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Zero-mass plane waves in nonzero gravitational backgrounds
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The mathematical definition of what is intuitively called a "plane wave" on the curved background of a black
hole is clarified and discussed from the viewpoints of potentials and fields. Because of the long-range
Newtonian part of the gravitational field the asymptotic wave fronts of an incident "plane wave" (describing a
radiative perturbation for a scattering experiment) are distorted in a manner analogous to the wave fronts of
an electron beam in the quantum-mechanical Coulomb scattering problem. In addition, the elec«omagn«ic
and gravitational fields can be described with either a potential formalism (i.e., the vector potential and the
metric perturbation) or a field formalism (i.e., the electromagnetic-field tensor and the Riemann tens«)»
this paper we present a distorted "plane wave" prescription, necessary for the calculation of the scattering
cross sections of electromagnetic and gravitational waves off of a black hole, which agrees with the accepted
prescription for a massless scalar field and satisfies the intuitive notions of what constitutes a "plane wave" in

terms of potentials and fields.

I. INTRODUCTION II. ELECTRON SCATTERING IN A COULOMB FIELD

In order to discuss the scalar, electromagnetic,
and gravitational scattering cross sections of a
black hole, it is necessary (as with any scattering
problem) to find an asymptotic form for the field,
a solution of the appropriate wave equation con-
sisting of an incident plane wave and a term de-
scribing the scattered wave. In the mathematical
formulation of the black-hole scattering problem,
one must consider both the long-range Newtonian
field, which distorts the shape of the wave fronts
even infinitely far away from the scattering cen-
ter, and the existence of a horizon, which forces
the replacement of the usual boundary condition of
regularity at the origin with an "ingoing flux" con-
dition at the horizon. In this paper we illustrate
how these features affect the definition of a plane
wave and present formulas for the Weyl tensor
components tjto and tjI, for a plane wave incident
along the symmetry axis of a Kerr black hole.
(The electromagnetic case is treated in Appendix
B.) These formulas will be used in a subsequent
paper to find the gravitational-radiation scattering
cross section of a Kerr black hole. '

We first review electron scattering in a Coulomb
field, the archetype of the long-range-force scat-
tering problem. The result provides guidance in
Sec. III, where the gravitational-plane-wave prob-
lem is considered and partial-wave amplitudes for
an incident plane wave are found. In the final sec-
tion, we give an alternate derivation of the gravita-
tional-plane-wave formulas for the purpose of il-
lustrating an interesting property of black-hole
scattering and the Bianchi identities.

with

+ ' exp{i' +2Mln (2am')]},, 8

y
(2.1)

f, =, , exp{2i&uMln[sin'(a8)] +is +2iqgsin' —,'8
(2.2)

and

q, = argI'(1 —2i&uM), (2.3)

displays the existence of a logarithmic adjustment
in the phase term of the second part (the "scat-
tered piece") as well as very distorted phase fronts
in the first piece (the incident plane wave). (This
solution is for the attractive scattering between
a fixed-force center and a scalar electron with the
parameter choice 5'/2p =1, where g is the mass
of the scattered particle, and with attractive
charges of magnitude Ze'=4M''. In this form it
directly gives the Newtonian gravitational limit of
scattering of a scalar massless field of frequency
~&u~ in a field generated by a mass M. ) This identi-
fication of the two parts of (2.1) is justified by the
resultant cross section using (f, (8)~', which gives
the experimentally measured classical Rutherford
cross section. '

The problem of the scattering of (spinless) elec-
trons off a point charge, as shown by Gordon, '
has a closed-form analytic solution in parabolic
cylindrical coordinates in terms of hypergeometric
functions. The asymptotic form of this solution,

g,~„exp{i&u[z —2M in&a(r -z)]]
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Because the Coulomb potential is spherically
symmetric, the scattering problem also can be
approached in terms of an /, m mode sum for each
incident positive-energy state. This is essential
for the analysis of a plane wave on a Kerr back-
ground. No closed-form solution for a gravita-
tional plane wave is known [cf. (2.1)], and the only
analytical technique available in the Kerr geometry
is based on the separability and decoupling of the
perturbation equations. Such an approach amounts
to a partial-wave analysis using the spin-weighted
spheroidal harmonics. If in the Coulomb case.
the angular functions in the mode sum are taken to
be sphex"ical harmonies so that

= Q u, (r, (u)P, (8), (2.4}

then the g& are related to hypergeometric functions,

u, =C,r'e' "F(l +1 —2iM+, 2l +2, —2i(dr), (2.5)

and their asymptotic form is

u, -r 'exp[+i&a(r+2Min2((pr ——,'fv+g, )],
with

q, = argI'(I + 1 —2i M&gp) .

