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We present a general S-matrix approach to the phenomenological treatment of scattering problems which

involve many overlapping resonances in the presence of a constant background. The problem is treated

systematically using the analyticity and unitarity of S(E), and CPT and T invariance. We derive the possible

factorization properties of the resonance residues for first-order and higher-order poles, the restriction imposed

by CPT invariance, the restrictions imposed by CPT and T, and the constraints on the residues imposed by
unitarity. The nature of the contraints is investigated in detail for overlapping first-order resonances, and in

less detail for higher-order resonances. The results are illustrated by several examples, including the case of a
single dipole resonance in the presence of 'background.

I. INTRODUCTION

The problem of overlapping resonances in scat-
tering problems has been considered by many
authors using a variety of methods. The subject
has a long history in nuclear physics. ' It has been
of somewhat less general interest in particle
physics, but has nevertheless been important in
connection with such phenomena as p-u mixing, "
the mixing of the K~ and K~ systems, ' "and at-
tempts to explain what was thought to be a split
structure in the A. , meson in terms of overlapping
resonances or, alternatively, dipole reso-
nances. " " The recent discovery of a rich array
of 1 resonances in the 4.2-GeV region in e'e
annihilation into hadrons" suggests that the treat-
ment of overlapping resonances may again become
a subject of considerable interest.

The methods which have been used to treat over-
lapping resonances include the A-matrix approach'
(mainly in nuclear theory), the Weisskopf-Wigner"
or mass-matrix method, ' "'"propagator methods
in field theory, "'"the E-matrix method, "'"and
methods based purely on the S matrix. '
All methods have advantages and disadvantages.
However, for problems in which threshold effects
are unimportant, and any background scattering
may be taken as constant over the resonance re-
gion, the S-matrix method is probably the sim-
plest. It has the considerable advantage of con-
ceptual simplicity, and provides a, parametriza-
tion of the resonances and background in terms of
'a minimum number of parameters —the background
S matrix, the complex resonance energies, and
the residues at the resonance poles (partial decay
amplitudes). It is not necessary to make any as-
sumptions about the underlying dynamics, for ex-
ample, the assumptions about the existence of an
unperturbed Hamiltonian with bound states, and
the form of the perturbation which induces their
decay, which appear in the Weisskopf-Wigner ap-

proach. In addition, the parameters which appear
in the S-matrix approach have direct experimental
significance, as opposed, say, to the locations and
residues of R-matrix or K-matrix poles. It is
nevertheless possible to carry out complete phe-
nomenological analyses of such problems as mix-
ing of resonances in the K~-K~ (see Hefs. 5 and 6)
and p-co" systems, and to reproduce the conven-
tional mass-matrix phenomenology in purely S-
matrix language. The point of view and details of
the calculations, and the way some physical ideas
are introduced, are of course different from the
usual mass-matrix approach, and the methods are
in this sense complementary.

It seems worthwhile for the foregoing reasons
to give a systematic treatment of the S-matrix ap-
proach to the problem of many overlapping reso-
nances, including the relatively unfamiliar but
potentially interesting subject of higher-order
poles in the S matrix. "'"'"" We present such a.

treatment in this paper. Most of the individual re-
sults are of course known, if not always familiar,
but with the exception of those for the ca,se of two
first-order poles with" or without" background,
have apparently not been presented before in the
present systematic fashion. Our general results
on higher-order poles appear to be new.

In Sec. II of this paper, we use the general con-
straints imposed by the analyticity and unitarity of
the S matrix to determine the most general form
of the S matrix for N overlapping resonances in
the presence of a constant background, and de-
termine the constraints on the resonance param-
eters imposed by unitarity. In Sec. IIA, we study
the factorization properties of the resonance res-
idues for first-order poles, and derive the con-
straints on the residues imposed by CPT invari-
ance, and the combination of CPT and T invari-
ance. In Sec. IIB, we examine the unitarity con-
straints for many overlapping first-order reso-
nances in detail. We derive the properties of a
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matrix a, which describes the overlap of different
resonances, and give sum rules and bounds for the
partial decay widths. We generalize these results
to the case of higher-order poles in Sec. II C.
Finally, we use our general results in Sec. III to
treat some simple examples involving first-order
poles (Sec. III A) and second-order poles or dipoles
(Sec. III 8).

causality restricts the poles of S(E) to the lower
half of the energy plane for resonance poles, or to
the real axis below the lowest threshold for bound-
state poles. '" Thus, all the resonance energies
8„ in (1) must lie in the lower half plane, and the
I'„are necessarily positive, F„&0. Correspond-
ingly, S (E *) can have no poles for E in the lower
half plane.

II. S-MATRIX TREATMENT OF MANY OVERLAPPING

RESONANCES

A. General form of S for narrow resonances

1. General considerations

S=B+P
8=1 tl

where the background matrix', the residue ma-
trices B„, and the complex resonance energies g„,

S„=E„—fl', /2, (2)

are all constants independent of the total energy
E." We will assume initially that the h„are all
distinct, and we will return to the questions of co-
incident and higher-order poles in Sec. II C.

