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We define constraint-free electromagnetic N-N~ transition form factors for general abnormal- and normal-
parity transitions and relate them to multipole and helicity transition form factors. Possible parametrizations
of the constraint-free form factors are discussed and various theoretically motivated simplifications are
considered which are then compared to the available transition-form-factor data'. If analyzed in terms of the
constraint-free form factors a very simple picture is obtained for the three leading resonances P33 D~3 and
F». Namely, the qualitative features of the multipole structure of each resonance are governed by one
coupling ratio each. The results of recent multipole analyses indicate that these coupling ratios are
approximately the same in all three cases. Our analysis supports the contention made by some authors that
the N-6 form factor falls with one power faster asymptotically than that corresponding to canonical dipole
behavior.

I. INTRODUCTION

The notion of the universality of elastic and in-
elastic transition form factors is frequently al-
luded to in a naive manner, although it is very dif-
ficult to make this notion theoretically precise.
For asymptotically large timelike or spacelike
values of q' one may define such a universality by
appealing to the Drell- Yan relation, which relates
the spin-averaged contribution of elastic and in-
elastic form factors to the universal threshold
behavior of certain structure functions. Because
of the appearance in both spacelike and timelike
regions of kinematical factors of the order
~q'~'i & for the contributions of J-J' transition
form factors to cross sections, the Drell-Yan re-
lation could be valid only if there were a dynamical
damping mechanism in the form factors for these
kinematical factors. On a more fundamental level
the necessity of such dynamical compensations is
implied by the fact that an increase in the produc-
tion of a given final state must be damped if uni-
tarity is not to be violated.

One would suppose that the dynamics which pro-
vides for such a correlation between the spin of
an electro-excited resonance and the dynamic q'
dependence of its form factor should be rather of
a global nature. Attempts at obtaining such global
correlations have been made, for example, by
Durr and Pilkuhn extending a nonrelativistic model
of potential scattering, ' and also by Fujimura,
Kobayashi, and Namiki in the context of the quark
model, from Lorentz contraction factors. ' There
is also the dual current model of Sugawara, Ohba,
Ademollo, and Del Guidice where such a correla-
tion arises from analytic continuation in the j
plane in the presence of variable current masses. '

Apart from the quite general theoretical interest
in the q' dependence of the transition form factor

at lower values of q' as witnessed by a wealth of
papers on this subject in the last few years, one
would like to find out if the above-mentioned glob-
al correlations leading to asymptotic universality
can already be seen at lower values of q'. For
example, the recurring question of whether the
N —6 transition form factor as measured up to
—q'- 5-6 GeV' shows canonical dipole behavior
can only be answered after an attempt has been
made to solve this question. Unfortunately this
problem cannot even be posed in a very well-de-
fined way, if only for the fact that the question of
what set of form factors should show universal or
even regular behavior cannot be answered without
appealing io a, detailed, as yet nonexistent, dynam-
1cs.

We take the point of view that the most likely
candidates for a possible universal or global be-
havior should be sought among the constraint-free
form-factor invariants and not among the physical
helicity or multipole form factors since the latter
have a known underlying kinematic q' structure
resulting from constraints they have to obey at
threshold and pseudothreshold. Even among the
constraint-free form factors there is a plethora
of possible choices. Among these we select a
certain set for their simplicity and define a crite-
rion of minimality which such a set has to obey.
The aim of this paper is to find out whether the
present preliminary transition-form-factor data
show any evidence for such a universal or global
behavior of suitably chosen constraint-free form
factors.

In Sec. II we deal with the kinematics of transi-
tion form factors, where we have tried to remain
as brief as possible, since the material is either
known or derivable in a straightforward manner
from two excellent previous articles on the sub-
ject:." The reader who is not so interested in the

14 3063



3064 DEVENISH, FISFNSCHITZ, AND KORNER 14

kinematical details can skip the entire Sec. II and
move to Sec. III without loss of understanding. In
Sec. IIA we write down covariant projections on
constraint-free form factors, multipole form fac-
tors, and helicity form factors for general J'~ —',-

abnormal- and normal-parity transitions. These
lead to constra, int relations for the multipole and
helicity form factors which are given explicitly.
In Sec. II B we treat the two exceptional ca,ses of
transitions to J = ~ isobars of positive and negative
parity. In Sec. II C we write down the contributions
of the multipole and helicity form factors to the
corresponding multipole and helicity amplitudes of
single-pion electroproduction. In Sec. II D we
give the cross sections.

In Sec. III we discuss the problem of finding ap-
propriate parametrizations for the form-factor
data and arrive at a suitable general form in
Sec. III A. Possible simplifications of this general
form a,re then proposed in Sec. III B and tested
with some of the available form-factor data in
Sec. IV. In Sec. V we summarize our results and
give our conclusions.

II. KINEMATICS

A. Definitions of the vertex

(~pi&„(0)l» =«" ' 8"( P)~ ,"8-

xz '„(r)')g(p). (2.2)

The general problem of defining a set of con-
straint-free and gauge-invariant form-factor in-
variants may be approached in a variety of
ways. ' ' In our specific case we solve this prob-
lem by direct construction following the work of
Bardeen and Tung' and Tarrach. " First we ex-

( Pi I3i)

I'IG. 1. The yNNJ* vertex. q =P —p and P =2(P*+P).

Following Jones and Scadron' we write

Q,*li„(0)l»='"" ' (p*)F,,. . .8,„"(~), (2.1)

where u 8' ' '8' is the generalized Rarita, -Schwinger
spinor (see e.g. Ref. 4) for a fermion of spin J'
=f + —, (8& —', ) and where the momenta are defined
according to Fig. 1.

Without loss of generality the matrix element
Eq. (2.1) can be written as

pand 1 i'i8„(tj") along a minimal set of non-gauge-
invariant covariants. For abnormal-parity tran-
sitions —,

' - -', ', -', . . . these are given by

j ~ g& y &+B2~ s y& y 5+&3~8P&+ y5

+B49' g V„y,. (2.3)

I"
8 =G XB +G Xp, +G XB (2.6)

can then be shown to be free of kinematical singu-
larities and constraints since from comparing (2.3)
and (2.6) one has

G, =B„

G, =B,.