(2.6)

To solve a scattering problem from this mode-
sum approach, the incident plane wave must be
extracted from the full solution (2.4). Such may be
done by subtracting the scattered piece, as de-
termined by (2.1), from (2.4) provided that f,(8) in

(2.1) be expanded in terms of spherical harmonics.
As shown by Schiff, ' the expansion of f,(8) is

f.(8) = . Z(21+1)& (8)e""',1
(2.8)2'

ox'

(2.9)

HI. GRAVITATIONAL PLANE %AVES

The analysis of the previous section suggests
that a partial-wave analysis of a plane wave in a
long-range foxce should proceed by constructing
the partial-wave decomposition of a. free plane

since Z, (2l + I)P, (8) =45(1 —cos8) vanishes for
8g0. Hence, we find from (2.1), (2.4), and (2.9)
that the asymptotic incident plane wave is

1 g (2I + I)[e'""~—(-1)'e '~~]P, (8), (2.10)
2$(dF'

g

where r, =r+2Mln2d'. This is identical to the
asymptotic form for a flat-space plane wave with
the single exception that r, replaces r in the ex-
ponents (only).

r—(r '+a') ln ——1 +const,

where r, are the roots to r' —2' +a'=0, and a
and M are the angular momentum para. meter and
the mass of a Kerr black hole. ' " For the
Schwarzschild (n =0) case, (3.1) reduces to the
Regge-Wheeler coordinate"

(s~ =r+ 2Mln -1 +const (2 2)

a form suggestively similar to the xadial coordi-
nate in the Coulomb background. The WKB solu-
tions of the Regge-Wheeler and Zerilli" equations
for odd and even gravitational perturbations of a
Schwarzschild black hole have solutions of the
form exp(airer* —iu&f), so r* is an appropriate
radial variable.

The asymptotic form of @» determined by the
r-r ~ replacement is matched to a solution to the
Kerr metric perturbation equations. By differ-
entiation we then obtain from the perturbed metric
(the asymptotic form is not sufficient) the field
quantities g, and g„which are taken to represent

wave, replacing r byr, in the exponents, and
treating the problem like a short-range potential
with r, the natural variable (instead of r). Prob-
lems involving short-range forces superimposed
on the Coulomb background have been treated in
this way. '

Here we study the scattering of waves in black-
hole ba,ckgrounds, considering both rotating and
nonrotating black holes. In both cases the equa-
tions describing the propagation of massless sca-
lar, electromagnetic, and gravitational waves in
the background can be separated into a sum over
spheroidal (or spherical) harmonics, with a. har-
monic time dependence and a radial (r} functions, l
dependence which in general has to be integra, ted
numerically. ""In the text we concentxate on
the gravitational problem; the electromagnetic
case is treated in Appendix 8 (for an alternate
treatment see Herlt and Stephani'); for the scalar
case see Matzner. '

In outline, to describe the distorted incident
plane wave in the ease of a nonzero gravitational
background, we choose the ingoing and outgoing
pieces of a transverse-traeefree metric perturba-
tion h» to have the same values as the correspond-
ing plane wave in a Qat spacetime background.
Then we modify the phases by making the replace-
ment r ~ r*y
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the distorted plane wave.
On a flat background a transverse-tracefree

plane gravitational wave traveling up the z axis
is given in Cartesian coordinates by

0 0 0 0

0 cos~(t -z) sin(u(t -z) 0

0 sin(a(t -z) —cos(u(t -s) 0
(3 3)

+P", .(«u) g,'(a~) exp[-i~(r+t)]),

27rk
f +,'.,(a&a) g,'(ace) exp[i&ad(r —t)]

g $4PV

0 0 0 0

[Throughout this paper we consider only mono-
chromatic waves of frequency ~&u~; a positive (neg-
ative) choice of e corresponds to a left (right)
circularly polarized wave. ] To facilitate a com-
parison with the r- ~ limit of a Kerr metric per-
turbation we project this tensor onto the complex
m" legs of a null tetrad" compatible with the flat
background [see (A2)] and expand these scalars
in spin-weighted spheroidal harmonics, Z, (8; a&u)

of the appropriate spin weight'

mP
mm pv (3 4)

2hz
{Qg.20(-a(o) Qg '(-a(o) exp[-i(o(r —t)]

To proceed in this situation, we must match the
incident plane wave to two particular homogeneous
metric perturbations labeled k& „and h&'„. s
shown in Fig. 1, h&„ is the solution which vanishes
on past null infinity (8 ) and corresponds to flux
emerging from the past horizon, traveling toward
future null infinity (8') with some flux scattered
back toward the future horizon; and h~'„ is the
solution which vanishes on future null infinity.
Hence, h&~ and h&d'„are linearly independent solu-
tions which correspond, respectively, to pure out-
going and pure ingoing radiation at spatial infinity.