The $ matrix acts in the space of the open chan-
nels. When necessary, we will denote a given
channel by a Greek index which will include con-
tinuous variables (subenergies, momenta, and
angles) in the case of multiparticle channels. Sums
over Greek indices are to be understood to include
integrals over the corresponding phase space for
multiparticle channels.

The conditions imposed on the 8 matrix by uni-
tarity and causality are most conveniently dis-
cussed using the continued unitarity relation"'"'"

S (E*)S(E)=S(E)S (E+) =1.
This is simply the analytic continuation to complex
E of the familiar unitarity relation for real E,
St(E)S(E)=S(E)st(E) =1. All of our results can be
derived somewhat less compactly using the lat-
ter. "'" We note also that the requirement of

We will be concerned in the present section with
the structure of the partial-wave $ matrix in the
situation in which there are N overlapping reso-
nances in the range of energy which is of interest.
We wi1.1 assume throughout the discussion that the
resonances are sufficiently narrow that any non-
resonant background can be taken as constant over
this energy range. We also neglect possible thresh-
old effects associated with the opening of new
channels in the resonance region. '" The S matrix
for the N resonances in the presence of background
is then well approximated by an expression of the
form

2. Factorization of the residues at isolated poles

We can use the constraints imposed by unitarity
and causality to demonstrate the familiar theorem,
that the residues of the isolated poles of S(E) fac-
tor. '" " The unitarity relaiion (2) can be written
compactly for S(E) of the form given in (1) as

$1
St(E*)s(E)=BtB + Q-

N= 1 ~tl

RtS(b„*)

(This expansion can be obtained trivially by noting
that the function [S (E *)S(E)-B B] is a meromor
phic function of E which vanishes for ~E~-~. It
can therefore be written as a sum of the contribu-
tions of its poles, with the constant residues in-
dicated ).Since the matrix St(E *)S(E)=1 has no
poles, the residues of the apparent poles at E =g„
and E = b ~ must vanish, '0

St(h„*)R„=8, Rts(h„*) =8, n =1, . . . , N .

(The second equation is just the Hermitian conju-
gate of the first. ) The residues are independent of
E, so the pole terms vanish identically, and we
conclude also that

a'a =1. (6)

Consider the first of the equations in (5). We will
assume for the moment that $ is a finite matrix of
dimension X (X two-body channels). The unitarity
relations (5) then lead to weak constraints on the
ranks of the finite matrices R„and S (8„*). In par-
ticular, the matrix St($„*)R„is a null matrix,
hence has rank p[st($„*)R„]=0, and a null-space of
dimension v[St(8„*)R„]=JI. For general finite ma-
trices, p(A) =X —v(A) and v{AB) ~ v(A) + v(B),"
hence pQB) ~ p(A) + p(B) -K. We conclude that the
ranks of St ($„*)and R„a.re bounded by

0 = p [S'(g„~)R„] p[S'(h„*)]+p(R„) -X . (V)

Let the rank of St(h„*) be Z —r Then.
p(R ) r .

The case r =0 is trivial, since a matrix of rank
zero is null, and S would contain no resonances.
Thus, r ~ 1. For a general rank s, A„can be
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written as"

The structure in (9) corresponds for s =1 to the
presence of a single isolated pole in 8 at E = 5„
with a factored residue. " For 8 & 1, the structure
is that of s poles with factored residues, all with
the resonance energy E =5„. We will henceforth
disregard this possibility of exactly coincident
resonances (though it can be recovered easily
later), and will assume that all poles are isolated.
Then s = 1, y & 1, and v[St(8„*)]& 1." The matrices
8„factor, and 8 can be written in the form

S(Z)=a-.p y" "-. (1o)
, g g

Here y„A.„ is an %~X matrix formed by taking the
product of a column matrix y„with elements y„
with a row matrix X„with elements A.„B, ~, P
= 1, . . . , 'X. The factor -i in (10) is introduced in
accordance with the usual conventions. Note that
the quantities !y„!'and !A.„„!'are just the partial
widths for decay and production of the nth reso-
nance in the channel labeled by z.

Although we have demonstrated the factorization
of the residues only for X finite, a channel with
continuous internal indices (a three- or more-body
channel) can always be approximated by a finite
set of channels with discrete indices, for which the
factorization theorem holds. It is therefore clear
physically (but perhaps not mathematically) that
factorization will continue to hold in the continuous
limit. Alternative proofs of factorization based on
specific dynamical schemes, for example, the
Schrodinger equation, are given elsewhere. "'"'"'"

3. Discrete symmetries

We will suppose in the present section that CI'T
is an exact symmetry, as proved for Lorentz co-
variant, causal field theories, '4 and we will ex-
amine the implications of CPT invariance, and
later T invariance, for the general parametriza-
tion of the many-resonance S matrix given in
(10)." The arguments are simplest if we choose
for the channel states fo) eigenstates of the CP
operation with eigenvalues j:1. This can always be
done. We will divide the channels into two groups
with CP eigenvalues + 1 and -1, and write S as a
matrix in the +- space

fS++ S+-
S=l=. . )

where the component matrices S» act in the chan-
nel space.