(2.7)

Since Eq. (2.4) shows that there is no constraint
on the three invariants B„8„and B„ there is
also no constraint on the three form factors G„
G„and G, . Further, Eq. (2.7) shows that the G,
are kinematic-singularity-free since the B; are
kinematic —s ingulari ty-f ree.

The three constraint-free form factors G; are
advantageous from a theoretical point of view
since they are independent for all values of q'.
However, since they do not describe transitions

We follow the conventions of Ref. 5 ~ Thus we use
spacelike metric and cova. riant normalization. y
matrices are defined by (y&, y,) =2g„„with y,
=yoy, y2y, so that y5 = -1. We have dropped ex-
plicit reference to the dependence on L and g

' in
Eq. (2.3) in order to avoid cluttering the invariants
with indices. Whenever this does not lead to con-
fusion we shall also in the following omit explicit
reference to these dependencies.

The gauge-invariance condition q I"8 =0 imposes
one constraint on the four invariants 8; which
rea, ds

B,+(IVI+m)B, + ;(M' —m'-+q')B, +q'B, =0, (2.4)

where m and M denote the nucleon and isobar
masses.

Using the gauge projector method of Ref. 9 one
can then construct a set of gauge-invariant covar-
iants 3'8& for which we take a set that is simply
related to the set used in Ref. 5:

xp„-(egr„-4g8„)r„
&8„=(~gp„* P*'"e-„)r )

X8~ —(g pl/" —g g8~)p'.

The set (2.5) has the advantage that the leading q'
contribution to the scalar amplitudes comes from
the third invariant only [see Eq. (2.11)j.

The set of form factors G; defined by expanding
I'8~ along the gauge-invariant covariants (2.5)
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between physical states they obviously do not enter
diagonally into cross-section formulas such as
e.g. the generalized Rosenbluth formula (see Sec.
II D). For the experimental analysis it is desirable
to use form-factor invariants which describe phys-
ical transitions. These would e.g. correspond to
definite multipole or helicity transitions in a
given reference frame. We shall in the following
refer to these sets of form factors as the physical
form factors.

Covariant couplings that induce definite helicity
transitions in the isobar rest frame have already
been written down for the general case of normal-
and abnormal-parity transitions by Bjorken and
Walecka. ' The covariants that induce definite
multipole transitions can be written down by gen-
eralizing the analysis of Jones and Scadron. '

For the abnormal-parity transitions the multi-
pole covariants that induce magnetic, electric,
and Coulombic multipole transitions are given by

X~Bq = -[3(M+nz)/2mQ']eBq (Pq),

X"B„=—X"B„——,'(I + 1)[3(M+m)/2m']

& 4eB~(Pq)e„,(p*q)y„(2.8)

XcB = -[3(M+m)/2m']2qB(q'P„-q ~ Pq„)7', ,

which define multipole form factors G„, G~, and

Gc via the expansion

I Bp =GeXBp +GEXBp +GcXB (2.9)

Note that the magnetic and Coulombic multipole
covariants are not l -dependent, whereas the elec-
tric multipole covariant involves an l-dependent
term. In Eq. (2.8) we have introduced functions
Q'(q') and a(q') defined by

Q'(q') =[(Mam)'-q']

and (2.10)

a(q') =Q'Q -=4M'q, ',

where q, —= ~q, ~
is the momentum of the virtual pho-

ton in the isobar rest frame.
In order to relate the multipole form factors G„,

GE, and Gc to the constraint-free form factors G;,
one expresses the multipole covariants (2.8) by
the covariants (2.5) using standard identities in-
volving e„B B tensors (see e.g. Ref. 11), and after
inverting these expressions one obtains

a(I + I)Gu

2(l + l)GE
3 M+m

Gc

0+q' 0'+q

4M' a +q"'

o +q'+(l +1)Q' o +q' q' G,/M

G2 )

2G,

(2.11)

where we define g =M'-m'.
We have written Eq. (2.11) in such a way that it

is immediately apparent that, apart from the L—

dependent normalization of G„and Gz, the con-
straint equations between G„, G» and Gc implied
by (2.11) at threshold Q' = 0 and pseudothreshold
Q =0 are I-independent. We have the following:

(i) At threshold Q
' = 0,

~8g Gl~sX~IJ

(2.15}

The multipole covariants for the normal-parity
case are given by

XB'f = — —-(I+1)y,eB,(Pq)
3(M —n)) 1

—,'(I+ 1)G„=—,'(I+1)G =G (M+m)/2M.

(ii) At pseudothreshold Q =0,

2 (I + 1)GB = Go (M —rn)/2M.

(2.12)

(2.13)

2
, «B,(Pq) e„(Pq—},

—&„(Pq)e„,(Pq),
3(M-»~) 2

(2.16)
For the normal-parity transitions &'- ~

we define covariants and invariants in complete
analogy to Eqs. (2.2), (2.5), and (2.6) by the re-

placementt

3(M —m) 2
XB'= 2, r, qB(q'P. -P ' qq. ).

g B Bi-z B(p g)
—B Bi B(p g) (2.14) The corresponding multipole form factors defined

by
implying a multiplication of the covariants (2.5) by

y, from the left. The respective covariants and in-
variants are denoted by primes. For example, one
has

~gv, GNXOII, + GE gg+ GCXOIJ (2.17)

are related to the constraint-free form factors by
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Gc

—,'(l+ 1)G„' -Q 0 0

z (l+ 1)G& —— —Q —(l+ 1)(o'+ q~) —(l+ 1)(o'+ q ) —(l+ 1)q
3(M —n~)

4M 4M' Q'+ q

-G1 /M

G'

2G'

(2.18)

The constraint equations for G„', Gz, and Gc can be read off from Eq. (2.18). One has the following:
(i) At threshold (Q'=0),

O' =G' —G'.
C M E (2.19)

(ii) At pseudothreshold (Q =0)

GM =0,

M —n?

M

(2.20)

Helicity form factors may be introduced in analogy to Ref. 4 according to the decomposition

f'g, = @i& 'q~(P 'qq, —q'P, )1', + h & '[2ea. (qP)~..(qP)1'. +P*qt «.(qP1')1+ h, & 'p*q&~. (qur), (2.21)

where h„h„and h, induce scalar, transverse &, and transverse —,
' transitions. Our set 5,. differs from

the set g,. introduced in Ref. 4 in that we have removed explicit kinematic singularities at threshold and
pseudothreshold in the set g,. by writing

h; =g;b.(q'). (2.22)

We have also replaced M by p* in the transverse helicity covariants for the sake of convenience in dis-
cussing the necessary changes going from the abnormal-parity transitions to the normal-parity transitions.