The metric perturbation &&„has the property
that it is asymptotically transverse-tracefree at
spatial infinity in the ingoing gauge, so it may be
matched to the ingoing piece of the plane wave

given in (3.4) and (3.5). &„„may be expanded into
a mode sum:

where h„„(z,I m+P) is the I, nt, &u, P mode of the
perturbed metric as given in Table I (in this case,
in the ingoing gauge). The asymptotic form of the
transverse-tracefree piece is

hdawR ~ d g ff llowli @~( )
exP[ t(U(r +t)]

1 e tas|t'

(3 7)

when one takes the normalization
+ ~r,'„(-a~) g, '(-a~)

x exp[tv)(r +t)]], (3.5)

exp[-i~(r*+ t)]
4(d r (3.8)

where, N", , and, N, .O
are the numerical coeffi-

cients discussed in Appendix A. The expxessions
given by (3.4) and (3.5) are transverse-tracefree
for each /, m mode.

With the substitution of r* for r in the exponents„
we rnatch these metric plane-wave perturbations
to the Kerr metric perturbations at infinity. It can
be shown that the transverse-tracefree compo-
nents are gauge invariant under any gauge trans-
formation which leaves the metric perturbation-
as expressed in any frame with constant-nox'm
basis vectors —falling off as r ' or faster at in-
finity. "'" Hence, we can rnatch coefficients in any
gauge which satisfies this condition.

Chrzanowski" has given formulas fox the per-
turbed Kerr metric (see Table I and Appendix A
for an explanation of the notation) in two distinct
gauges, neither of which, in general, is trans-
verse-tracefree near spatial infinity. However,
these metric perturbations are transverse-trace-
free as r- ~ in the ingoing gauge (outgoing gauge)
provided that the perturbation is pure ingoing (out-
going) at tnftnlty.

for the radial function which appears in the in-
going-gauge expression for hd&~(x. , I m&uP) in Table
I. The constants K&», to be determined by com-
parison with (3.4), satisfy the crossing relation

FIG. 1, The properties of the scattering solutions
label. ed "up" and "down" are illustrated above with the
aid of Penrose conformal diagrams of a Kerr black hole.
An "up" solution consists of a wave packet initially
coming "up" from the past horizon, propagating out to
8+, and scattering hack through the future horizon. For
a "down" solution the final state consists of waves going
"down" the future horizon with no radiation arriving at
g+
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TABLE I. Perturbed potentials and field quantities.

Ingoing Radiation Gauge: A& l"= h» 1 ~ = h&
~——0

A„(x,lm&I'= +) = [-l &(0*+2P*+ 7*}+m~&(D+2&*+ p*}] &8'& (r) &Z& (8,aa}e ' ~

+I'[-l&(6+2P+ 7'}+m&(D+2e+ p)) ~R&~~(r) «Z& (e, au)e '~~,

h»(x, l mwP= e) = [-l
& l,{8*+n+ 3p* —7*)(8~+4 p ~+ 37*)—m&~m„*(D —p*+ Se *—e)(D+ 3p*+4e*)

+l~„m,*& [(D+p —p*+~+3~*)(6*+4P*+37*)

+ (8*+SP"—n —r- r*)(D+Sp*+4e*))j 2lt, „{r)+2ZP(8, em)e

+P[ l &l, (6+—n" + SP —r)(8+4P+ Sr) —m&m„(D —p+ 3 e —e*)(D+Sp+4e)

+l~&m„] [(D+p* —p+( ~+Sr)(5+4P+ 37)

+ (8+SP —n*- r* —v)(D+'Sp+4 )e)j pB,„~(r) 2~8, e(o)e '~'.