The S matrix is invariant under the CI'T trans-

formation. However, the element S 8 transforms
under the antiunitary CI'T operation as

(12)Sa8 — = Ocf08S80f ~

CPT
where g~, F8=+1 a,re the CI' eigenvalues of the
channels a, P, and P, n label the channels obtained
by applying the time-reversal operation to n and P.
The time-reversal operation involves the reversal
of magnetic quantum numbers. However, if we use
the helicity representation for S,"or, alternative-
ly, organize S appropriately and omit the magnetic
quantum numbers from the channel labels o. , P, the
labels a, a and P, $ will be equivalent, and (12) re-
duces for CI-'T-invariant systems to the statement
that

(13)~a8 Oe98S8n +S8a y

where the sign is + for a and P in the same CP
sector, and —for n and P in opposite sectors.
Thus, from (11) and (13),

S~~=S+~, S =S, S, =-S +, 3 += —S

(14)

The relations in (14) must hold separately for
the constant background matrix B and the n energy-
dependent pole terms in (10). We conclude that

B +=B++, B =B, B+ =-B „B
and that

yn+yn-

The additional assumption of T invariance leads
to the requirement that S be symmetric, S =S, or
S++=S+, S =S, 8, =S „andS, =S, . The
last two conditions and the CPT relations in (14)

&~a&n 8 =+ &~8&nn ~

The last relation can be written as

y„ /Z„„=+y„JX„,.
ln this form, it is clear that the ratios !y„„/X„„!are
the same for all channels. We will fix the ratios by
requiring the conventional normalization for elastic
channels, !A,„„!=!y„„!(equivalent production and
decay widths). Then y„ /X„„=a 1 for all channels
with CP even, and y„„/A.„„=v1 for all channels
with CI' odd, where the choice of the overall sign
is still free. We can use this information to write
the vectors y„and A,„and the matrix y„z„ in a nota-
tion corresponding to (10),"
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require that S, =S, =0. Equivalently, if we re-
quire CP and CPT invariance, S, and S, must
vanish, and S++ and S must be symmetric. The
extra requirements and the results in (19) imply
that either y„, or y„must vanish for a given res-
onance. The relation (16) thus becomes trivial,
and we can choose the overall phase [the + sign in

(19)] independently for the + and —sectors. With
the conventional choice of the + sign, S may be
written for either sector as

ynXn

g (20)

where B =B, and the sum includes only resonances
of a definite CP. The further imposition of P in-
variance, with the channel states now taken as
eigenstates of both CP and P (or C and P separate-
ly), eliminates transitions between channels with
opposite P, but does not change the form of S
given in (2) for transitions between channels with
the same parity.

The general form of S assuming only CPT in-
variance was used by McVoy' and by McVoy and
this author' for the case of two overlapping reso-
nances to give an analysis of the K~-E~ system
based purely on S-matrix considerations. This is
the only system known at present for which the
general formulation of the overlapping resonance
problem is necessary. We will. therefore restrict
our attention in the remainder of the paper to T'-

and CPT-invariant interactions, and will use the
form of S given in (20). Note that this does not
assume P invariance, so is applicable to the po-
tentially interesting case of overlapping resonances
with parity-violating decays. The results in the
following sections are easily generalized using
similar methods to the case of T-violating inter-
actions. Details are given in Hefs. 5 and 6.

B. Unitarity constraints on S

1. Constraints on 8 and y„

These conditions are necessary, but not suffici-
ent, for the full matrix S(E) to be unitary. We
must require also that (6) be satisfied as a matrix
equation. This can be restated using the factored
form of B„as the condition that

S'(g„*)y„y„=a, n=l, . . . , X. (22)

We have so far used the unitarity constraints (6)
on S(&) only to establish that the residue matrices
8„ factor for isolated poles, that St(g„*) has a null-
space of dimension v[St(g„*)]~ 1, that is, that
S(g„*) has v~1 zero eigenvalues, and that the back-
ground matrix B is unitary,

B B=BB~=1.

2. Reduction of the equations of constraint

It will be convenient to use (23) in a slightly dif-
ferent form obtained by taking the complex conju-
gate of that equation and using the symmetry of B,

(
t

By„=i g gm
— g= y„„n=l, . . . , N

m n m

We will define quantities ~„by
~ y.'y )o. = -- -- =o.*Jim g m g mll

n m

With this notation the equations of constraint as-
sume the form

B&n= &n &

The normalized inner products (y„y )/~y„~~y ~

de-
termine the extent to which the various resonances
overlay in the production or decay channels, and
play the role for S-matrix theory of the overlap
(n~ m) of the right (or left) eigenvectors of the mass
matrix in the Weisskopf-Wigner formalism. ' For
~yty

~
fixed and ~g„*—g„~- (widely separated

resonances), n„-0, and y„and y„are not directly
coupled in (26b). For all resonance spacings large,
the y„decouple completely.