The helicity form factors are related to the constraint-free form factors by

4M a+ q~ G, /M I

-2M(M+ m) -(v+ q') -q'

2q' —2w~(M+ m) (o+ q') q' 2G3

(2.23)

As usual the constraint equations for the A, can be
read off from Eq. (2.23). One has the following:

(i) At threshold (Q'=0),

M+nj
2M h, =A =-h3.

We complete this subsection by giving the rela, —

tion between the multipole and helicity form fac-
tors. For abnormal-parity transitions one has

g(l+ l)G~ = — [(l+ 2)h~+ lh3j,6 M+ni

(ii) At pseudothreshold (Q =0),

M —n?
h, =h, —h, .

M
(2.25)

In the ca,se of the helicity form factors the change
to the case of normal-pa, rity transitions is partic-
ularly simple: After the replacement of Eq. (2.14)
is made, the relations Eq. (2.23) and the con-
straints (2.24) and (2.25) remain unchanged for the
corresponding primed objects if one makes the
substitution M —-M. Of course the latter substi-
tution implies an exchange of the role of threshold
and pseudothreshold, since M--M results in
O'- Q

p (l + 1)G~ = —
( )

(h~ —h3),

j'j ?

3(M+ni) "
and for the normal-parity transitions

(l+ 1)Gpg
( )

(3'g+ k3)

-'. (l+ 1)G~ =-- --- [(l+ 2)h,' —lh,'I,

j'7?

(2.26)

(2.27)
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Gauge invaria. cee, q I' =0, implies the constraint

B,(M+m)+ 2(M2 —m')B, +q'B, =0.

Since

(2.30)

1
&3M+nz

1
2 ~ 2&

(2.31)

one concludes from Eq. (2.31) that the set G, and

G, is constraint-free.
The physical form factors Iz,. are defined by the

decomposition

1 1r, =a, =(p qq, -q'p„)y, + Iz, =[p*~,(qPy)],

(2.32)

where Iz, denotes the longitudinal and Iz, the trans-
verse transition form factors. Compared to the
definition of Ref. 4 we have introduced the extra
factor (Q ) ' in Eq. (2.32) in order to avoid the
kinematic singularity at pseudothreshold present
in the helicity form factors g, and g, of Ref. 4. In
terms of the constraint-free form factors one ob-
tains

8. The exceptional cases

The abnormal-parity transitions 2 - 2 and the
1+ 1+ ~normal-parity transitions &
- —, involve only two

independent form factors each and therefore have
to be discussed separately.

For the abnormal-parity case —,
'- - —,

' one defines
gauge-invariant and constraint-free form factors
via the decomposition

1'.= Gz(q'y. —kq. )y5+ G.(P 'qy~ —P~@ys ~

(2.28)

[The second covariant in Eg. (2.28) can be rewrit-
ten in the familiar form (P qy P&g)-y,
= ——,'(M+m)o „q,y, .] The absence of constraints for
the set of form factors G, and G, can be demon-
strated similarly to the case discussed in Sec. IIA
by expanding 1"~ first along a set of minimal non-
gauge- invariant covariants:

(2.29)

The corresponding relations for the normal-
parity transitions —,"-—,"can be obtained from
(2.28)-(2.34) as usual by replacing u(p*) -u(p*)y,
and M —-M. The corresponding covariants and
form factors will be denoted by primes in the fol-
lowing.

(M —zzz)z, , = -(a —,'q' )z; —q'—z„-

(M + nz)z „,= 2z; —z'„
1 1

(M —zzz)z, = -4z;+ -,z, .

The strong coupling constant g~ is defined by

&~l~, (0) l~,*)=g*.-(~')~,' "~,'~" -' (~*)

(2 .36)

(2.37)

and P, and p,' are the magnitude of incoming and
outgoing nucleon momenta in the c.m. frame. The

C. Four-point function multipoles

As far as the q' structure is concerned it makes
no difference whether one discusses the q' behavior
of the three-point vertices of Secs. IIA and IIB or
of their contributions to the multipole or helicity
expansions of the four-point function y~+X-Ã+ 7]

(see Fig. 2). Since most of the data of the q' be-
havior of resonance form factors has been obtained
from measurements of the four-point function it
has become customary to exhibit the q' structure
of A'-N~ transitions in terms of their multipole or
helicity contributions to the four-point-function
partial-wave expansions.

We shall denote the residues of the Dennery
amplitudes A„(t iz')A, , (f-—p. ')(A, —A, ), A, +A„
(f —p, ')A„and A, in terms of the coefficient of the
leading power of cos8, by z„x„~34 73~ v„
and x, . The full angular structure of the residues
can be easily written down in terms of derivatives
of the Legendre polynomials (see e.g. , Ref. 12).

For the abnormal-parity case one has

z, = (-G, + zzzG, )g*(p,p,')'

z; = [—2G, —(M —m)G, ]@*(p,p,') ', (2.35)

z", = [-G, —z(M —zz()Gz —2(M —zzz)G3] g*(P,P,'. ) ',

and the remaining three residues are given by the
parity constraints

Iz, = —[2(M —m)G, +(M + m)G, ],
1

Iz, = ——[2qzG, + (Mz — &z )Gz],
(2.33)

implying the pseudothreshold constraint

IVi —m
1 3' (2.34) FIG. 2. Isobar contribution to resonant photo- and

electroproduction.
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g E +vsg2 1 i2 l+1

4~ M (l+1)v „, (2.38)

where E' is the energy of the nucleon in the c.m.
frame and v, is defined in (2.41).

The appropriate multipole contributions can be
calculated from (2.35) by a standard projection
formula (see e.g. , Ref. 13) and one obtains

S„/q, = -q, 1 Gc/2M,
2

(2.39)

where

partial Nm width corresponding to the 1V*Nm coup-
ling Eg. (2.37) is given by

where p', is given by

1 3(M ~) (M ~)'
(l+1)~„, 2m (M -m)' -q2

1
~ s M2igMr (2.45)

The relations for the residues of the Dennery am-
plitudes, Eqs. (2.35) and (2.36), are replaced by
the corresponding equations with G, -G',. and
M —M.