Outgoing Radiation Gauge: A&n" = h» n" = h~& =0

A„(x,lm~a=+)=p -'[n„(S+~*-20.*)-m„Q,+ p, -2y )]+,Z, ~(~),Z, (e, a~)e-' '

+&p [n&(6*+ 7|.-2e) —m~&(D+ p, —2y) j+&B&~~(r) +&~&8, ace}e ~t,

h„,(x, lm&op=+)= p* (-n„n„(6-Sa*—p+ Gn )(8-4n*+ r") —m„m„(&+ Gp* —Sy*+ y)(&+ p*-4y*)

+n(~m p) [(5+ 5m" + P —Sn*+ 7}(b,+ p*-4y*)
+ (a+ Gp* —p-3y* —y)(G-4a*+ e*))j+2R, ~(r) 2Z,"(8,mu) '~e'

+Pp~l, n„n„(8*—-Sn —p*+ Gr}{8*—4a+ e}—m&m*„(n+ Gp —Sy+ y*)(A+ p-4y)

+a&„m„*&[(5++ Gr+ P*—30.+ 7~){A+p-4y)
+ (a+ Gp- p* —Sy —y*)(8*—4n+ r) jj +2R& (r) +2Z& (8, ew)e

(1)0
= (D —e + e* —p*)A —(6+ *—P —e*)A

&

y, = (6~+ ~+ p*- 7*)A„—(a+ I *+q -y~)A,

2go = (6+ H —SP —e*)((5+H —2P —2m*}h&&+ (D —p~ —Se+ e*)(D—p* —2m+2m*)h

—[(D—p~ -Sc+~*)(6+2~*-2P)+(6+ H-SP —e*}{D-2p~-2e)]h&,
&

2g4= (6*—7*+Sn+ P*}(6*-7*+2n+2P*)h„„+Q+ p*+Sy —y~)(n+ p,*+2y —2y*}h, ,
-[Q,+ p*+Sy —y*)(6*—27~+ 2a)+ (6*-7.*+Se+ P*}Q,+ 2 p,*+2y)]a~» .

[K~ e] *=&Ki - J» (3 9)

gK,"-„~= —. Pr', „(am)5,5(&o. —~). (3.10)

required for the metric h~'„ to be real. P takes
on the values +1 according to the parity state.

The ingoing piece of (3.4), when matched to (3.7}
after the x x* exponent substitution, implies that

1 exp[i~(r* —i)]
Ed r 5

in the outgoing gauge in Table I, then

h„"e = d(u Q K,"-~&ee (x, f m(aP)
~eo & ~ Nf 8&

(3.13)

(3.13)

The crossing relations then give

K,'-~ =-—. +,.„(a&o}[(},(}(ro —&o) —J 6 eG(su+co)].
$4P

(3.11)

The outgoing piece of our plane wave may be used
to fix the amplitude of l&~ in the outgoing gauge,
which is transverse-tracefree at infinity for an
"up" solution. If vie take

together with (3.9}. Comparison of h"ee» with the
outgoing part of (3.5) gives

Ki"'-e = -(-1)" Kt~~ (3.15)

when (A10) is used.
The metric perturbations &&P„and h„'„ together

„e,"" —~ „e exp [i~(r ' —i)]
c4P ~ K)~~p eZg (Q&d)

l gm, P
(3.14)
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constitute the asymptotic plane wave, yet they can-
not simply be added since they are in different
gauges. However, the perturbed Riemann tensor
is obtained by linear operations on k&„, so we may
calculate the perturbed $0 and $4—being gauge in-
variant —by taking the sum of each of the contri-
butions of h&~ and h~&0~. This avoids wox'ry about
adding two metric perturbations in different
gauges.

To obtain a formula for g~', for example, we
insert (3.6) with hdd'„(x, l m(t)P) given by the ingoing-
gauge expression in Table I into the equation for
I|), also listed in the table. The resultant expres-
sion for gddo~, consisting of a fourth-order differ-
ential operatox' acting on some combination of

with Qt (II(t)) and g, (a(d), may be simpli-
fied using the properties of the Teukolsky func-
tions. The formulas, valid at all radii, obtained
in this fashion ale

( 1)
t+

mii ttio)(r» tj-
gon - . . . (ReC —12iPMa&) n „Z, (a(d),

8)e)

(3.18)

-N e-4~/++ t}
„(RSC+ 12iPM(d), ,Zl (a(d),32 ~( r'

hg (&+P)/2
N==. N'. (8&d)2 (d

(S.19)

for the nonzero modes: (m=2; a&=(t); P =+1, -1;
ln 2) and (III=-S; (d=-(d; P=+1, -1; /n 2). To
obtain (3.18) we have used the fact that

8$d0%fl — d~ ~ ~0'Nffi 10%8l fit e l QJ t

l NLP

down 'to) I 1

(3.20)

-ee i) fe g=( one+1 lekf(e)n

Id ff dean
adown @m(8 )&-t(e) t

(3.16)

-n); fe P=(neo -)eie(en)

x Xt~n-d, op "n,@t (8(d)e '"',

Be 't; =J e-te Q Io) x p' Q (e )e

Rl'8 normallzations collslst811't with (3.8) Rlld (3.12) .
Our representation of a distorted plane wave in

thell, ls the Slllll (fol the RCCesslble l, ttte (e) e P
modes) i)dnl +'I"do; similarly, gp+I))od' " is the cor-
responding distorted plane wave in I))o.