We can restate some of. the constraints in a form
which does not depend on B as follows. We first
multiply (26b) on the left by y~t, / = 1, . . . , N, to
obtain the set of seals, r equations

Vg BYn +nm Yl Vm

=i P (g —gf)n„n,„, . (2'I)

Thus [S (g„*)y„]„y„z=0 for all choices of the chan-
nel indices n and P. If y„ is nontrivial, (22) is
equivalent to the set of vector equations

g( t
St(gm) —IIt +

' g ym~ymytl) —0 n —I

(23)

These equations must hold for all n and for every
channel.

The equations of constraint which arise from the
second of the equations (6) are equivalent by
Hermitian conjugation to (23). The equations which
arise from considering the unitarity equation in the
second of the forms given in (3) can also be re-
duced to (23) by using Hermitian conjugation and
the symmetry of B,B =B, The entire phenomeno-
logical content of unitarity is thus expressed in the
factored form of the resonance residues, (20), and
by the equations ot constraint, (21) and (23).
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If we then use the identity

y) &y,' = y.&y)*=y.&y)* (28)

must be orthogonal, a result derived by quite dif-
ferent methods in Hefs. 1 and 10,

we find from (27) that

Q (h —h,*)n„a, =Q (h„—h„*)n,„n„

AQ —QA-i

From (25), n is also Hermitian,

Q & ~

(37)

(38)

or that

g (h„'-h,*)n„.n,.=0 .

(29)

(3o)
(39)

leads to a set of inequalities for the matrix o. ,

We note finally that the Schwarz inequality for
the inner product of the vectors y„and y,

Ir.'r I'= I~.'-r. llr'r I

Qa„a, =0, I~n. (31)

If we take the complex conjugate of (31) and use
(25), we find also that

Jot „n, =0, Ion. (32)

We can obtain a second set of relations indepen-
dent of 8 by multiplying (26b) by its Hermitian
conjugate and using (26a),

ytfyg ~ &nl+nmyl ym ' (3
l, m

f we note that O.ni
= &in and that y„y„*=y~yn and

use the definition (25), we find that

Since there are assumed to be no coincident poles,
8„*—Sg+40, l+n, and

(40)

Since Ih„*—h I'& I"„I„, num, the a's also satisfy
a weaker set of inequalities,

Ia„ I'& n„„n

The diagonal elements of z are of course real,
n„„=y„y„/I'„, and are necessarily positive because
the I'„are positive (causality).

3. Furtherdeductionsand constraints: Positivity andsum
rules for the resonance widths

The matrix n is Hermitian, hence can be dia-
gonalized and written in terms of its eigenvalues
aq and eigenvectors x~ a.s

(42a)

(h* —h )a =P(h* —h )a n a
(xx), =Qyxy,

x gxx. ' ~xi' ~

(42b)

(42c)

= P (hg* —h„*)o.'q„n„o.,
l, m

+Q (h„*-h„)u,„o,.o.„„.
l, m

(34)

The first sum vanishes when summed one for
I sn by (31), and is identically zero for I =n. The
second sum vanishes by (32) when summed on I
unless m =n. We are therefore left with the equa-
tion

(h„*—h„)n„„=(h„*—h„)a„„ga(„u,„. (3 5)

(h„*—8„)n„„=iy„y„x0,

+ln&ln g nt&nl (36)

The 8 -independent equations obtained by multiply-
ing By„*by (By,*) for ion give no new information.

The background-independent equations (31), (32),
and (36) can be summarized by noting that the ma-
trix n formed from the scalar parameters ~„

xgx g
——]. ,

where the a), are all real. Since n is orthogonal,
o. u =1, det(o.' u) =(deto.')' =1, none of the az vanish,
and n has a unique inverse n with eigenvalues
a& . However, the fact that a is Hermitian im-
pl. ies that a '=n™=a~ =a*. The matrix n* has
(real) eigenvalues aq =aq and normalized eigen-
vectors which differ at most by phases from xz.
We conclude that the sets of eigenvalues (a~ 'j
and I a zj are identical. As a consequence, the
reciprocal of every eigenvalue of a is also an
eigenvalue. Furthermore, the normalized eigen-
vector corresponding to a), ' differs at most by
a phase from the complex conjugate of the eigen-
vector corresponding to a), .