The common threshold and pseudothreshold power
behavior of M„, , E„, , and S„, /q, is given by
q,'(Q )

'~' and in addition one has the following con-
straints:

(i) At threshold Q'= 0,

S„, 1 1+, , (lE„, -M„, ) = 0. (2.46)
3(M+ m) (M+ m)'

(1+1)r„, 2m (M+m)' -q'

( l)l 1
P~' ~ s M'+fM-r ' (2.40)

(ii) At pseudothreshold Q =0,

Mt„=0,
(2.47)

and where I' is the total width of the isobar. The
leading-power coefficient v, of the Legendre poly-
nomial P, (x) appearing in Eq. (2.40) is given by

(2l) t

2t(ll )2
~ (2.41)

The multipoles in Eq. (2.39) exhibit the appropriate
threshold and pseudothreshold power behavior
q,'(Q') '~' in addition to the following three threshold
and pseudothreshold constraints:

(i) At threshold Q' = 0,

r, = [-q'G, --.'(M+»i)'G, jg*,

Z2 = -2q'G, g*,
(2.48)

q, l+1 (M —m)

The helicity amplitudes A$ y, B„, , and C$
can be obtained from Eq. (2.44) in the same man-
ner as discussed in the abnormal-parity case.

For the exceptional case &'-
& one obtains for

the residues of the Dennery amplitudes

Z„+M„=O,
S/ 1

q, M+m
=0.

(ii) At pseudothreshold Q = 0,

(2.42)

1 1, (o ——,q —)~,,
2 (2.49)

where the strong coupling constant g* is defined by

w l~.(» I~.*~.& =a*"(p')"(P*) (2.50)

Sq, 1

q
(2.43)

These follow from the corresponding constraints
for G~, Gs, and Gc, Eq. (2.12) and Eq. (2.13).

One can calculate the helicity amplitudes A„,
B„, and C„ in terms of the helicity form factors
k„h„and h, from Eq. (2.39) by using the relation
between the helicity and multipole amplitudes given
in the Appendix and the corresponding relation be-
tween the multipole and helicity form factors writ-
ten down in Eq. (2.26).

For the normal-parity case one has

E,= ——[(M+ m) —m, ']'i'(Q')'i'

xh.3 s -M'+iMI' ' (2.51)

S„/q, = --,'[(M+ m)' —m, 'j' ' (Q')' '

The Nm width corresponding to the coupling Eq.
(2.50) is again given by Eq. (2.38). The remaining
residues can be calculated with the help of the par-
ity constraints (2.36).

For the multipole amplitudes we have

Mi. i, - = - ~'rG~

lE„j = -q)G~,

S,„ /q, = —q', G,'/2M,~
2

(2.44)
xp,' s -M'+ &Mr '

so that one has at pseudothreshold (Q = 0) the con-
straint
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E„=(M —m)S, /q, . (2.52) M, = (M+m)S, /q, . (2.54)

implying the threshold constraint
-M'+ 'MI''

Similarly one obtains in the case of normal-parity
transitions &' - 2'

M
M — [(M m)2 2]1/2(q )1/2/ I

2 "~ 3~ ~2+&.~I ~

(2.53)

D. Cross sections

The generalized Rosenbluth formula gives the
differential cross section do/d~~ in terms of the
transverse and longitudinal three-point couplings
defined in Secs. II A and II B. e~ is the electron
solid angle in the'lab frame. For abnormal-parity
transition one obtains

(2.55)

and for normal-parity transitions

d& 3 (M —m)' (-q') 3,(, ,), (I+ l)(l+ 2) (, (, (I+ 1)
( (2.56)

where
2 2

g
' = 1+ 2 tan'2'gs = 1 —2, ; tan'g g~,m q

(2.57)

1
4ez' sin ~zgz 1+2(ez/yi)sin'-, 'g~

(2.58)

P~ and g~ are the electron scattering angles in the Breit and lab frames, and e~ the incident electron ener-
gy in the lab frame. In comparing our formula. (2.55) with Eg. (40) of Ref. 5 for the l = 1 case, one should
remember to omit the factor —, arising from an explicit Clebsch-Gordan factor used in Ref. 5. [There is
also a misprint in the longitudinal contribution in Eq. (40) of Ref. 5.] One should also keep in mind that in
our convention J = l+ 2 always. The equivalent expressions in terms of the helicity couplings can easily be
obtained by substitution.

The partial width N~ -Ny is given by

for the abnormal-parity decays and, for the normal-parity decays, by

I* 9+~8+2~1
I

0+~~
I

~ ) (2.60)

For the exceptional cases one has

I", = —(M+nz)'q, /h, /', (2.59')

r„=—(M m)'q.
~
a,' ~'. (2.60')

In the case of the four-point function the double differential cross section d'o/d&o~de~ is as usual written
in the form

d 0'

q
= Z~(o'r+ 60'/),

d(dgd& I
where

(2.61)
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n S' —yn' —(2+ cotg +gal),2nz (—q
(2.62)

and where e~ is the laboratory energy of the scattered electron. The transverse and longitudinal cross
sections o~ and o~ are given by

Q

~,
"" . QP(~+ ~) IM, .I'+ c+~Pc+ 2) Itc „„.I'+ (~+ ~)'(~+ 2~

I
c,.I'+ ~(~+ ~)'I c,.„.I'I,

(2.63)

C

%e shall also define helicity —, and helicity —,
' cross sections oy/2 and o, &, by

~ (~.
"' .

)
~2«+»(I&~. l'+I&~. , I')

o, i, = ', ,
)
Q-,'E(1+ 1)(l+ 2)(IB,.I' +IS„, I'),

so that

+T =~ai~+03i~

(2.64)

(2.66)

If one integrates the four-point cross section Ecl. (2.61) for a particular resonance N~ with regard to de~
using the narrow-resonance approximation one obtains the fraction (I'„~„„,/I'„~, ») of the three-point
cross sections Eqs. (2.55) or (2.56).