The prescription that we have followed to obtain
the above, namely substituting r-r~ in the expo-
nents, can be seen to give, in fact, a minimally
distorted plane wave from the following ax'gument.
A typical component of the flat-space metric is

(3.21)

or asymptotically

(3.17)

is defined by (A16). With regards to the deriva-
tion of the above, it is important to note that the
asymptotic form of the perturbed metric does not
constitute sufficient information to derive the

lillllt of (3 ~ 16) lleeded to specify Rll lllcldellt
plane wave. This is why the asymptotic pertuxbed
metric has been matched to exact formulas for
Kerr metric perturbations.

Rather than directly sum the coefficients as in
(3.16) we choose to consider each l, ttt, e, P mode
separately since this is how they enter numex ical
calculations. Elis. (S.ll), (3.15), and (3.16) allow
us to write

Accox'ding to oux prescription, we then make the
substitution I'-r* in the exponents in (3.22). (The
metric h» should strictly be expressed in spheri-
cal coordinates before the spherical harmonic de-
composition, but the terms arising in this way do
not affect the phase exponents. ) The sum in (3.22)
becomes precisely the sum which gives the dis-
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torted scalar plane wave appearing in (2.1). Hence,
the metric ls

h„, =-h,„=h He(exp[is)(z —2MIn(o(w -z) —f)]],

(3.24)
h„= h Im(exp[i u(z —2 Mined(l' -z) —~)]),

which is the Qat-space expression with the dis-
torted phase.

This minimally distorted plane wave (3.24) is
transverse to lowest order in M/r in the incident
region (z &0), and it suffers all the peculiarities
of the scalar expression for z =r downstream of
the scattering. However, it must be remembered
that these are only asymptotic expressions, so the
singularity near r -z =0 (angle of scattering near
zero) is masked because of the long-range small-
angle tail of the Newtonian scattering.

IV. A RIEMANN-TENSOR APPROACH TO
GRAVITATIONAL PLANE %AVES

The Riemann tensor components $0 and $4 for a
distorted plane wave may be derived by more di-
rect alternate means that do not necessitate the
introduction of formulas for the Ker" metric per-
turbations. This second method for deriving for-
mulas for g and g entails making the substitution
r -r* in the flat-space formulas for g,"'""and g,"~

and using the Newman-Penrose equations to de-
termine the 1" ' terms gp and /~4'"" By fo.llowing
this procedure, we implicitly build in a phase re-
lat1on between the 1ngolng and outgoing pieces of
the distorted plane wave, which is difficult to jus-
tify as being the correct choice of phase. However,
the resultant formulas are identical to those found
in Sec. III (i.e. the ingoing-outgoing phase relation
coincides with our previous choice), thereby giv-
ing us added confidence in (3.18) for g, and f,

For a plane gravitational wave traveling up the
s a 1s on a Qat background, it 18 straightforward
to show that

(4 4)

If we follow the prescription of setting r-r* in
the exponents and taking the resulting expressions
as the asymptotic values of 1), and g, on the Kerr
background, then the power flux per E mode of in-
going and outgoing radiation at infinity (as com-
puted from g,) does not balance. Using (4.4) and
the Press and Teukolsky formulasa for power flux
in terms of g, we obtain

dEin 12 8lal 4' 'b '
(
g)2 ~10 -2

dEO, & 1 4v'b '
(

dg 2~3 ~3 'd l 0

As shown in AppendixA, their ratio is given by

dE 256 (24)'

(4.7)

and is unity only if M=0, i.e. on a Qat background.
A 81mllar dlscx'epancy ar18es when the $0 1Qgo1Qg

and outgoing power-flux formulas are compared;
however, if we use the r ' part of $0 to describe
the ingoing Qux and the r ' part of $, to describe
the outgoing Qux, then we find their ratio to be
unity. Therefore it must be concluded that the
coefficients of the r ' terms are incorrect as giv-
en by (4.3) and (4.4).