We will supplement this general information
about a with a physical requirement that the S
matrix for N overlapping resonances must go
over smoothly to that appropriate for N-inde-
pendent resonances, each interacting with its
own background, if the resonances are widely
separated relative to their total widths. " More
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precisely, we let
~
h*„—8

~

-~ with yty„, y y, and

~ yty„~ bounded from above. In this limit,- 0, @4m, the different resonances decouple in

(26b), and n„„-+1.Thus, o. approaches the unit
matrix as the poles are separated, az-+1 for
all. X, and deta =+1. The determinant is unchanged
by any continuous motion of the poles, and in par-
ticul. ar, cannot vanish. As a result, none of the
(real) eigenvalues az can change sign as we go
from the case of N overlapping resonances to that
of N independent resonances, and the a& must
be positive in any configuration, az 0, all A..

The condition a), & 0, all ~, is sufficient to en-
sure that the Schwarz inequalities for n are sat-
isfied in the weak form given in (41). We find
from (42) that n„can be represented as

and (47) may be written as

0) +0) X„Q) +
'x.=~

(46)

Now for az& 0, a&+a), ' ~ 2, so

o..- g Ix. (~~)l'=I, (49)

I' 8-I'
8

where we have used the completeness relation
for the eigenvectors of o.', (42d). We therefore
find from (46) that the sum of the partial widths
of a resonance is generally greater than the total
width [Ref. 1, Sec. IX, Etl. (2.13)],

+nm ~ &+ Xn +&m
X

nn +mm &

(43)

(44)

Equality is attained only in the trivial case of
completely nonoverlapping resonances, n = 1.

We note finally that we can obtain another back-
ground-dependent sum rule for the resonance
widths directly from (26b) by multiplying on the
left by y„, summing on n, and using the definition
(25) and the relations (31) and (32),

gy„By*„=zg (8„—b*„)o.„„o.„
n m, n

where the second inequality follows from the use
of the Schwarz inequality for series fP (g g+) (51)

A a ~ A.„' B ' (45)
That is,

withA~ =~a~ x~„and Bq -—va~ x~~ ~ However, the
positivity of the a & is not sufficient to ensure that
the Schwarz inequalities for n are satisfied in
the strong form (40).

We can use the foregoing information to obtain
an upper bound on the sum of the partial widths
of the individual resonances,

~g8 ~.r. = I .~«,
8

(46)

Q = 8) X Qy +Ay X Qy

+ &n &X (47)

where x„(a~) is the n component of the eigenvector
with eigenvalue a&. We have already seen that
the normalized eigenvector x(a~ ') differs at most
by a phase from the complex conjugate of the
eigenvector x(az). Thus,

~
x„(a~)~' =~ x„(a~ '))',

where I'„ is the total width of the resonance. We
will divide the eigenvectors into two groups, those
with reciprocal eigenvalues, az, az with aq 1,
and those with eigenvalues + 1. Then from (42)

~n ~ @+~n ~

C. Higher-order poles in the 5 matrix

We can easily generalize the foregoing results
to the case in mhich S contains higher-order or
coincident poles. The case of coincident poles is
essentially trivial. This corresponds to the choice
of a rank s& 1 in (9), and leads to an expression
for S in which some subset of the poles have ex-
actly coincident energies, 8„=$0, n =1, . . . , s.
We can of course achieve this configuration di-
rectly as a limit of the general N-pole configura-
tion, and mill not consider it. further.

The case of higher-order poles in S is more
interesting, "' '4 and, as was noted in the Intro-
duction, the possibility that the A, meson shouM
be deacribed by a second-order resonance pole
(dipole) was the subject of lively debate a few
years ago. At least two models are known which
lead to second-order poles in the S matrix, "'"
so the subject is not vacuous.

We mill assume that S can be approximated by
a sum of pol.e terms,



3180 LOYAL DURAND 14

R„S(E)=B+Q Q (E
"g )a.

n= j. 0=1 n
(53)

The consequence of the unitarity relation (3) for S
can be expressed in a compact form by noting that

[S (E*)S(E)—B B] is a meromorphic function of
& which vanishes for 8- . It can therefore be
written as a sum over its poles at ( g„} and (g*„).
The residues are easily determined using Cauchy's
theorem, and we find that

S'(E *)$(E)=1

n=z k1 n mo m'

rn-k

ZZ(E g. ). Z
n=1 k=1 n m=O m ~

where

[st(gg)] (m) st(E~)
dE (55a)

I

and use the relations" p(A +B)~ p(A) + p(B),
p(AB) ) p(A) + p(B) —3I, and p(AB)
& min( p(A), p(B)], to obtain the inequalities

ln-k

p(R„,)+p(S') —X- p(S'1)„,)=p Q 8" ))„,. )m=1

[$(g.*)]'"'= dE„S(E) (55b)p-g

Note that a pole of order k in the expansion (53)
contributes in general to the poles of order
k, k —1, . . . , 1 in the pole (or Mittag-Leffler) ex-
pansion of S (E*)S(E).