III. PARAMETRIZATION OF FORM-FACTOR DATA

A. General remarks

When one is attempting to parametrize transition-form-factor data one needs a representation of the
multipole amplitudes that automatically incorporates the necessary kinematic-constraint structure. One
of many possibilities is to choose the representation of multipoles in terms of the constraint-free form
factors G, as derived in Sec. II.

After combining Eq. (2.11) with Eq. (2.39) one obtains for the abnormal-parity transitions

lM„ o+q'+(1+1)Q' o+q' q' G, /VI
l

q,
( +)1 /2

—(o+ q')E —(o+ q') -q' G2

S„/q, —2%I 2M — (o+ q') 2G,
2 VI

where we have omitted all q'-independent factors. For the normal-parity transitions one obtains

(3.1)

lEi+ j. , — Q +(l+1)(o+q') (l+1)(o+q') (l+ 1)q'

—-- G', /M-

G2 (3.2)

'3 j + ],—/qc (cr + q') 2G,'

For the sake of completeness we shall also list the corresponding representation of the helicity ampli-
tudes, which can be obtained from (3.2) using the relations between helicity and multipole amplitudes (A2):

Q —(o+ q') —(o+ q') —G', /M

E qc 2

l 1~"'- (q-)'l' @ +('+q ) (3.3)

t+Sz, -/ qc —2M — (o + q ') 2G,'
2M
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0+ 11. (q+ )1/2

So, /q, ,

M —m G,

2(M —m) M+m

(3 4)

for the abnornal. -parity case 2'-2, and

2(M+m) M- m G,
'

(3.5)

for the normal-parity case 2'-2'.
As one can easily convince oneself, the con-

straint structure of the multipole representations
in Eqs. (3.1)-(3.5) is identical to the constraint
structure of the corresponding multipole repre-
sentations given in Ref. 14. Of course, if an ef-
fective description of form-factor data is attempted
in terms of constraint-free form factors by using
a definite type of parametrization, say by a num-
ber of poles in the timelike region, then the choice
of representation may in general. affect the result-
ing fit. The falling-type form factors in Ref. 14
would in general not lead to the same behavior
for the constraint-free form factors used in Eqs.
(3.1)-(3.5).

This point is very well illustrated by considering
the set of form factors F, (q') introduced in Ref.
15, which are related to the G, (q') in the following
manner:

M+nz ' '

F2 = 2(M —m)G2, (3.6)

F, =G, + (,(cr+q2)G2+ q'G, .
2 M+mj M +~a.

Since the determinant of the transformation con-
necting the two sets is q2-independent the set
F, (q') is constraint-free as well and should be
a priori as good a choice as the set G;(q'). From
Eq. (3.6) it is obvious, though, that a falling type
of behavior for G, (q') would not in general lead
to a falling-type behavior of the F,(q').

If a sufficiently flexible falling-type parametriza-
tion of different choices of sets of constraint-
free form factor is used, one may hope that one
or the other choice wil. l not significantly prejudice
the final form of the q' dependence of the multi-
poles that one is attempting to fit. ~ ~~e hope

The helicity-amplitude representation for the
abnornal-parity transitions can be obtained as
usual from (3.3) by making the replacements
M —M,

~r+a, — +l+ +i+a, — +l+ l+z, - ~i+ and G' G' ~

For the exceptional cases one has

B. Possible simplifications

The parametrization of physical. form factors
as proposed in Sec. IIIA will eventually have to
be tested for its suitability as an effective de-
scription of the form-factor data, especially with
regard to extrapol. ations from the spacelike to
the timelike regions. Here we propose some fur-
ther simplifications starting from the assumptions
made in Sec. IIIA which allow a direct test to be
made with the form-factor data now available:

(i) The constraint-free form factors G, (q') have
a common q' dependence, i.e. , G;(q') =g;F,(q')
[we normalize F, (0) = I] .

(ii) Asymptotic dominance of the transverse
form factors, which implies, through proposal
(i), the relation g, =0 and g,' =0. In the exception-
al cases transverse dominance is automatic and
no relation is obtained.

(iii) The common form factor has the form

(l4 0),

(I = 0),

(3.7)

where &p is the inverse universal Regge slope
(s2=1/o.") and c controls the asymptotic q de-
pendence of the spin-averaged cross section (see
Sec. III D) o-(q 2)" ' (c =2 corresponds to canon-
ical "dipole" behavior). At fixed W, the form
factors (3.7) lead to a threshold behavior v W2

-(& —1)" ' for the deep-inelastic structure func-
tion v%2.

Note that proposal (i) puts all sets of form fac-
tors that are related to the set G, by a q2-indepen-

to demonstrate in Sec. IV, though, the choice of
constraint-free form factors used in Eqs. (3.1)-
(3.5) may be a preferred one. Thus we shall pro-
pose that the representations of Eqs. (3.1)-(3.5)
should be used for a description of the q' depen-
dence of the multipole form factors, with an ef-
fective parametrization of the constraint-free
form factors G;, G'; in (3.1)-(3.5) in terms of a
number of poles in the timelike region. In order
to obtain an asymptotic suppression of the scalar
contribution one would require G, and G,

' to fall
off one power faster than G, and G, and G', and

G,', respectively (see Sec. II D). For the excep-
tional cases the scalar contribution is automatical-
ly suppressed if the same power behavior is used
for both constraint-free form factors. The num-
ber of poles required in the G, is determined by
the spin J of the isobar and should be chosen such
that the transverse parts E and M fal. l at least
as fast as the canonical dipole form, i.e. , E, M
-(q') ".
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dent transformation on the same footing, and,
even if it is a very strong assumption, eliminates
some of the ambiguity in selecting a set of con-
straint-free form factors. The remaining ambi-
guity can be completely removed if one further
imposes the requirement that the constraint-free
form factors be minimal in the following sense:
The determinant of the transformation matrix re-
lating the physical to the constraint-free form
factors must be a cubic equation in q' with zeros
at threshold and pseudothreshoM. A minimal way
to attain this is to allow the coefficients of the
transformation matrix to be of first order in q2

only. The set I',- in Eq. (3.6) is not minimal in this
sense. The set G,. or any set related to it by a
q -independent transformation are minimal and, if
proposal (i) holds true, are all equivalent.