To correct the r ' pieces in the expressions for
Q, and g„we must use the Bianchi identities to-
gether with the px'esumably correct r ' terms g,"~

and g""". Eqs. (4.3) and (4.4) lead to the (asymp-
totic) identification

g, =b (1 —cos8)'e" "exp[is)(& —i)],

,'b (1+cos8) 'e ~ ~ ex—p[i&a(z —&)],

(4.1)

(4.2)

8vb, exp [-i+(r*+f)]
2~& (s&

(4.8)

(b = =,hru'), which may be expanded in terms of
spheroidal harmonics to find the asymptotic forms ,p ~ 2wb 2 exp[i'(r* —i)]

2Zg s(d

(4 8)

(4.3)

81nce $0 and g, completely determ1ne each other, "
we may find pop from g"P and g~d'"" from god'

specifically, the Bianchi identities together with
the spin-coefficient equations lead to the connec-
t1on formulas
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D p rl] =p (5~+3a+p*}(5~+2a+2p~)(5*+a+3p*)(5*+4p*)r)] —3M —g* (4.1o)

and

p '(~+»*+3y —~*)(&+5t *+2y —2y*)(~+5t *+y —»*)(&+r ' 4-y*)%.

=(5+5]r*—3p —a*)(5+5rr* —2p —2a*)(5+5rr*-p —3a*)(5+v*—4a*)p 'g +3M—]J]~.

(4.11)

Substitution of the "down" and "up" formulas into, respectively, (4.10) and (4.11) gives (3.18) summed over
parity states.

The result summed over parities has a remarkable feature: Only one' value of m appears in the ingoing
(outgoing} part of ]I]0 (]I]4), while both m and its negative appear in the outgoing (ingoing) parts. For instance,
consider the composite form of $0:

g 4wh(u',
( )

exp[-ird(r*+t)],
( ) „„

(ReC
e*'"'" e,

] ]
„SeMte eee[-i (e —e)],] ] „„)

4g F ~5~5

(4.12)

An m = -2 term occurs in the outgoing piece only.
This anomalous outgoing piece has no convenient
interpretation nor do the connection formulas (4.10),
(4.11) used to derive (4.12). In addition, this extra
term makes the summed-over parity-states result
unsuitable for the purpose of numerical calcula-
tions.

To make sense out of the connection formulas
and the resultant expressions for the distorted
plane wave, one must consider separately the scat-
tering of each parity state. Notice in (3.18) that
each parity solution has both ingoing and outgoing
parts for each m; connection formulas (4.10) and

(4.11) relate in a comprehensible fashion rl], and

g4 for the ingoing or. outgoing piece of either parity
state. It is an unfortunate interference between the
two parity solutions which renders the peculiar
form of (4.12).

The fact that the two parity solutions scatter dif-
ferently (and, accordingly, have different refer-
ence phase behavior) is a somewhat surprising re-
sult but is the same type of phenomenon as the
dependence of cross sections on the value of m.
I' =+ 1 describe two different eigenstates of the
system and have to be treated separately.

The obvious source of this complicating feature
of gravitational wave scattering is that the con-
stant C is complex, a result whose origins, un-
fortunately, are not quite so obvious. Investiga-
tion of the Bianehi identities leading to the connec-
tion formulas shows that the presence of ImC is
attributable to the fact that one is perturbing a
field whose background value is nonzero. The ap-
pearance of ImC in the potential formulation used

in See. III is more obscure because ImC arises
only at the end of a rather lengthy calculation.
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decouple and separate provided that the null
tetl'ad (111 Boyer-L111drlulst [t, r, 8, &p] coordlIlates)
coordinates)

I =[(r'+a')/t, 1,0, a&t ]
[r'+a', - t]„0,a]
2(r'+a'cos'8) '

[ia sin8, 0, 1, ijsin8]
v 2 (r +za cos8)

(A2)

APPENDIX A: THE TEUKOLSKY FUNCTIONS AND THEIR
SYMMETRIES AND ASYMPTOTK BEHAVIOR.