The product S'(E*)S(E)actually has no poles, so
the residues of the apparent poles in (54) at (g„j
and (g„*] must vanish. Thus,

m=1
p gt(m)R

l -k

min ~S'"), I R„„.
m=1

l -k

-Q p(R„„).

A simple recursive argument beginning with k =l„
—1 then shows that

and

ln-k

[Sz ( g s )] ())))R
m=0

(56a)

n=1, . . . ,N, k=1, . . . , l„

p(R„, „)~ v(S')++ p(R„, ,)
k-1

'[v($') + p(R. ,„)]. (60)

ln-k

, R'„„.[s(g+)]&")=6, (56b)

n=1, . . . ,N, k=1, . . . , l„.

n, ln ~n, ln ~nz l (57)

It is now straightforward to determine the ranks
of the residue matrices for the lower-order poles
at E = g„. We first rewrite the expression in (56a)
as

l -k

s'(g „*)R„„=,[s'(g „*)]'"'R„,.„,
m 1 Sl ~

(58)

The second relation is just the Hermitian conju-
gate of the first, and can be dropped. We will as-
sume that, at each of the points E =8„, the highest-
order pole in the Mittag-Leffler expansion of
St(E*)s(E) is isolated in the sense of Ref. 32. In
this case, R„, must factor (R„, is of rank 1).
Since the residue matrices are also symmetric for
CPT- and T-invariant interactions, we can write
R„, as

The most general form of the symmetrical matrix
R„~ is therefore a sum of 2'& '(v+ p) factored
terms. We will introduce factors of i and I'„ for
later convenience, and write R„k as

j. krak-1R„,=(-z), y„„y„„ (61)

2 )~-)!-1(v+ p)

With this convention, the residue vectors y„' k all
have the dimensions of partial decay amplitudes.

Now p(P.„,) = 1 by our assumption that the high-
est-order pole at E= g„ is isolated. The null-space
of S (g„*)will generally have the lowest allowable
dimension consistent with this assumption and
(56a) for k=1„, v(sz) =st —p(st) =1. In this case,
the most general S matrix of the form assumed in
(53) which is consistent with unitarity and CPT and
T conservation is given by

$(E) B Pg P ( z)))P k ). y zy, k (62)

2 ln-k
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The remaining unitarity constraints on S(E) are
given by (56) and the condition BtB = l.

iyn ym
nm g+ g

(66b)

III. EXAMPLES

A. Simple resonances

l. Single resonance in the presence of background

S(E)=B —i (63)

where BtB=BB =1, and B=B (CPT and T). The
unitarity constraints (26b) can be reduced imme-
diately to the set of equations

The simplest nontrivial problem is that of the
single resonance in the presence of background in
the many-channel case. The S matrix is of the
form

The fact that n is an orthogonal matrix, (37),
implies that

11 21+ 12 22

2 2=Q11 + Q12

2 2=
Q22 + Q21

hence, from (69a), that

11/ 22 12/+21'

(69a)

(69b)

(69c)

(70)

y', y,/r, =y.'y./r. , (71)

Since Q'= Q, Q„=Q,*„and the right-hand side of
(70) has unit magnitude. In addition, n» and o.22

are real and positive. We conclude that Q»= Q22,
that is,

By*=y, y'y=r. (64) and that Q» is purely imaginary,

In the trivial case of no significant background, B
=1, the only restrictions are that the y's be real
with y~y = I'. The general case can be reduced to
the case of no background by noting that a symme-
tric unitarity matrix can be diagonalized by an

orthogonal transformation,

8 =Oe" 0 =bb, b =Oe', (65)

Q12 i 4 Q12'

arg(y', y, ) = —tan '
(

' ', (mod 2).
2&

(73)

Equation (72) determines the phase of the inner
product y, y„

where & is the real diagonal matrix of eigenphase
shifts for the background scattering. If we define

ay ampbtudes g by y=bg, g =b y
we can rewrite (63) as"

Equations (69b) and (69c) are equivalent, and
give

n„=et„=(1—n„')'i =(1+ In I ) (74)

s(E)=& I-i b, z*=g', g'g=r.E g 0 7 (66)
or

The matrix 8(E) =b~S(E)b* obtained by eliminating
the background term entirely is still unitary and
symmetric, and satisfies constraints analogous to
those satisfied by S(E), but with B replaced by 1.