A second motivation for proposal (i) can be given
by noting that a common q' behavior of the Dennery
electroproduction amplitudes A„A„and A, leads,
via factorization, to a common q' behavior of the
set G, [see Eq. (2.35)]. Such a common q' depen-
dence of the Dennery amplitudes with the additional
constraints

A, =-,'(A, -A, )
(3.8)

has been postulated by Cho and Sakurai" as a con-
venient basis for the formulation of the vector-
dominance model in terms of s-channel helicity
amplitudes. The starting point of Ref. 16 was to
demand common q' behavior of the non-gauge-
invariant Ball amplitudes, which then through the
gauge —invar ianc e constr aints, leads to a com mon
q' behavior of the Dennery amplitudes with the con-
straints (3.8). As can be seen from Eq. (2.35), the
constraints (3.8) lead via. factorization to the con-
dition

G, +2G, =O, (3.9)

which is, at the three-point level, equivalent to
demanding a common q' behavior for the non-
gauge-invariant minimal set B, as can be seen
from Eqs. (2.4} and (2.7). Together with proposal
(ii) the above constraint leads to

(3.1O)

which we shall refer to as the Cho-Sakurai condi-
tion. One should note also that the Cho-Sakurai
constraints Eq. (3,8) leading to G, =-2G, are neces-
sary for the above factorization arguments to work
in a consistent manner as is apparent from the
parity constraints Eq. (2.36).

The Cho-Sakurai condition in the form (3.9}can
be seen to lead to asymptotic dominance of the
helicity-& excitation for both normal- and abnor-

mal-parity transitions [see Eq. (2.65) and (3.3)],
l.e. ~

I/2 3/2
q2 —+ 00

0'~/2 + 0@2
(3.11)

IV. COMPARISON WITH DATA

We will first compare the simple parametriza-
tion of the nonexceptional cases discussed in Sec.

which, via Bloom-Qilman duality, would lead to
large positive asymmetries in the deep-inelastic
scattering region, which seems to be favored by
quark-parton-model considerations. "'"

For the exceptional cases the Cho-Sakurai hy-
pothesis leads to

G, =0. (3.12)
As one can see from Eq. (3.4) the vanishing of G,
would be in contradiction to proposal (ii), namely
if G, = 0 holds then the longitudinal coupling would
dominate asymptotically. It remains to be seen,
which, if either, of the two hypotheses is opera-
tive.

Concerning proposal (iii) we note that the form-
factor behavior Eq. (3.7) obtains for the leading
resonances via factorization from dual current
models describing pion electroproduction" ' or
forward Compton scattering" involving dual B,
and B, functions of the type originally proposed
by Sugawara, Ohba, Ademollo, and Del Guidice. '
The dual current B, representation of forward
Compton scattering has been shown to satisfy
Bloom-Gilman duality, and thus the above-men-
tioned correlation between the spin of an excited
resonance and the asymptotic power of its form
factor is a necessary consequence of such models.
The form-factor behavior arises through a Pene-
ziano spectrum of vector-meson recurrences
p, p', p", . . . coupling with alternating sign of resi-
dues that terminate at the (l+c —1)th recurrence,
which then leads to the form-factor behavior Eq.
(3.7). Note that such a picture is in agreement
with the experimental observation that higher
vector-meson recurrences tend to decouple from
low-spin mesons. In Ref. 19 it was shown that the
elastic nucleon form factors can be quite well de-
scribed by form factors of the form (3.7).

The set of proposals (i), (ii), and (iii) may turn
out to be far too restrictive to account for detailed
aspects of future transition-form-factor data. We
have written down these proposals in the spirit of
hypotheses about the gross features of form-factor
data which will be easy to test due to the small
number of parameters that are involved. It is
gratifying that the data obtained through the analy-
sis of Ref. 14 seem to be amenable to such simple
parametrization, at least for the leading reso-
nances, as will be shown in the next section.
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III B for the resonances P,3 Dz3 Ez5 and I37 ex-
cited off protons using the results of a recent
analysis of resonance electroproduction by Deven-
ish and Lyth (DL) (see Ref. 14).

Given the function F,"'(g') [Eq. (3.7)] the two
remaining parameters gz and g, of Sec. III 8 can be
fixed in terms of the values of the transverse
multipoles F. and i' at the photoproduction point
q' =0. Throughout this section the results have
been normalized to the channel yP - v'p using the

results of the multipole analysis of Devenish,
Lyth, and Rankin. '

The q' dependence of the P33 form factor is well
known through an extensive series of total-cross-
section and coincidence measurements over the
last few years. The situation has been nicely sum-
marized by Gayler. " If the canonical choice is
made for the form factor F,"'(q') with c =2, m~'
=0.593 Gev ', and cy'=1.0 GeV ', then the de-
crease of M„with increasing q' is too slow com-

S). /MI,

-- 0.05

- 0.02

Eg,

-
1..0

FXP EP le/t Ekt

-1.0
(~) )'33(123&)

M3,

I

-1.0

0.02 ' 0.1

-S3.

-1.0 -1.0
( b) F37 (194Q)

Ez Sp-

l
I

-1.0 -1.0

(c) Q I3 (152 Q)

M3-

-1.0

0. 2
- 0.2

-1.0
I I

(d) FI0(1688) q& (GeV2)

FIG. 3. Nonexceptional multipoles P33, E37 D f3 and E&5. Results from DL shown as I except for P33 (dashed line).
Results of our fit are given by full line, using yn

&
——0.593 GeV, e' = 1 GeV, and c =-3 for P33 and E3-„c= 2 for D + and

E&5. For M f+ dash-dotted line gives our result for c =2. For c =3 our predictions are not discernible from the DL fit.
For S3+ (E37) the full line shows -S3+. The prediction has opposite sign to that found in the fit.
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contribution is quite well reproduced. For the E„
we predict a zero at q' = —(M' —m') =-0.65 GeV'
which does not appear in the analysis of DL. The
E, + is, however, experimentally so small that the
data analysis does not allow one to exclude this
possibility.