As shown by Teukolsky, ' the equations for the
Acyl tensor components and electromagnetic field
components

]I],= C„„~r]t"m"l -"m' (s = 2)

]I],= E„„I"m" (s =1) (Al)

(r —ia cos8)'4], = (r ia cos8)'F»—m*"n" (s = -1)
(r —ax cos8)Q, = (r —1a cos8)'-C»~r]n"m*"n"m*

(s =-2)
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is used. In this tetrad, the only nonzero spin. co-
efficients are

-p*cot8
r -fa cos8' 2&2

(A3)
iap' sin8 -iapp* sin8s= ~, v= ~2, P=PP e&(

with b. =r' —2Mr +a'. (These spin coefficients and
the directional derivatives D =/&9„, 4 =n"8„, and
6 = m"e„appear in Table 1.)

The separable radial and angular functions,

,R, ~(r) and, ZP(8, a(u), are labeled by the spin
weight s of the field function; $0, for example,
has s =2 and separates as follows:

(,=Q fd((, ,(r„),z, (e, mg)e "'.
l etn

The differential equation satisfied by, A, (r) is
given by Teukolsky4, and the angular function

,S((8,a(u), defined by

,ZP(8, a(u) =,SP(8, a(u)e' (', (A5)

is a solution to the second-order differential equa-
tion

1 d d 2 2 2 PÃ 2 olS 2 2 2—sin8 —8 + a'~'cos'8 — . , —2a~+cos8 — . , cos8 —s cot 8+E-s S=O
sin8 d8 d8 sin'8 sin'8 (A6)

with E an eigenvalue equal to l(l +1) when a(u = 0.
The harmonics are normalized to give Z,Z,Z,Z, P,' = (ReC) eSg, (A14)

J,ZP(8, a(u), Z( (8, a(u)*dA = l.
The constants introduced in the asymptotic ex-

pansions (3.4) and (3.5) are coefficients in the lim-
iting behavior of,S, near 8 =0 and 8 =m. Investiga-
tion of the limiting form of (A6) near the poles
gives

where 3 and HeC &0 are constants shown by
Teukolsky and Press and Starobinsky' to take the
VRlue s

8 =+[(E +a'(u' —2am(u)'+4am(u —4a'(u2]'~'

S((( ~ 8l Ill+8] ~((l
( )1

.S( e-.(& -8)~ 't. &P.(a(u),
(A7)

( Rec (' = (Q'+ 4a(um-4a'(u')[(Q -2)'+ 36a(um —36a'(u']

+ (2Q -1)(96ae(ua —48a(um) —144(u2a',

(A16)

,Sg (8, a(u) = (-1)™,SP(s —8, a(u),

.SF(8 -a(u) =(-1)'"P( (~ 8, a(u),-
we hRve

(A8)

where, N", ,(a(u) and, N, , (a(u) are constants.
Because of the symmetries of the angular func-

tions"
with Q =-E+a au —2a~.

Consider (A13) for 8 =0 and suppose m&0. Keep-
ing only the dominant terms in this limit, we find

,A', ,(2m+2)2m8~ '~ =B,N", .,8(~ '~,
e

(A17)

s&F e=-( 1)"",&-P,

,N. ..(a(u) =(-1)'",N, .„(-a(u).

(A8)

(A10)

4(m+1)m ' "' =B.
l;0

A similar analysis in the gravitational case leads
to the result

Additional relationships among the constants follow
with the aid of the operators

Z, (m, (u) =8 e + m csc8 —a(u sin8+@ cot8

384 eN, ,e = (ReC) eN, .&&. (A18)

0 11 l + 1 (A13)

Zt(m, (u) =S(-m, —(u)

introduced by Teukolsky and Press. ' They act as
the analog of raising and lowering operators
connecting angular functions, S, with those of
opposite spin weight. Specifically, one has

APPENDIX B ELECTROMAGNETIC PLANE NAVE IN

A KERR BACKGROUND

Derivation of formulas for the electromagnetic-
field components «I) 0 and Q2 describing a plane
wave incident along the z axis of a Kerr black hole
proceeds in the same fashion as the derivation of
the $0 Rnd $~ expressions in the text. %6 make the
substitution r-r~ in the exponents of a transverse
vector potential A„, match the amplitudes of the
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ingoing and outgoing pieces to formulas for the vector potential in a Kerr background, and use these form-
ulas to find fII}, and Q, for the plane wave.

We start with a flat-space plane wave traveling up the z axis:

Ap=A
cos~(t —z)

s inst�(t -z) (81)

The asymptotic (r- ~) behavior of the spherical transverse pieces of the above are

A =A&m"„~„~((cos8—1}exp[its(z —t) +ittt]+ (cos8+ 1}exp[ ittt(-z —t) —itp] j
2A

w{,N t'. „(atd), Z,'(8, a&u) exp [ i&a(r-+ t)] ,¹'n(-a&u),Zt '(8, aw-) exp [ itd (r-—t)]) (82)

and

A m, „g . (-,N, .'„(- ua&), Z (t8, —atd)exp[i&a(r+t)]+, Nt'. ,(attt), zt'(8, attt)exp[i&ad(r —t)]].i~r

After the substitution r r* in the exponents,
(82) and (83) may be matched to the asymp-
totic forms of vector-potential perturbations oi the
Kerr metric.

