we obtain from Eqs. (22) and(24)

G» =all + P„[in(r —1)+ b]+ O(r —1},

where

where

Therefore we obtain by equating fill and fll

(2l)! —(u (1+v')
XII, I.2 =All) ("I

2
((2)v)r)) W

2v

(43)

(44)

('0 2 (1 ~)(pi) ] p2

p
' (1 —p")' 1+p' (36)

B„(l!)' (0)v) '

2(21 1)! ~ ' (21+1)0,(- ()(1~ u')/2U))

is a constant.
Equating Gr and G„we obtain

o» + p»(ln(r —1)+5)=nl(1 —ie ln(r —1)). (37)

Keeping terms only to lowest order in & we obtain

~» =&r~

» SCH

(38)

& II a I 1 Plt 2e +I' (39)

For k&0, a similar analysis applies and one again
obtains

Dirac equation. For k &0 we have

p2
II II (1 i )2

1-p' ' ""(1+!(.p) 1 —p'
(1+p)' ~ p' (1+p)'

(46)

Recalling that 1-p'=1/r, we have that p =1 and

1 2 1 2 "" (1+!(.)
Gu = II'u 4r + pu 4r „(4r}2121

Regions II and III
p„(1+ )(.)

+
4(2iki 1)(4r) I21-2 (46)

The overlap between these two regions will occur
when 1/r« 1 but when 1/r»(2) v or e v. We can
therefore neglect 1/r with respect to unity and

terms in ~v or e v with respect to both unity and
1/r in Eqs. (20), (26), (22), and (2V).

Scalar equation. To evaluate f„ in this overlap
region we need an asymptotic expansion' for P, and

P, (2r 1)=, , (2r-l)l 1+O-(2l)' I 1

For k& 0 we have

p2
G» +11

(1 + )2

( 1 p2 l! &2'(1 ~y) (1+p)2 22

+Pili (1 )2 + 2 (1 2)

(47)

n„ t

=(4 )2+pili (4 )2
E+ (1+) )(4r) «

I

(40)
+II pll(1+~) 4r 2+2

(4r)" 4(2k+ 1)
(48)

(ll)2 12r 1)
2(2 1)-, ,+, 1+0—

Therefore we have

( )!,, (!)'
"(ll)' " 2(2l+1) lr'"' (41)

where E was an integration constant assumed
small with respect to 0+'. Again, terms of order
1/r smaller than those kept have been neglected.

%le use an approximation for the Coulomb func-
tions to determine |",»
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—c (1+v')
Gm =nrrr Cr 2

(evr)"'
2v

(e vr)
v' ( (21 1)G(v(1 ~ v)/2v) ) ' (49)

'" (ev)'(2k+1)C

o,rn 4(e v)"'(C,)(2k+ 1)
(4)"'(1+X)

(50)

Matching G„and G», then gives the following: For
k& 0 (l = k), dropping the arguments of C„

To determine the transmission coefficient (i.e. ,
the percentage of the wave which goes down the
black hole), we note that the Wronskian of the sec-
ond-order equation for f and G is proportional to
the radial flux of particles going into the black hole
lsee Eqs. (72) and (88)].

If the transmission coefficient were unity, the
behavior of the scalar and Dirac waves near in-
finity would be

(55)

with Wronskian near infinity of

For k&0 (l= Ikl —1),
)a(

0'ii = 0'»r 4 Cta) -a~

p 4 4

(1+1)Ci„i 1 ev

(51)
= —2z(d v,

G
dx dx

(56a.)

We can now determine A. , and z„which give the
amplitude of the transmitted wave for an incoming
wave of unit amplitude.
Scalar equation. From (28), (32), and (44) we ob-

tain

p d dG*—G- G—G~
1+Xp dr dr

(56b)

2(«)'
24r (21) r

(Cr)((2) V) (52)

8i cv ~" (C„)(2k+ 1)
4 I+a (53)

From (28), (39), and(51) we obtain for k & 0

CtaI-1 ~

Dirac equation. From (28), (38), and (50) we ob-
tain for k) 0 (57a)

(57b)

e- d 2(2

W~ = —2i(dlhrl',

e-k6x
I (58a)

(58b)wv = -2ie l~rl2.

The ratio of F'~ to 8'~ and W~ to W~ is the trans-
mission coefficient into the black hole:

The Wronskian for the actual wave propagating into
the black hole can be calculated near r=1, where
we have

IAr I
(4l) r' —y'~ ' (ev)'r"

(TS)l (2l) r
2 Cr 2

(1+x)
(7;)a = l~rl'

v

(59)

4 — v' " „ Ic~( —(2e' —p')/2&v)l', k&0

lr 4 — "i'i 'Ici.i,(-(2"-r ')/2")I'(1+», k&0.