The comparisons for the D» and E» form fac-
tars using the canonicaIF, ' (q') andi, '(q') in each
case are shown in Figs. 3(c) and 3(d). The agreement
for the transverse multipoles is very good. [Note that
the absence of error bars for q'=0 in Fig. 3 is a
result of the fit procedure used by DL (Ref. 14);
the q' = 0 multipoles were fixed at the best values of
Ref. 22 and only the q'e0 values were allowed to vary. ]
In both cases, however, the scalar multipoles, though
having the correct sign, are somewhat too large.
At this point it must be remarked that there are
no direct measurements of the scalar contribution
to pion electroproduction outside the first reso-
nance region. [In a contribution to the SLAC Con-
ference, 1975, the DESY electroproduction group"
have been able to separate the scalar/transverse
interference term in the region of interest. It is
small and in agreement with the results of the
analysis of DL which used their preliminary un-
separated data. ] Note also that the small size of
the scalar contribution arises from a near cancel-
lation of the G', and G,' contributions. This cancel-
lation is quite sensitive to the exact input ratio
E„, /M, , at q'=0. The effect of varying the
input ratio E„, /M, , ~

on the size of S„, can
be seen by noting that S„, is proportional to
(1+r'), where v' is the coupling ratio defined in

(3.15). This coupling ratio is in turn determined
by E„~ /M, , at q'=0. In Eq. (3.16) we have
calculated x' from numbers quoted in various photo-
production fits (see Refs. 22, 28, and 29). In par-
ticular in the case of the F» the value of (1+r')
and thereby S, may go down by a factor of 3, de-
pending on what fit is taken. Further analysis on

this point is needed.
Although the qualitative behaviors of the multi-

poles in the abnormal- and normal-parity cases
are quite different and seem unrelated, there is
a close similarity between the two cases if ana-
lyzed in terms of the constraint-free couplings.

%e define the relevant ratio of coupling strengths
as

~ =Mg~/g~

—0.79*0.11
x'('D )

= —0.84+ 0.36
—0.80+0.28

MW (Bef. 28),
KMOBR (Ref. 29), (3.16)
DLR (Ref. 22),

—0.76+0.21
x('~ ),

= —0.87+0.17
—0.54~0.36

MW (Bef. 28),
KMOBB (Ref. 29), (3.17)
DLB (Ref. 22),

—0.83+0.26 MW (Ref. 28),
—0.86+0.10 KMOBB (Ref. 29), (3.18)
—0.74~0.22 DLB (Befs. 22, 30).

aiy2 l & +2
g -q~ -+~ (3.19)

for both abnormal- and normal-parity transitions
(replacing x r')-

In Fig. 5 we have plotted our predictions for the
asymmetry of P33 D,3 and F» using the DLR
(Bef. 22) values as input. In the abnormal-parity
case the q' dependence is much smoother and the
asymptotic value approached slower because the
scaling mass is (M +m)' instead of the (M -m)'
in the normal-parity case. The asymptotic values
of P33 and D» differ significantly from the values

With the large theoretical uncertainty going into
a multipole analysis one should avoid a literal in-
terpretation of the quoted errors and rather take
the mean of the above 3 respective values of x and
x' as a basis of estimate.

The coupling ratios are close to -1 in all three
cases resulting in the near vanishing of Q„, S, ,
and S, . In fact the qualitative behavior of the
multipoles can be easily reconstructed from Eqs.
(3.1) and (3.2) with the coupling ratios (3.16)—(3.18)
(after setting G, =G', = 0).

From the similarity of the coupling ratios (3.16)-
(3.18) one expects also a. similarity in the helicity
—,
' —

~ asymmetry A [see Eq. (3.11)] for large q'
values, since

x' = -Mg,'/g', ,

(3.15)
—1.0

1 2

and calculate these for the three best established
resonances using the results of three recent q'=0
multjpole analyses. 2 ' ' One obtains

q
2 [Gev21

FIG. 5. Helicity -2-2 asymmetry A for P3&, D&3, and

E~5. Asymptotic value derived from our fit to q =0 data.
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2
2@+1' (3.20)

valid for magnetic dominance [Eq. (3.20) is good
for all values of q' for the abnormal-parity case,
but only for asymptotic q' in the normal-parity
case], whereas for E» the asymptotic asymmetry
(A. -0.5) is slightly above the magnetic dominance
value Eq. (3.20).

Of course the sensitivity of 2'(2') on the q' =0
input values of the ill-determined ratios E/M or
A/B renders the extrapolation of the asymmetry
A to large q' values unreliable at present. How-

ever, if these inyut ratios. and thereby x could be
estimated more reliably, the resulting asymme-
tries could lead to some interesting comparisons
mith quark-parton-model results for the corres™
ponding asymmetry in the deep-inelastic scattering
region using Bloom-Gilman duality (see e.g. Refs.
17 and 18).

The above coupling ratios x also give a good
measure of how well the Cho-Sakurai hypothesis
is realized at the three-point level. As discussed
in Sec. III B, the Cho-Sakurai hypothesis together
with the assumption of an asymptotic suppression
of the scalar contribution predicts zero for the
ratios Eq. (3.15). Unless the assumption of scalar
suppression is dropped, one must conclude from
the nonzero values of r in Eqs. (3.16)-(3.18) that
the Cho-Sakurai hypothesis is not realized at the
three-point level. This can also be immediately
appreciated from the asymptotic values of the
asymmetry A which are approximately zero com-
pared to A = 1 resulting from the Cho-Sakurai
hypothesis [see Eg. (3.11)].

The results for the F» are shown in Fig. 3(b).
Since the F» is a Regge recurrence of the P33
we have again used a form factor Fl22) (q') falling
one power faster than that corresponding to the
canonical dipole form. Again the results for the
transverse multipoles are in agreement with the
data, but the scalar multipole has the opposite
sign. However, the details of the analysis in the
fourth resonance region cannot be considered re-
liable as the data are very limited and only gross
trends should be noted. In particular the relative
sign of E3y and S,+ is fixed in our simple param-
etrization, and thus an error in the determination
of the sign of the small amplitude F, would propa-
gate to give a wrong sign for the scalar amplitude
S, . It would be quite surprising if the relative
phases of I:, and S,+ compared to M, + would be
different from those of the P33 since the E37 is a
Regge recurrence of the P33.