First consider the ingoing piece of the vector
potential A'„'"". In the ingoing gauge listed in Table
I, A~&'"" is transverse at infinity and may be ex-
panded as follows:

with the outgoing part of (83}. If AP is expanded
in spheroidal harmonics

A ]1 d(d Kl ffe(ztP A lf X ~ lW(L)P
ate l, m, P

then the asymptotic form of A"'+ is

A„'„~ d&u g K,~t,zt(8, attt)
l, m, P

Adown — d+ g K down Adown(z I ttt+P)
l,m, P

(84) x exp[its(r* —t)]

1 exp [-i(u(r *+t)]
2447 r

then asymptotically A.
'""behaves like

(85)

If we normalize the radial function in the ingoing-
gauge vector potential in Table I to give „p,—, 1 exp[tat(r* —t)]

3 ~

SCO r
Equation (89), when matched to the outgoing
piece of (84), gives

(810)

ndown d ~ Kdown Zm(8 )
P[- ( '+ )]

Nt l~~P +g l p 847
l, sc,P r

(86)

As in the gravitational case, imposition of the
reality condition for the vector potential leads to
the crossing relation (3.9). Hence when (86}is
matched to the ingoing piece of (82), we find

K, '"-~ = ~ . 2,N (ta&)[ tt,5(&d5—&tt) P5,5(&dt + &d)] ~—
v2z

(87}

The outgoing piece of the vector potential A&~ is
transverse at infinity in the outgoing gauge listed
in Table I, so its amplitude is fixed by comparison

Ktndotn = (-1) KlmYP (811)

With the aid of Table I, we obtain formulas for
the electromagnetic field,

2P 'Q,"'= dt-tt g B'KPmt, P"',Z, (a&a)e ' ',
~oe l eNIeP

2~down d p Kdown adown Zm( }e-ttot
l afgeP

2P-a@down ) d g BKd food Zm( )e-tlat
~to l, m, P

(812}

-2$P= d+ g BKt' ~,P"'„Z, (attt)e ' ',
l, m, P
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where the constant B is given by (A15). Taken
together with (BV) and (811), these formulas yield
the asymytotic forms

limits

exp[-ia)(r w+f)]

down o eXP &~(r + f)
,R"'e-' '- ', exp[i(o(r'-f)]

(815)

(-1)"BN exp[i~(rw-f)]
2z Qp r 3 +xZg e~&&)~

BN exp[-ie(r w+f}]
4iap r

( 1) ~ N.— p[ (&'-f)1
Z (0

—
)

(813)

are used to obtain the above.
An alternative method for deriving (813),

modeled after the discussion in Sec. IV for the
gravitational case, is much simpler. Start with
the formulas for p, and p, for a flat-space plane
wave

with

/(0$ O+ p)/n Av
((dj W2i(d

(814)

iruA
P, = ~ (1 —cose)exp [i&u(z —t) +icy]

(1+cos8) exp [is&(s —f) +iq]

(816)

for the nonzero modes: (m=1; &u =&@; P= 1+, -1;
1) 1) and (~=-1 ~=-~. fn=+1 1 /) 1). The

Then the expansion of (816) in spheroidal har-
monics

Q,- ~-2v 2 v(oA, N,
' ,(a(o). , Z'(8, a(o) +2, N,' ,(a(u). , ,Zg(e, a(o)

exp [-i(u(r +f)], , exp i(o(r t)—
((ur ' (81V)

and

Q vYv(aA, N,' n(a(g). ,Z,'(8, a(u) +2,N,
' (a(u) . n, 'Z( ea(u)

exp[is&(r —f)], , exp [-i(u(r + t}]
QfY &@AY

(816)

gives the correct asymptotic forms for P, and Q,
&shen the substitution r r~ is made in the expo-
nents.

Equations (81V) and (816) are in a form suit-
able for numerical calculations, although the

parity states have been summed over. Unlike the
gravitational case, the hvo parity solutions do not
scatter differently[i. e. , (813) do not explicitly
depend on I'], so no anomalous term appears in
the parity-summed form of the solution.
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