S(E) =B —i y'y' —iE g E g
(67)

where B~B=BB~= 1., and B=B. The unitarity con-
straints (26b) are

By„*= Q„y,
m=1

(68a)

2. T~o overlapping resonances

The simplest and most familiar case of the gen-
eral results of Sec. II is that of two overlapping
resonances. ' ' ' This problem has been treated
elsewhere by a variety of methods. """'"The
8 matrix for two poles in the presence of a constant
background is of the form given in (20) (we assume
CPT and T invaria, nce, but not necessarily P in-
variance),

(75a)

(75b)

(76)

We note finally that the vector equations (67)
must still be solved for the given background and
the given number of channels. These equations
may be rewritten using the results above as

By,*=(I+
I
1x„l')"'y,+i

I n„ly„
By*=(1+I12 I')"'y. il ly12, . - (77)

The sums of the partial widths I'„~ are therefore
greater than the total widths I'„, as expected from
(5o)

Since n»=ot22)lot»l, the weak form of the
Schwarz inequality (41) is satisfied automatically.
Furthermore, the two eigenvalues of Q are al-
ways positive. Ke can also obtain an upper bound
on

I a»l by combining (74) with the strong form of
the Schwarz inequality, (40),
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The solution of these equations is discussed by
McVoy. " One can also reduce the problem to that
of scattering in the absence of any background by
using the method noted after (64)." The latter
problem is treated in detail in Refs. 13 and 16. A

thorough discussion of the slightly more complica-
ted K~ -K~ problem which illustrates how these
equations may be used for phenomenology is given
in Ref. 6.

3'. Three overlapping resonances

We will not give a full treatment of the algebra-
ically complicated problem of three overlapping
resonances, but will simply note that the most
general form of the overlap matrix n consistent
with the constraints of Secs. II2 and II 3 can be
specified in terms of three parameters: a real
hyperbolic angle 8 and a complex angle Q,

coshe
~

cosQ ~'+ ~sin&]& ~',

n = cosh8 sing cos*Q —cosQ sin*/,

conch cos( sin"Q —sin( cos'(, —S niche coo()
cosh&~sinQ ~' +icos/ ~', —i sinh6 sing

i sinh8 cos*Q, i sinhe sin*@, cosh49

8, Dipole resonances

1. Single isolated dipole resonance: Rank one

We will restrict our attention to the case of a
single isolated dipole resonance in the presence
of a nontrivial background. The general form of
the S matrix is then that given in (62) with the sum
restricted to a single value of n. We will rewrite
(62) in a simpler notation a.s

.yy+ A.X Oo.
S(E) B i I (79)

In this parametrization, n has eigenvalues e, e 8,

and 1, that is, a reciprocal pair and one unit ei-
genvalue. The general constraints on the reso-
nance parameters y„, n = 1, 2, 3 are determined by
the three-pole form of (26b).

cients of y and 0 must vanish independently. How-
ever, the vanishing of the coefficient of o' in (81)
wouM imply that

y*(y'o) = 2(x*(o'o), (84)

and

B'o = I' '[a*' —1 —a '(a*' —2}]o*(o'o)

B'o= I' '(a*' —1)o*(o'o).

(85a)

Thus, a*' = 2, and a is real and equal to v 2 .
The final equation of constraint is now

hence that 0 is a multiple of y, contrary to our
assumption. We conclude that y=ao for some non-
zero constant a (y cannot be null, by the argument
above). Equations (81) and (88) then require re-
spectively that

B(o= (r*(o~o)/I'. (86)
The resonance parameters are subject to the uni-
tarity constraints (56),

[Bt —I' '(y*y'+X*X'+ o*o )]oo =0,

[B'- I'-'(y*y'+ X*~'+o*o')](yy+ ~k)

+I' '(y*y~+X*X~ —2o* )o((o =0,

(80}

(81)

(82)

B(o Is lych(y(o) Is loch((P( ) (88)

We can also reduce (81) quite easily. If we assume
that 0 and y are linearly independent, the coeffi-

Equation (81) shows immediately that the matrix
(yy+XX) cannot vanish, since if it did, (o o) would
have to vanish, o would be a null vector, and the
dipole term in (79) would be absent, contrary to
our assumption.

We will consider first the case in which the first-
order pole in (79) has a residue matrix of rank
one, X=O. The relations in (80) must hold for each
element of o separately. Thus, if o is nonzero,
(80) is equivalent to the vector equation.

2i(Z-Z„)
(E g)2 (87)

where g =Ez —iI'/2. The remaining unitarity con-
straints (86) a.re now completely equiva. lent to those
for a single first-order resonance in the presence
of background,

B'cr = 0* 0'o = I'. (88)

The expression for S in (87) can be obtained ra-
ther simply as a singular limit of the two-pole
formula (67) as the two poles merge. We will con-
sider the case in which y, -e' y, as g, -g, . The
combined residue functions will then continue to
factor as in (88). Equation (72) implies that y, y, /
( h *, —8,) is real, hence, that

If we take the Hermitian square of this equation and
use the unitarity of 8, we find that 0~0 = I'. The S
matrix is therefore given by a typical dipole ex-
pression

20'0' 6'0
S(E)=B—i@ g

—I
( g),
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ig ~1 ~2
1 2

(89)
dently, so either

a2+52=0 (95)
Moreover, for y, =e'~y„ the inequality for ~OI»

~

in
(76) becomes an equality, so n» becomes singular
for g2- g„

(90)

We can take both (89) and (90) into account by in-
troducing a new residue vector o related to y, and

y2 by

(91)

If we substitute the definitions (91) into (66), we
find that the resulting expression reduces exactly
to (87) for g, -g, = b No.te that the original resi-
due vectors diverge in this limit.