(60a)

(60b)

As we have

Il (i+1+i)7)l'= (s'+)7')
sinh()r7r) '

we find that

22)+ 1( q)
l

Ic (n)l'=(2l, 1)„(1 ...„) II ( '+n').
S=1

(61)

(62)
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We therefore have the following expressions for the transmission coefficients:

~1l422l+2 (1 v2) 2l+2 2l l (1 v2) 2

(2l)!'(2l+ 1)'{1—exp[ —lloyd(1+ v')/v]} ~" 2v
(63)

we""v"(1+v') g (s'+ [e (1+v') /2v)']

2'" '(1+X)(2k!)'(1 —exp[- lie(1+ v')/v]) ' A&0

(Tv)2 =(

!!+„ I l- (1 y)(1 „) g (s [ (1 „)/2„]]
S=1

2'~"'(2 )k~ —1)!(1 —exp[ —lie (1+ v')/v]].

(64)

(65}

The absorption cross section is given by the
ratio of the total number of particles absorbed by
the black hole to the incoming flux of particles.
For scalar waves we will assume that the incoming
wave is a plane wave which near infinity goes as

l QJ t t Qf tlat

where (W~), is given in Eq. (57b). By the way we
have definedf, (such that the incoming part of f
has unit amplitude), we have

~ (z;.-/'(w, ),
(0V —Z2(d V

lm

The current for scalar particles is given by

(67)

= Q l&l;I'(TS)l. (73)

(J'[ = co v. (68}

For the above wave function this leads to a current
in the z direction of

To determine the cross section, we need only de-
termine the coefficients h.",-.

For large x, we can expand' the ingoing part of
e-g&g as

The number of particles absorbed by the black
holeper unit time will be given by

l =0

'l -4 (de
[(4~)(2f+ 1)]'~' y „(e,y).

240 V&

N= — f -g 8 "dS,
Jg

(69)

Z" = —-', l(1 —2M/A)lt* ay'

where S is a surface of constant radius surround-
ing the black hole. Now J" is given by

Therefore the coefficients K, - are given by

l
ff,.=,' [4~(2f+1-)]'~'6„-, .

From (73) we therefore obtain

(74)

= ——2ig+ (70)
o~ = Q, , (2E+1)(7'2),.

l =0

Any P which is a solution to the wave equation in
the Schwarzschild metric can be written as asumof
spherical modes,

As (T2), goes as &u"" and as m «1 by assumption,
the only term which will contribute to the cross
section will be the L=0 term. We therefore obtain

y =e-'" g A,.-f, (2.)y, -(e).
lm

We therefore obtain

(71) o'g((d~ v) = (2w)'(1+ v')co
v'(1 —exp[- ll(u(1+ v')/v])

'

If we replace the factors of 2M which had been set
equal to 1, this becomes

(4llM)'(1+ v')(2%id)
v'(1 —exp[- 2llllf &u(1+ v') jv]) ' (78)

lm

(72)
A similar analysis can be done for Dirac parti-

cles, with the presence of the spinors adding some
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complications. If P is a solution to the spinor
equations, then the current is given by

~"=4y"0, (79)

determine the value of terms of the form

Jt r'T)), »„y"-g„-.d cos8dy,

where g is the Dirac adjoint and the y" are the
Dirac matrices.

Assume that the form of the wave traveling to-
ward the black hole from infinity is

(e (Cle ')Q)v»)S

where y" is given by

y" = (1 —1/r)' /'(sin8 cosP y'+ sin8 sin(II) y'+ cos8 y').

Using the expressions for the y' and for the radial
modes g„„-this becomes

where 5 is a constant spinor obeying

—ie (y'S + yv'S) i+pS= ,0. (81)

The representation for the y matrices, which is
implicit in the solutions for the radial modes of

the Dira, c field in Eq. (4), is

5»» &;—; (G»I"»-I *G).

But we ha.ve [from (4b)]

i 'dG~ kp
e ( dx (1+yp)r

(88)

(89)

(I O'I (0
o l, e

LO 1) i-g, 0)'
So the above expression (88) becomes

QG~
»»'5mm' G» ~» 5»»'5mm' (~p)»

((+x)"

() -z)"

0

.() +z )'&'

((-z)"
(83)

Any spinor $ obeying (81) is a linear combination
of two independent components,

The current flows into the black hole for y', y
are then given by

~:=J ( "('ss

=-2P,„.I~i(T.)„

(90)

(91)

For both of these spin
z direction is

components the flux in the &„=
J g y"(I) dS

S'y S'=S y S = —2.