For the two exceptional cases 8» and Pyy there
is again some information in the analysis of DL.
We are now faced with a problem, namely that

photoproduction can only supply one number for
each case but two parameters are still required
even for the simple parametrization. A very crude
estimate of the behavior has been obtained by de-
termining the parameters from the values of the
transverse multipoles at two values of —q' (0 and
1 GeV2). From this it is clear that the simple
parametrization of the exceptional cases will not
be in agreement with the results of DL, if the con-
ventional o.' and the experimental mz are used in
F(0) (q2)

We will first discuss the S». Measurements of
the total ep-epg cross section near threshold"
show that the S» form factor must fall rather slowly
with q'. From these experiments it is not possible
to separate the contributions of 0~ and g~. In DL
the scalar contribution was found to be quite large
for small q'. As can be seen from Eq. (3.4) if the
parameters are adjusted to give a, slow decrease
with q' (i.e. , g, /g2 large and negative), then in the
expression for the scalar term the tmo contributions
mill tend to cancel out. This problem could be over-
come to some extent if the mass parameters m~
and (n') ' in F~00) (q') would be increased.

The P» shows th e oppo site behavior . There is
good evidence for its presence in photoproduction
but it seems to be effectively absent in electro-
production. With the standard FP (q'), to accom-
modate such a rapid change, it is necessary to
choose g', /g2 large and positive. Now the terms
in the scalar multipole will tend to add in contra-
distinction to the above result. Again this would
be allowed for by changing the mass parameters

F(0) (q2 )
In particular in the case of the exceptional tran-

sitions the parametrization used in DL (Ref. 14)
may turn out not to.be sufficiently flexible in that
the transverse multipoles have been parametrized
as decreasing functions, whereas Eqs. (3.4) and
(3.5) show that this choice is not natural. The
rather flat behavior of E0 for the S» (1505) in the
fit of DL (Ref. 14) indicates that the parametri-
zation may have prejudiced the results in this case.
Further analysis on this problem is needed.

V. SUMMARY AND CONCLUSION

. As a basis for understanding the phenomenology
of transition form factors we have proposed a
parametrization scheme that incorporates two
necessary minimal theoretical requirements:
(i) the correct threshold and pseudothreshold con-
straint structure, and (ii) dynamic damping of Z-
dependent q2 powers arising from kinematics.

We further proposed that for a given isobar ex-
citation, certain suitably chosen constraint-free
form factors show a common q' dependence and
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that the scalar contributions are suppressed as-
ymptotically. This led to a representation of the
three form factors involved in each J~ —', transition
in terms of two parameters only.

For the three leading resonances P33 D$3 and
such a s imple par am etr ization was shown to

account quite well for the q' dependence of the
transverse multipole form factors with some pos-
sible difficulties remaining for the scalar con-
tributions in the case of the D» and F» which need
further analysis. The present evidence for the
q' dependence of the multipole form factors Spy

and P» indicates that these may have a more com-
plicated q' dependence.

We have demonstrated the advantages of using
a description of the form-factor data for the P33,
D J 3 and F» in terms of constraint-free form fac-
tors. Using only one coupling ratio for each reso-
nance the qualitative behavior of the three multi-
poles as regarding their relative size and phases
and the presence or absence of zeros can be easily
reconstructed. The results of three different
multipole analyses suggests a near equality of these
three coupling ratios. In this case one would ex-
pect also a near equality of their —,'- —, asymme-
tries for large q2 values.

The success in fitting the P33 D», and F» form-
factor data gives some support to the underlying
theoretical ideas. Namely, the constraint-free
form factors seem to exhibit a global universal
q'-behavior, which is of the form predicted by the
dual current model with form factors of the gener-
alized- vector-dominance- model type". On the
basis of this evidence we concluded that the N-4
form factor falls quicker than expected from a ca-
nonical dipole behavior.

The phenomenological evidence for structural
simplicity of leading-resonance excitation in terms
of relativistic three-point invariants warrants fur-
ther theoretical study using fully relativistic mod-
els of the nucleon as a bound state. In particular
one would hope that the assumption of the asymp-
totic suppression or the vanishing of the invariant
coupling G, could be put on a firmer theoretical
basis. Also one would want to understand the ap-
proximate equality of coupling ratios MG, /G, and
—MG', /G', for abnormal- and normal-parity tran-
sitions.

Compared to the quark-model prediction for the
q' dependence of the ratio of helicity-& and -2 cou-
plings of the D» and F» the analysis of DL indi-
cates a much less rapid change than predicted by
the quark model. Our analysis indicates that the
observed slow change is to a large extent due to
the underlying relativistic kinematic-constraint
structure. This would suggest that the essentially
nonrelativistic quark-model results could be much
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APPENDIX

The relation between helicity and multipole am-
plitudes is given by

2,, = 2lM, , + 2(l +2)E,„
a,.=-m„+F.„,
A,„=g (l + 2)M„, —2lE,„
B„, =M„, +E„,

and the inverse
1

r' 2(l +1)~M,, —(l +2)B,,]

1E l + 2 (f l) (2A l+ + lB l+) &

(Al)

(A2)

(As)

l)[-2A,„+(l+2)B„, ].1
(A4)

One defines scalar amplitudes C„and C„, by

C„=4-q'(l+1)S„/q„

C,„=—g-q' (l+ l)S„, /q, .

Current conservation implies

q,aSr, =qg„
and

(A6)

(A6)

improved if care is taken to incorporate the cor-
rect relativistic constraint structure.

We have not discussed the question of the natural
scale in the coupling strength of different isobars
lying on the same exchange-degenerate trajectory,
as e.g. D» and F», or P33 and F37 This has to be
discussed in explicit dual models, as for example
in Hefs. 13 and 19.

More and better data at possibly higher q' values
and more extensive analyses of these data expec-
ted in the near future will show whether the ideas
expressed in this paper and the preliminary evi-
dence presented for them will hold up. In particu-
lar this applies to the timelike region, where the
proposed dual-current-model form-factor behav-
ior is also expected to hold. Future e'e experi-
ments will be able to test the proposed structure
over a much wider range of q' values.



3078 DEVF NISH, EISENSCHITZ, AND KORNER 14

Under the replacement M——M McDowell sym-
metry implies

A„-A„,

M, , [- (l + 2)M,„—E,„],1

1 +lE

(A8)

B„B,„
which gives for the multipoles

(AV)

i[-M, , + (l + 2)E,,].
1

(AB)
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