2. Single isolated dipole resonance: Rank two

The reduction of the unitarity constraints in (80)
and (81) is somewhat more complicated if the resi-
due matrix for the first-order pole is of rank two,
that is, for y and A. independent, nonzero vectors.
One can again show that the assumption that the
residue vectors are all linearly independent is in-
consistent, hence, that

o =ay+&A. (92)

for some constants a and b. Since y and A, are in-
dependent, the coefficients of y and A. must vanish
independently in (80} and (81), and we find that

BI(gy+ bz) = I' 'y*[(yto) —a*(oto)]

+ I" 'z*[(X'o) —b*(o'o)], (S3a)

BIy = I" 'y*[(yty) —a*(a Iy) —a(yto') +2a*a(a' "cr)]

+ I' 'X*[(X'y) —b*(o'y) —a(X'o) + 2ab*(o'o)],

(93b)

B'~ = r 'y "[(ytA} a"-(oIA) b(y—to)+2a*b—(oto)]'

+ I' 'X*[(X'X)—b*(o'A) —b(X'II) + 2bb*(o'o)].
(93c)

y*(a'+ ')b[( '
y) —o2a*(o'o}]

+X*(a'+ ')[b(X'o) —2b'(|I'o)] =0.

The coefficients of y* and A. must vanish indepen-

If we combine the last two equations to obtain a new
equation for BI(ay+bX), we find it is consistent
with (93a) only if

2a*(oIII) =y'o, 2b (o'o) =XIo. (96)

1 (y" —iX')(y —iX)

ly+ixl
'

The vectors y and A, must be relatively real,

y'x = (y'x)* = ~'y,

and are normalized so that

yty+ A. tA. = 2I'.

(97b)

(98a)

The unitarity equations (93b) and (93c) can be re-
duced finally to simple constraints on the phases
of y and%, ,

(99

The choice b = —ia in (95) does not lead to a new

solution, since the phase of A. is only determined
modulo 7t' ~

The algebraic manipulations which lead from
(93b), (93c), and (S5) to the results in (97)-(99)
are straightforward, but lengthy. The method
used involves taking the Hermitian squares and
products of tile exp1'essloIls iI1 (93b) alld (93c),
and also using the identity AB~y =yB~A, , to obtain a
set of equations independent of B. These are suf-
ficient to determine the constant a' given in (97b)
and give the reality and normalization conditions
in (98a) and (98b). When these conditions are used
in (93b) and (93c), the unitarity equations collapse
to the very simple form given in (99). We note
finally that these results can also be obtained from
those of Rebbi and Slansky" or Dothan and Horn"
by using the method discussed following (64) to
eliminate the background. (The Rebbi-Slansky so-
lution for the dipole S matrix was obtained as a
limit of the S matrix for two first-order poles in
the absence of any background scattering. The
Dothan-Horn solution was obtained by the mass-
matrix method, again in the absence of back-

The conditions in (96) and the definition (92) re-
quire that a2+b'= &. The solutions to equations
(93) which correspond to the constraints (95) and

(96) are therefore distinct.
If we choose b =ia corresponding to the con-

straint in (95), we obtain a solution to the unitari-
ty equations which generalizes that given by Hebbi.
and Slansky" and Dothan and Horn" for the case of
no background scattering, 8 =1,

.yy+ xx,r (y + ix) (y +it)
g (@ g)2

where
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ground. The generalization to higher-order poles
has been considered by Huuskanen" and by Chan
and Slansky" using the mass-matrix method. )

The second independent solution to the rank-two
dipole problem corresponding to the conditions
(96) is also easily constructed. In this case, it is
convenient to use g and y as the independent vec-
tors. The resulting S matrix is quite simple,

,, yy —I' '(o y)(yo+~y)+2«

+ 2 go gg
S(E) B K

g
I

( g)2 (103a)

where

8 g=g*, 0 0=I',
g fyf -ytg ytlyi —P

(103b)

We can, make this correspondence clear by intro-
ducing a residue vector y' which is orthogonal to
o, y' =y —I' '(sty)o. Then

gg
(g g)2 (100a) gfy1 O (104)

c '=y'y &'-I o'~ I'

The vectors g and y are normalized so that

(1001 )

The last condition requires that the first-order and
the dipole resonances be nonoverlapping even
though they decay into the same channels.

g g=l",

y'y I' 'lo-'yl'+4~ '(o'y)'=I'
(101)

The last condition implies that (o y) is real. The
remaining unitarity constraints assume the rela-
tively simple form

(102a)

&'y=y'+I' '~*(~' y v'~)— (102b)

The S matrix in (100a) corresponds to a situation
in which a first-order pole is coincident with an
isolated dipole resonance of the form given in (8'?).
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