Now the ingoing part of the spinor function S'e '"
can be expressed in radial modes for large x as

i'[4w(2l+1)]' 'e "
2$6 v& lo 8

(85)

=-2 P,„.I~l(T.)..

Therefore the cross section for either helicity
state + or —on a Schwarzschild black hole is
given by

&v=( )o Q l&l(Tv)» (92)

Recalling that our radial mode solutions [Eq. (4)]
were defined so that G»(r) = (e ' + outgoing por-
tion) near infinity, we can now write the solution
g', which goes as S e '"e ""before interacting
with the black hole, in terms of the radial modes

4»1 /»

An examination of (Tv)» shows that only 4 =+1 or
0=-I will contribute to the cross section for e «1;

(T,), =-we 'v'(1+ v')(1+ [e (1+v')/2v]')
4(1+A.)(1 -exp [-we(1+ v')/v]) '

(93)

„' (, '„) (I)I)")),. y* . (86) (Tv), =w
e' (1+x)(1+v')
4 1 —exp[- we (1+v')/v] '

('ww ((+a '~'(I).'l)' '
» -1/2'

1 —x
(87)

Similarly we define g as the solution which has an
incoming part going as 8 g '"e ""'„and we obtain

We finally obtain

w' e(l + v')
2v' 1 —exp[- we (1+v')!v]

To determine the cross section, we need now only The Dirac absorption cross section is exactly —,
' of
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the scalar absorption cross section for all veloci-
ties v under the approximation scheme used here.
Furthermore, the scalar cross section comes
only from absorption of the (= 0 wave, whereas
the Dirac cross section results from a combination
of the two j = —,

' (l = 0, 1) modes.
It is instructive to compare the quantum absorp-

tion cross section with the classical result in which
the particles are treated as point particles. For
that case one obtains'

[6(1—v'-)]'
4~~ 4.*,(|.sPj ~ Ns (1.8') ~ jI.

(95)

The quantity in curly brackets is a slowly varying
function of v going from 16 for v=0 to 27 for v= 1.

This is also the cross section in the high-energy
limit (cg, e» 1) for scalar and Dirac particles. '
The cross section essentially goes as 1/v'.

For the low-energy scalar and Dirac particles
(~,e«1) one finds that the behavior of the cross
section as a function of v, the velocity at infinity,
is quite different. Taking the scalar cross section
(as the Dirac cross section is exactly —', of this) we
recall that

&04

vrM2

10

102

$0

)00
10

and the cross section becomes

~(4M)' 16~M'
v v

(98)

(99)

This holds up to velocities such that 1 —v'=2gMm,
at which point the approximation that the wave-
length is larger than the Schwarzschild radius
breaks down (i.e. , 2M&v-1). Note that for v=1,
this cross section (99) becomes 16'', as com-
pared with the classical cross section of 2VzM'.

The behavior of the various cross sections is
indicated in Fig. 1, where the relative contribu-
tions of the S and P waves (j =-,', E=O, 1) to va are
also indicated. It is only for high velocities that

(4aM)'(1+ v') (2Mm )
s v'(1 —v')'/'(1 —exp[- 2wMm(1+ v')/v(1 —v')'~']] '

(96)

For low velocities (v~ 2nMm) the cross section is
given by

(4~M)'(2M'�)
0's 2 0

v

The cross section goes as 1/v' as for o c but is
suppressed by a factor of Mm.

However, as v becomes greater than 2pMm, we
have
1 —exp(—2nMm (1+ v')/[v(1 —v')]J

= 2~Mm (1+v')/[v(1 —v')],

FIG. 1. Absorption cross sections for sInall black
holes vs velocity for various values of 2Mm I.ac for
classical, oq for scalar particle, oD for Dirac particle,
{oD}+~, {oD} ~ for I' ~, S

~ contributions].

the l= 1 (P wave) state contributes.
Another interesting point is that for v=1, the

various transmission coefficients [Eq. (65)] for
Dirac particles are comparable for waves with
equal ~k~ (i.e, , equal angular momentum) and not
for equal f (total orbital angular momentum). This
is a striking illustration of the effect of gravitation-
al spin-orbit coupling on the motion of a particle
with quantum spin.

The fact that both 0~ and 0 ~ are comparable to
the classical cross section for v=1 means that
naive arguments about particles not being able to
be absorbed by a black hole if their Compton wave-
lengths are much larger than the Schwarzschild
radius are wrong. All particles with v=1 see a
black hole as having roughly the same size, whether
they are quantum particles or classical particles.
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